JPH03167822A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03167822A
JPH03167822A JP30855089A JP30855089A JPH03167822A JP H03167822 A JPH03167822 A JP H03167822A JP 30855089 A JP30855089 A JP 30855089A JP 30855089 A JP30855089 A JP 30855089A JP H03167822 A JPH03167822 A JP H03167822A
Authority
JP
Japan
Prior art keywords
film
opening
mark
thin
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30855089A
Other languages
Japanese (ja)
Inventor
Hisao Kawasaki
久夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30855089A priority Critical patent/JPH03167822A/en
Publication of JPH03167822A publication Critical patent/JPH03167822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Electron Beam Exposure (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To perform high-precision mark detection by short-time exposure by lapping a thin-film selectively on a region including a positioning mark on a semiconductor substrate, applying a resist mask and making an opening in the thin-film, and using the thin-film for lift-off. CONSTITUTION:Electrodes 13, 14 are made on an active layer 12 put on a GaAs substrate 11, and an Au positioning mark 15 is made on the substrate 11. The SiO2 thin-film 10 in the region other than the mark is removed by wet-etching using a resist mask 26. The mark is covered with resist 16 and detected by the scanning of an electronic beam. And the resist 16 is exposed in accordance with a gate electrode pattern by irradiating between electrode 13, 14. Opening 18a, 18b are made after the development. The active layer 12 is etched through an opening 18a after an opening is made in the thin-film 10 selectively through the opening 18b with an NH4F aqueous solution. An FET is completed by covering with metallic films 19 for gate electrodes and lifting off the metallic films 19 put on the resist 16. This constitution makes it possible to perform stable lift-off even by electronic beam exposure, and stable high-precision mark detection.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体装置の製造方法に関する.(従来の技術
) 半導体装置の製造工程で要求される最少加工寸法は著し
く微細化されており、特に砒化ガリウム(GaAs)等
の化合物半導体を用いたマイクロ波半導体装置のゲート
電極寸法は既に0.25.以下に達している.この様な
微細パターンの加工法としては、電子ビームを用いた電
子ビーム露光技術が広く採用されている. 電子ビーム露光で半導体基板にパターンを形成するため
には、既存パターンと電子ビームとの位置合わせを正確
に行う必要がある。このため、半導体基板上に平面形状
が十字形あるいはL字形の電子ビーム露光用位置合わせ
マーク(以下、位置合わせマークと略称する)を形成し
ておき、その位置合わせマークを電子ビームで走査しマ
ーク検出を行った後、既存パターンと電子ビームとの位
置関係を求め、補正を加えることによって高精度な位置
合わせを行う。一般に,この位置合わせマークは検出信
号の信号対ノイズ比(S/N比)が大きい金属膜が多く
用いられる。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device. (Prior Art) The minimum processing dimensions required in the manufacturing process of semiconductor devices have become significantly finer. In particular, the gate electrode dimensions of microwave semiconductor devices using compound semiconductors such as gallium arsenide (GaAs) have already reached 0. 25. The following has been achieved. Electron beam exposure technology using an electron beam is widely used as a method for processing such fine patterns. In order to form a pattern on a semiconductor substrate by electron beam exposure, it is necessary to accurately align the existing pattern and the electron beam. For this purpose, alignment marks for electron beam exposure (hereinafter referred to as alignment marks) having a cross-shaped or L-shaped planar shape are formed on the semiconductor substrate, and the alignment marks are scanned with an electron beam and marked. After detection, the positional relationship between the existing pattern and the electron beam is determined, and correction is applied to achieve highly accurate positioning. Generally, a metal film with a high signal-to-noise ratio (S/N ratio) of a detection signal is often used for this alignment mark.

