JPH03161966A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH03161966A
JPH03161966A JP1302487A JP30248789A JPH03161966A JP H03161966 A JPH03161966 A JP H03161966A JP 1302487 A JP1302487 A JP 1302487A JP 30248789 A JP30248789 A JP 30248789A JP H03161966 A JPH03161966 A JP H03161966A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
transistors
transistor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1302487A
Other languages
Japanese (ja)
Other versions
JP2910100B2 (en
Inventor
Takashi Noguchi
隆 野口
Hirobumi Sumi
博文 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1302487A priority Critical patent/JP2910100B2/en
Publication of JPH03161966A publication Critical patent/JPH03161966A/en
Application granted granted Critical
Publication of JP2910100B2 publication Critical patent/JP2910100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the leak current of a transistor and reduce power consumption, by constituting a memory cell by using an FF constituted of a pair of inverters, and constituting a transistor as a double gate structure in a storage device in which a thin film transistor operates as the load element of an inverter. CONSTITUTION:A memory cell is constituted of an FF 11 and a pair of a transferring transistors 12, 13. The FF 11 is constituted by cross-coupling the input and the output of a pair of inverters 14, 15. The driving transistor 16, 17 of the inverters 14, 15 are NMOS transistors, and load transistor 21, 22 are PMOS transistors. The transistors 21, 22 have double gate structure. Leak current of the load transistors 21, 22 are mainly generated in a P<+> i-junction in the vicinity of a drain region. When the transistors 21, 22 have the double gate structure in this manner, the voltage of the P<+> i-junction in the vicinity of one drain region is lowered, and the leak current is reduced.

Description

【発明の詳細な説明】 〔産業」二の利用分野〕 本発明は、スタソクCMOS型SRAMと称されており
、メモリセルを構成しているフリソプフロソプのインバ
ータの負荷素子が薄膜トランジスタから戒っている半導
体メモリに関するものである。
[Detailed Description of the Invention] [Field of Application in Industry] The present invention is a semiconductor CMOS type SRAM, in which the load element of a Frisopflosop inverter constituting a memory cell is changed from a thin film transistor to a semiconductor. It's about memory.

〔発明の1既要〕 本発明は、上記の様な半導体メモリにおいて、インバー
タの負荷素子となっている薄膜トランジスタをダブルゲ
ート構造にすることによって、消費電力が少なく信頼性
は高くしたものである。
[First Summary of the Invention] The present invention provides a semiconductor memory as described above, in which the thin film transistor serving as the load element of the inverter has a double gate structure, thereby reducing power consumption and increasing reliability.

〔従来の技術〕[Conventional technology]

抵抗負荷型MOS−SRAMでは、高抵抗化が限界に近
付いてきており、またデータ書き込み時の電流の確保が
困難になってきている等の問題が生じている。このため
、M O S − S R A Mでは、抵抗負荷型か
ら完全CMOS型へ移行する動きがある。
In resistive load type MOS-SRAMs, problems such as high resistance are approaching the limit and it is becoming difficult to secure current during data writing are occurring. For this reason, there is a movement in MOS-SRAMs from a resistive load type to a complete CMOS type.

そして、完全CMOS型SRAMのチップ面積を抵抗負
荷型MOS−SRAM並みに小さくするために、負荷素
子を薄膜トランジスタで構成し、この薄膜トランジスタ
をバルクトランジスタ上に積み重ねた、いわゆるスタッ
クCMOS型SRAMが考えられている(例えば、「日
経マイクロデハイスJ  (1988.9)P.123
−130)。
In order to make the chip area of a complete CMOS SRAM as small as that of a resistive load type MOS-SRAM, a so-called stacked CMOS SRAM, in which the load element is composed of thin film transistors and these thin film transistors are stacked on a bulk transistor, has been considered. (For example, “Nikkei Microdehys J (1988.9) P.123
-130).