第2図は、GaAsを用いたショットキ障壁型電界効果
トランジスタ(MESFET)のゲート電極パターンを
電子ビーム露光で形成する工程図を示すものである。第
2図(a)に示されるように、半絶縁性GaAs基板1
01上に活性層102が積層され、活性層102上にソ
ース電極103、ドレイン電極l04,半絶縁性GaA
s基板1上に金(Au)で形或された位置合わせマーク
l05がそれぞれ形或され、全面にボジタイプのレジス
ト膜106を塗布した後、位置合わせマーク105を含
む領域を電子ビーム107で走査しマーク検出を行い、
ソース電極103とドレイン電極104との間に電子ビ
ーム7を照射しレジスト膜106をゲート電極パターン
形状に従って露光する。次に、レジスト膜106を現像
すると、電子ビーム107が照射された部分のレジスト
膜106に第2図(b)で示すような開孔108a、1
08bが形或される。第2図(c)は、第2図(b)の
様子を示した上面図である。
FIG. 2 shows a process diagram for forming a gate electrode pattern of a Schottky barrier field effect transistor (MESFET) using GaAs by electron beam exposure. As shown in FIG. 2(a), a semi-insulating GaAs substrate 1
An active layer 102 is stacked on 01, and a source electrode 103, a drain electrode 104, and a semi-insulating GaA layer are stacked on the active layer 102.
Alignment marks 105 made of gold (Au) are formed on the S substrate 1, and after applying a positive type resist film 106 to the entire surface, the area including the alignment marks 105 is scanned with an electron beam 107. Perform mark detection,
An electron beam 7 is irradiated between the source electrode 103 and the drain electrode 104 to expose the resist film 106 according to the shape of the gate electrode pattern. Next, when the resist film 106 is developed, openings 108a, 1 as shown in FIG.
08b is formed. FIG. 2(c) is a top view showing the state of FIG. 2(b).

L字形の位置合わせマーク105には、X方向、Y方尚
のマーク検出で生じた開孔108x、108yが形成さ
れる。例えば、ウェーハ1枚当たりの露光時間と、高精
度で安定したマーク検出を考慮して,電子ビーム露光の
条件を、ビーム電流= 0.2nA、マーク検出時のビ
ームショット時間= 10μsec、ビーム間隔=0.
1μm、ビームの走査回数=10回とした場合、位置合
わせマーク上のレジスト膜に照射される電子の量(ドー
ズ量)は、 ((ビーム電流・ビームショット時間)/ビーム間隔)
・走査回数=2nC/anとなる。この値は、電子ビー
ム用レジスト例えばPHMA (ポリメチルメタアクリ
レート)の最適ドーズ量とほぼ同じであることと、位置
合わせマーク105上のレジスト膜106の膜厚が他の
部分よりも位置合わせマーク105の膜厚分だけ薄いた
め,現像後位置合わせマーク105上のレジスト膜10
6が除去されてしまう。なお、第2図(b)は、第2図
(c)のA−Aで示した一点鎖線に沿う断面図である。
Openings 108x and 108y are formed in the L-shaped alignment mark 105 by detecting the mark in the X direction and the Y direction. For example, considering the exposure time per wafer and highly accurate and stable mark detection, the conditions for electron beam exposure are as follows: beam current = 0.2 nA, beam shot time during mark detection = 10 μsec, beam interval = 0.
1 μm, and the number of beam scans = 10 times, the amount of electrons (dose amount) irradiated to the resist film on the alignment mark is ((beam current/beam shot time)/beam interval)
- Number of scans = 2nC/an. This value is approximately the same as the optimum dose of an electron beam resist such as PHMA (polymethyl methacrylate), and the thickness of the resist film 106 on the alignment mark 105 is thicker than on other parts. The resist film 10 on the alignment mark 105 after development is thinner by the film thickness of .
6 will be removed. Note that FIG. 2(b) is a sectional view taken along the dashed line AA in FIG. 2(c).

続いて、第2図(d)で示すように開孔108を通して
活性層102を所定の深さにリセスエッチングし、ゲ一
ト電極用金属膜109を被着する。リセスエッチングは
、MESFETの飽和ドレイン電流の制御,ソース抵抗
の低減、更にゲート電極形成時のリフトオフ用スペーサ
層の形或を目的としている。第2図(d)において、位
置合わせマーク5はリセスエッチング時のGaAsエッ
チャントにより侵されないため、ゲート電極用金属膜1
09を被着した後、レジスト膜6上の金属膜109と、
位置合わせマーク105上の金属膜109とが繋がって
しまいリフトオフによるレジスト膜106上の金属膜1
09の除去が出来なくなり、MESFETのゲート電極
の形或が困難になってしまうという問題があった。
Subsequently, as shown in FIG. 2(d), the active layer 102 is recess-etched to a predetermined depth through the opening 108, and a gate electrode metal film 109 is deposited. The purpose of the recess etching is to control the saturated drain current of the MESFET, to reduce the source resistance, and to form a spacer layer for lift-off when forming the gate electrode. In FIG. 2(d), since the alignment mark 5 is not attacked by the GaAs etchant during recess etching, the gate electrode metal film 1
After depositing the metal film 109 on the resist film 6,
The metal film 109 on the alignment mark 105 is connected to the metal film 1 on the resist film 106 due to lift-off.
There was a problem in that it became impossible to remove 09, making it difficult to shape the gate electrode of the MESFET.