一方、簿膜1・ランジスタの活性層とするための半導体
膜は、低温プロセスで形戒可能である等の点から、単結
晶半導体膜等よりも多結晶半導体膜で形或するのが有利
であるとされている。
On the other hand, it is advantageous to form the semiconductor film to be used as the active layer of the active layer of the film 1/transistor using a polycrystalline semiconductor film rather than a single-crystalline semiconductor film, etc., since it can be formed using a low-temperature process. It is said that there is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、多結晶半導体膜を活性層とする薄膜トランジ
スタでは、リーク電流を十分に低減させることが一般に
困難である。リーク電流が多いと、消費電力が多いのみ
ならず、論理振幅が小さくて記憶保持能力が低いために
信頼性も低い。
However, in thin film transistors in which a polycrystalline semiconductor film is used as an active layer, it is generally difficult to sufficiently reduce leakage current. If the leakage current is large, not only power consumption is large, but also reliability is low because the logic amplitude is small and memory retention ability is low.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による半導体メモリでは、インバータ14、15
の負荷素子となっている薄膜トランジスタ21、22が
ダブルゲート構造である。
In the semiconductor memory according to the present invention, inverters 14 and 15
The thin film transistors 21 and 22 serving as load elements have a double gate structure.

〔作用〕[Effect]

本発明による半導体メモリでは、インバータ14、15
の負荷素子となっている薄膜トランジスタ21、22に
おけるソース・ドレイン間の電圧が2組のソース・ドレ
インの各々に分割され、1組当りのソース・ドレイン間
の電圧が低い。従って、多結晶半導体膜45によって薄
膜トランジスタ2l、22の活性層が形威されていても
、この薄膜トランジスタ21、22のリーク電流が少な
い。
In the semiconductor memory according to the present invention, inverters 14 and 15
The voltage between the source and drain of the thin film transistors 21 and 22, which serve as load elements, is divided into two sets of source and drain, and the voltage between the source and drain of each set is low. Therefore, even if the active layers of the thin film transistors 2l and 22 are formed by the polycrystalline semiconductor film 45, the leakage current of the thin film transistors 21 and 22 is small.

〔実施例〕〔Example〕

以下、本発明の第l〜第6実施例を、第1図〜第9図を
参照しながら説明する。
Embodiments 1 to 6 of the present invention will be described below with reference to FIGS. 1 to 9.

第1図及び第2図が、第1実施例を示している。1 and 2 show a first embodiment.

この第1実施例では、第1図に示す様に、フリソプフ口
ップ1lと一対の転送用トランジスタ12、13とでメ
モリセルが構或されており、フリソプフロップ1lは一
対のインバータ14、15の人出力を交差結合すること
によって構戒されている。
In this first embodiment, as shown in FIG. 1, a memory cell is constructed of a Frisopflip 1l and a pair of transfer transistors 12 and 13, and the Frisopflip 1l is composed of a pair of inverters 14, It is constructed by cross-coupling 15 human outputs.

インバータ14、l5の駆動用トランジスタ16、17
はnMOsトランジスタであり、負荷用?ランジスタ2
1、22はpMOSトランジスタであるが、この負荷用
トランジスタ21、22はダブルゲート構造である。
Drive transistors 16 and 17 for inverters 14 and l5
is an nMOS transistor, and is it for load? Ranjistor 2
1 and 22 are PMOS transistors, and these load transistors 21 and 22 have a double gate structure.

負荷用トランジスタ21、22には電源線23が、駆動
用トランジスタ16、17には接地線24が、転送用ト
ランジスタ12、13にはビソト線25、26及びワー
ド線27が、夫々接続されている。
A power line 23 is connected to the load transistors 21 and 22, a ground line 24 is connected to the drive transistors 16 and 17, and bisoto lines 25 and 26 and a word line 27 are connected to the transfer transistors 12 and 13, respectively. .