上記問題を解決する方法として、ビーム電流、ビームシ
ョット時間、ビーム間隔,走査回数のマーク検出条件を
変えて、位置合わせマーク105上のレジスト膜106
のドーズ量をレジスト膜106の最適ドーズ量以下に抑
え、現像後位置合わせマーク105が露出しないように
する方法が考えられるもののスループット、マーク検出
等に、以下に記す問題が生ずる。
As a method to solve the above problem, the resist film 105 on the alignment mark 105 is changed by changing the mark detection conditions such as beam current, beam shot time, beam interval, and number of scans.
Although it is possible to consider a method of suppressing the dose of resist film 106 below the optimum dose of resist film 106 so as to prevent the alignment mark 105 from being exposed after development, the following problems occur in throughput, mark detection, etc.

(1)電子ビーム露光に要する時間は、ビーム電流にほ
ぼ比例する。このためビーム電流を少なくすることは、
露光に要する時間がそれだけ長くなりスループットの低
下を招く6(2)ビームショット時間を短くする方法は
,検出する信号強度が弱くなるためS/N比が低下し安
定したマーク検出が困難になる。
(1) The time required for electron beam exposure is approximately proportional to the beam current. Therefore, reducing the beam current is
6(2) The method of shortening the beam shot time causes a corresponding increase in the time required for exposure and a decrease in throughput. However, the signal strength to be detected becomes weaker, the S/N ratio decreases, and stable mark detection becomes difficult.

(3)ビーム間隔を広くする方法は,マーク検出の位置
精度を低下させるためパターンの重ね合わせ誤差が大き
くなる。
(3) The method of widening the beam spacing reduces the positional accuracy of mark detection, which increases the pattern overlay error.

(4)走査回数を減らす方法は、マーク検出信号の平均
化処理に必要なデータ数が少なくなるため、パターンの
重ね合わせ精度が低下する。
(4) In the method of reducing the number of scans, the number of data required for averaging processing of mark detection signals is reduced, resulting in a decrease in pattern overlay accuracy.

したがって、ウェーハl枚当たりの露光時間を増大せず
に、しかも高精度で安定したマーク検出を行うためには
、位置合わせマーク上のレジスト膜に電極パターン部と
同程度の電子ビームを照射する必要がある。さらに、レ
ジスト膜として前記PMMAよりも高感度なレジスト膜
を使用する場合,位置合わせマーク105上のレジスト
膜に106には最適ドーズ量よりも過大な電子ビームが
照射されるため、現像処理後位置合わせマーク5が露出
されることはまぬがれ得ない. (発明が解決しようとする課題) 以上述べたように従来の位置合わせマークでは、ウェー
ハl枚当たりの露光時間を増大せずに,しかも高精度で
安定したマーク検出を行おうとすると、マーク検出時の
電子ビーム照射で位置合わせマークが露出するため、リ
フトオフ法で電極パターンを形成することが極めて困難
であった。
Therefore, in order to perform highly accurate and stable mark detection without increasing the exposure time per wafer, it is necessary to irradiate the resist film on the alignment mark with the same amount of electron beam as the electrode pattern area. There is. Furthermore, when using a resist film with higher sensitivity than the above-mentioned PMMA as the resist film, the resist film on the alignment mark 105 is irradiated with an electron beam that is larger than the optimum dose, so that the position after development processing is It is inevitable that alignment mark 5 will be exposed. (Problems to be Solved by the Invention) As described above, with conventional alignment marks, when trying to perform highly accurate and stable mark detection without increasing the exposure time per wafer, it is difficult to Because the alignment marks are exposed by electron beam irradiation, it is extremely difficult to form electrode patterns using the lift-off method.

本発明は、叙上の欠点を排除し,リフトオフ法を用いて
電極パターンを形成する際、ウェーハ1枚当たりの露光
時間を増大させずに、しかも高精度で安定したマーク検
出が行える半導体装置の製造方法を提供することを目的
とする. 〔発明の構成〕 (課題を解決するための手段) 上記目的を達成するために本発明に係る半導体装置の製
造方法では,半導体基板上の位置合わせマークを含む領
域に選択的に薄膜を積層せしめ、該位置合わせマークを
含む領域を電子ビームで走査することを特徴としている
. (作 用) 本発明に係る半導体装置の製造方法においては、半導体
基板上の位置合わせマークを含む領域に選択的に薄膜が
積層されており,レジスト塗布、電子ビーム露光、現像
処理を行った後レジスト膜の開孔を通して前記薄膜をエ
ッチング除去し、この薄膜をリフトオフ用のスペーサ層
として用いるため,電子ビーム露光でも安定したリフト
オフが可能となる。
The present invention eliminates the above-mentioned drawbacks and provides a semiconductor device that can perform highly accurate and stable mark detection without increasing the exposure time per wafer when forming an electrode pattern using the lift-off method. The purpose is to provide a manufacturing method. [Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, in the method for manufacturing a semiconductor device according to the present invention, a thin film is selectively laminated in a region including alignment marks on a semiconductor substrate. , the area including the alignment mark is scanned with an electron beam. (Function) In the method for manufacturing a semiconductor device according to the present invention, a thin film is selectively laminated on a region including alignment marks on a semiconductor substrate, and after resist coating, electron beam exposure, and development processing are performed. Since the thin film is etched away through the openings in the resist film and this thin film is used as a spacer layer for lift-off, stable lift-off is possible even with electron beam exposure.

(実施例) 本発明の一実施例について図面を参照して説明する. 第1図(a)に示すように,半絶縁性GaAs基板ll
上に活性層12が積層され、活性層12上にソース電極
l3、ドレイン電極l4、および半絶縁性GaAs基板
11上に金属膜例えば金(Au)で構成された位置合わ
せマーク15をそれぞれ形成する.続いて,全面に薄膜
例えばシリコン酸化膜を0.5IR、レジスト膜26を
順次積層し、レジスト膜26にパターニングを施し、位
置合わせマークl5を含む領域に薄膜lOを,第1図(
b)の如く選択的に形成する.ここで、位置合わせマー
ク15を含む領域以外の薄膜を除去する理由は、ゲート
電極と同時に形成されるリセスの幅を短く形成しソース
抵抗の増大を抑えるためである.例えば、ゲート電極が
形威される部分の活性層上に薄膜がある場合、リセスエ
ッチングを施す前に薄膜を除去する必要があり、この薄
膜の除去にドライエッチングを用いると活性層へのダメ
ージが懸念されるため,通常はウェットエッチングが行
われる.ウェットエッチングは、深さ方向と共に横方向
へもエッチングが進むため、薄膜を伴ったリセス幅は薄
膜がない場合に比べ広くなり、ソース抵抗の増大をきた
す。次に,レジスト膜26を除去した後、第1図(C)
で示すように新たなレジスト膜l6を全面に塗布した後
,位置合わせマーク15を含む領域を電子ビームl7で
走査しマーク検出を行い、ソース電極13とドレイン電
極14との間に電子ビーム17を照射しレジスト膜l6
をゲ−ト電極パターン形状に従って露光する.次に、レ
ジスト膜16を現像すると,電子ビームl7が照射され
た部分のレジスト膜16に第1図(d)で示すような開
孔18a、18bが形成される.続いて、第1図(e)
で示されるように開孔18bを通して例えば弗化アンモ
ニウム水溶液で薄膜10をエッチング除去した後、開孔
18aを通して活性層l2を所定の深さにリセスエッチ
ングする.ここで、GaAsで構威される活性層l2は
弗化アンモニウム水溶液に対してエッチングされないた
め,薄膜lOのみが選択的にエッチングされる。さらに
、第1図(f)で示す如くゲート電極用金属膜19を被
着した後、レジスト膜l6上のゲート電極用金属膜19
をリフトオフ法で除去することによって、第1図(g)
で示すMESFETが形成される.第1図(f)におい
て位置合わせマークl5上にはゲート電極用金属膜l9
が被着されているものの、薄膜10がリフトオフ用のス
ペーサ層になり、位置合わせマーク15上のゲート電極
用金属膜19とレジスト膜l6上のゲート電極用金属膜
19とが分離されており、第1図(g)で示す如くゲー
1一電極用金属膜19のリフトオフは同等問題なく容易
に行える。
(Example) An example of the present invention will be described with reference to the drawings. As shown in Figure 1(a), a semi-insulating GaAs substrate ll
An active layer 12 is laminated thereon, and a source electrode l3 and a drain electrode l4 are formed on the active layer 12, and alignment marks 15 made of a metal film such as gold (Au) are formed on the semi-insulating GaAs substrate 11, respectively. .. Subsequently, a thin film such as a silicon oxide film of 0.5 IR and a resist film 26 are sequentially laminated on the entire surface, patterning is applied to the resist film 26, and a thin film 10 is formed in the region including the alignment mark 15 as shown in FIG.
Form selectively as in b). Here, the reason why the thin film other than the region including the alignment mark 15 is removed is to shorten the width of the recess formed at the same time as the gate electrode, thereby suppressing an increase in source resistance. For example, if there is a thin film on the active layer in the area where the gate electrode is formed, it is necessary to remove the thin film before performing recess etching, and if dry etching is used to remove this thin film, damage to the active layer may occur. Because of this concern, wet etching is usually performed. In wet etching, etching progresses not only in the depth direction but also in the lateral direction, so the recess width with the thin film becomes wider than in the case without the thin film, resulting in an increase in source resistance. Next, after removing the resist film 26, as shown in FIG.
After applying a new resist film l6 to the entire surface as shown in FIG. Irradiated resist film l6
is exposed according to the gate electrode pattern shape. Next, when the resist film 16 is developed, openings 18a and 18b as shown in FIG. 1(d) are formed in the portions of the resist film 16 irradiated with the electron beam 17. Next, Figure 1(e)
After the thin film 10 is etched away through the opening 18b using, for example, an aqueous ammonium fluoride solution, the active layer 12 is recess-etched to a predetermined depth through the opening 18a, as shown in FIG. Here, since the active layer 12 made of GaAs is not etched by the ammonium fluoride aqueous solution, only the thin film 1O is selectively etched. Furthermore, as shown in FIG. 1(f), after depositing the gate electrode metal film 19, the gate electrode metal film 19 on the resist film l6 is
Figure 1 (g) is obtained by removing the
A MESFET shown in is formed. In FIG. 1(f), on the alignment mark l5 is a gate electrode metal film l9.
However, the thin film 10 becomes a spacer layer for lift-off, and the gate electrode metal film 19 on the alignment mark 15 and the gate electrode metal film 19 on the resist film l6 are separated. As shown in FIG. 1(g), lift-off of the metal film 19 for the gate electrode 1 can be easily performed without any problem.