第2図は、インバータ14を示している。次に、このイ
ンバータ14の製造工程を説明するが、インバータ15
もインバータ14と同時に同様に製造されるので、イン
バータ15の製造工程についての説明は原則として省略
する。
FIG. 2 shows the inverter 14. Next, the manufacturing process of this inverter 14 will be explained.
Since the inverter 15 is also manufactured in the same manner as the inverter 14, a description of the manufacturing process of the inverter 15 will be omitted in principle.

まず、Si基板3lに素子分離用のSi02膜32を形
或し、Sf基板31の表面にゲート絶縁膜であるSiO
■膜33を形威し、更に駆動用トランジスタ16、l7
のゲート電極34、35を形威ずる。ゲート電極34、
35は、n+型の多結晶Si膜36とWSix膜37と
から或るポリサイド構造である。
First, an Si02 film 32 for element isolation is formed on the Si substrate 3l, and an SiO2 film 32 as a gate insulating film is formed on the surface of the Sf substrate 31.
■The film 33 is formed, and further the driving transistors 16 and l7
The gate electrodes 34 and 35 are shaped. gate electrode 34,
Reference numeral 35 indicates a certain polycide structure consisting of an n+ type polycrystalline Si film 36 and a WSix film 37.

次に、ゲート電極34、35及びSiO2膜32を?ス
クにして、駆動用トランジスタ16のソース領域である
n1領域41とドレイン領域であるn゜領域42とを自
己整合的に形或する。但し、ゲート電極35はn″領域
42へ埋込コンタクトさせる。
Next, the gate electrodes 34, 35 and the SiO2 film 32 are removed. The n1 region 41, which is the source region, and the n° region 42, which is the drain region, of the driving transistor 16 are formed in a self-aligned manner. However, the gate electrode 35 is buried in contact with the n'' region 42.

その後、層間絶縁膜であるSiO。膜43を堆積させ、
ゲート電極35及びn“領域42に達するコンタクト孔
44をSi02膜43に設ける。
After that, SiO, which is an interlayer insulating film, is formed. depositing a film 43;
A contact hole 44 reaching the gate electrode 35 and the n'' region 42 is provided in the Si02 film 43.

次に、薄膜トランジスタである負荷用トランジスタ21
の活性層とするための多結晶Si膜45と、ゲート絶縁
膜であるSiO■膜46とを形威するが、そのために、
580℃以下の温度の減圧CVDによって、非晶質Si
膜(図示せず〉をまず堆積させる。
Next, the load transistor 21 which is a thin film transistor
A polycrystalline Si film 45 is used as an active layer, and a SiO2 film 46 is used as a gate insulating film.
Amorphous Si is produced by low pressure CVD at a temperature below 580°C.
A film (not shown) is first deposited.

この減圧CVD時の温度を580℃以上にすると、堆積
させたSt膜が非品質にはなっていない。
When the temperature during this low pressure CVD is set to 580° C. or higher, the quality of the deposited St film does not deteriorate.

その場合は、堆積させたSi膜にSi゛をイオン注入す
ることによって、Si膜を非晶質化させる。
In that case, the Si film is made amorphous by ion-implanting Si into the deposited Si film.

そして、赤外線ランプ光やエキシマレーザ光等を用い、
02雰囲気中で1100℃、20秒程度の?温短時間熱
処理を行う。すると、非晶質Si膜から多結晶Si膜4
5への変化とこの多結晶Si膜45の表面でのSiO■
膜46の形或とが略同時に進行する。
Then, using infrared lamp light, excimer laser light, etc.
02 atmosphere at 1100℃ for about 20 seconds? Perform a short-temperature heat treatment. Then, the polycrystalline Si film 4 changes from the amorphous Si film.
5 and SiO■ on the surface of this polycrystalline Si film 45.
The shape of the membrane 46 progresses substantially simultaneously.