上記実施例では、薄膜をエッチング除去した後リセスエ
ッチングする場合を例示したが,リセスエッチングを施
した後薄膜をエッチング除去しても同様な効果がある。
In the above embodiment, the case where recess etching is performed after the thin film is etched away is exemplified, but the same effect can be obtained even if the thin film is etched away after performing recess etching.

また、本発明は薄膜としてはシリコン酸化膜のみならず
、シリコン窒化膜,あるいは酸化アルミニウム等であっ
てもかまわない。また、本発明はゲート電極の形或工程
に限られるものではなく、ソース電極・ドレイン電極あ
るいはリフトオフ法を用いて形成する他のパターン形成
についても広く適用されることは勿論である。さらに、
イオンビーム等他の荷電ビームを用いた半導体装置の製
造についても本発明は有効である。さらに、レジスト膜
への露光方法についても電子ビームに限らず、イオンビ
ーム等他の荷電ビームを用いても有効である。
Further, in the present invention, the thin film is not limited to a silicon oxide film, but may also be a silicon nitride film, aluminum oxide, or the like. Furthermore, the present invention is not limited to the shape or process of the gate electrode, but can of course be widely applied to the formation of source electrodes, drain electrodes, and other patterns formed using the lift-off method. moreover,
The present invention is also effective for manufacturing semiconductor devices using other charged beams such as ion beams. Furthermore, the method of exposing the resist film is not limited to electron beams, but it is also effective to use other charged beams such as ion beams.

〔発明の効果〕 以上述べたように、本発明による半導体装置の製造方法
は,位置合わせマーク上にリフトオフ用のスペーサ薄層
が形威されているため、マーク検出時の電子ビーム照射
で位置合わせマークが露出されても、リフトオフ法で電
極パターンを容易に形成できる。したがって、ウェーハ
1枚当たりの露光時間を増大させずに,しかも高精度で
安定したマーク検出を行った、半導体装置が製造できる
[Effects of the Invention] As described above, in the semiconductor device manufacturing method according to the present invention, since a thin spacer layer for lift-off is formed on the alignment mark, alignment can be performed by electron beam irradiation when detecting the mark. Even if the mark is exposed, an electrode pattern can be easily formed using the lift-off method. Therefore, it is possible to manufacture a semiconductor device that performs highly accurate and stable mark detection without increasing the exposure time per wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないし(g)は本発明にかかる位置合わせ
マークの一実施例を説明するための図。第2図(a)な
いし(d)は従来の位置合わせマークを説明するための
図である。 10・・・薄膜. 11・・・半導体基板、I2・・・
活性層、13・・・ソース電極、14・・・ドレイン電
極,15・・・位置合わせマーク、l6、26・・・レ
ジスト膜、17−・・電子ビーム、18a. 18b、
18x、■sy−・・開孔、19・・・ゲート電極用金
属膜、
FIGS. 1(a) to 1(g) are diagrams for explaining one embodiment of the alignment mark according to the present invention. FIGS. 2(a) to 2(d) are diagrams for explaining conventional alignment marks. 10... Thin film. 11...Semiconductor substrate, I2...
Active layer, 13... Source electrode, 14... Drain electrode, 15... Alignment mark, l6, 26... Resist film, 17-... Electron beam, 18a. 18b,
18x, ■sy-...opening, 19...metal film for gate electrode,

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に、電子ビーム露光用位置合わせマーク
を形成する工程と、該電子ビーム露光用位置合わせマー
クを含む領域に選択的に薄膜を積層する工程と、前記半
導体基板上にレジスト膜を塗布する工程と、前記電子ビ
ーム露光用位置合わせマークを含む領域の前記レジスト
膜に電子ビームを照射する工程と、前記半導体基板上の
前記レジスト膜に所定のパターンにしたがって電子ビー
ムを照射する工程と、前記レジスト膜に現像処理を施し
、該レジスト膜に開孔を形成する工程と、該開孔を通し
て前記電子ビーム露光用位置合わせマークを含む領域の
前記薄膜をエッチング除去した後、前記半導体基板を前
記開孔を通してエッチング除去する工程とを具備するこ
とを特徴とする半導体装置の製造方法。
forming an alignment mark for electron beam exposure on a semiconductor substrate; selectively laminating a thin film in a region including the alignment mark for electron beam exposure; and applying a resist film on the semiconductor substrate. a step of irradiating the resist film in a region including the alignment mark for electron beam exposure with an electron beam; a step of irradiating the resist film on the semiconductor substrate with an electron beam according to a predetermined pattern; After developing the resist film and forming an opening in the resist film, and etching away the thin film in a region including the alignment mark for electron beam exposure through the opening, the semiconductor substrate is exposed to the opening. 1. A method of manufacturing a semiconductor device, comprising the step of removing by etching through a hole.
JP30855089A 1989-11-28 1989-11-28 Manufacture of semiconductor device Pending JPH03167822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30855089A JPH03167822A (en) 1989-11-28 1989-11-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30855089A JPH03167822A (en) 1989-11-28 1989-11-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03167822A true JPH03167822A (en) 1991-07-19

Family

ID=17982380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30855089A Pending JPH03167822A (en) 1989-11-28 1989-11-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03167822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207596A (en) * 2014-04-17 2015-11-19 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207596A (en) * 2014-04-17 2015-11-19 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
KR0130963B1 (en) Method for manufacturing field effect transistor
US20080124852A1 (en) Method of forming T- or gamma-shaped electrode
US6153499A (en) Method of manufacturing semiconductor device
US5139968A (en) Method of producing a t-shaped gate electrode
JPH03167822A (en) Manufacture of semiconductor device
JPH0645364A (en) Manufacture of semiconductor device
JP2714026B2 (en) Method for forming electrode for semiconductor device
EP0385031A1 (en) Semiconductor device with a recessed gate, and a production method thereof
JPH03167821A (en) Positioning mark forming method for electron beam exposure
JPH03167820A (en) Manufacture of semiconductor device
JPH0414212A (en) Resist pattern formation
JP3106379B2 (en) Method for manufacturing semiconductor device
JP3165712B2 (en) Method for manufacturing semiconductor device
KR100264532B1 (en) Method for forming fets having their respective mode or threshold voltage
JPH03145140A (en) Manufacture of compound semiconductor device
JPH03147338A (en) Manufacture of semiconductor device
KR100315423B1 (en) Method of forming fine T(Γ)-gate by photo-lithography process and sacrificial dielectric film
JPH07130611A (en) Manufacture of semiconductor device
JP2868771B2 (en) Method of forming alignment mark for electron beam exposure
JP2591639B2 (en) Method for manufacturing semiconductor device
JPH07107906B2 (en) Method for manufacturing semiconductor device
KR0137573B1 (en) Gate fabrication method of mosfet
JPH04291733A (en) Gaas device and forming method for t-shaped gate electorode
JPH0462938A (en) Manufacture of semiconductor device
JPH0410629A (en) Manufacture of semiconductor device