この様な高温短時間熱処理で形威した多結晶Si膜45
では、粒径が均一で、表面の平坦性が良く、移動度等の
性能も高い。従って、高性能の負荷用トランジスタ2l
を作製することができる。また、Si02膜46も平坦
で良質である。従って、負荷用トランジスタ21ではピ
ンホール等による耐圧低下が少ない。
Polycrystalline Si film 45 that took shape after such high-temperature, short-time heat treatment
The particles have uniform particle size, good surface flatness, and high performance such as mobility. Therefore, the high performance load transistor 2l
can be created. Further, the Si02 film 46 is also flat and of good quality. Therefore, in the load transistor 21, there is little reduction in breakdown voltage due to pinholes and the like.

更に、これらの多結晶Si膜45とSiOz膜46とが
略同時に形威されるので、製造工程も短い。また、雰囲
気の02を加圧した状態で上記の高温短時間熱処理を行
えば、多結晶Si膜45及びSi02膜46の平坦性を
更に向上させることができる。
Furthermore, since the polycrystalline Si film 45 and the SiOz film 46 are formed almost simultaneously, the manufacturing process is also short. Further, by performing the above-described high-temperature, short-time heat treatment in a pressurized O2 atmosphere, the flatness of the polycrystalline Si film 45 and the Si02 film 46 can be further improved.

なお、多結晶Si膜45及びSiOz膜46を形威する
ために、従来は、多結晶Si膜45そのものを堆積させ
、その後に熱酸化を行ってSing膜46を形威する方
法や、堆積させた多結晶Si膜45上に更?CVDによ
ってSi02膜46を堆積させ、このSiO■膜46を
ランプ等による熱処理でデンシファイする方法が採用さ
れていた。
In order to form the polycrystalline Si film 45 and the SiOz film 46, conventionally, the polycrystalline Si film 45 itself is deposited and then thermal oxidation is performed to form the Sing film 46, or the method of depositing Further on the polycrystalline Si film 45? A method has been adopted in which a Si02 film 46 is deposited by CVD and this SiO2 film 46 is densified by heat treatment using a lamp or the like.

しかし、熱酸化は通常は高温の拡散炉中で行われるので
、下地のn+領域41、42の再拡散等が生しる。また
、CVDで堆積させたSin2膜46は、デンシファイ
を行っても、熱酸化で形威したSiOz膜46に比べて
耐圧等の膜質が劣る。
However, since thermal oxidation is usually performed in a high-temperature diffusion furnace, re-diffusion of the underlying n+ regions 41 and 42 occurs. Furthermore, even if densified, the Sin2 film 46 deposited by CVD is inferior in film quality, such as withstand voltage, compared to the SiOz film 46 formed by thermal oxidation.

更に、何れの方法でも、多結晶Si膜45及びSiO■
膜46の平坦性が悪い。例えば、熱酸化法では、多結晶
Si膜45の形威が終了してから酸化が行われるが、そ
の時に結晶粒界が優先的に酸化されるので、大きな凹凸
が形威される。
Furthermore, in either method, the polycrystalline Si film 45 and the SiO
The flatness of the film 46 is poor. For example, in the thermal oxidation method, oxidation is performed after the formation of the polycrystalline Si film 45 is completed, and at this time, grain boundaries are preferentially oxidized, resulting in large irregularities.

上述の様にして多結晶Si膜45及びSiO■膜46を
形威した後、更に多結晶Si膜47を形成し、この多結
晶S+膜47とSiO■膜46とをダプルゲート構造に
バクーニングして、負荷用トランジスタ21のゲート電
極51、52を形威ずる。
After forming the polycrystalline Si film 45 and SiO2 film 46 as described above, a polycrystalline Si film 47 is further formed, and the polycrystalline S+ film 47 and SiO2 film 46 are vacuumed into a double gate structure. , the gate electrodes 51 and 52 of the load transistor 21 are formed.

そして、多結晶Si膜47中、及びこの多結晶Si膜4
7をマスクにして多結晶Si膜45中へ不純物を導入し
て、これらの多結晶Si膜45、47をp゛型にする。
Then, inside the polycrystalline Si film 47 and this polycrystalline Si film 4
7 as a mask, impurities are introduced into the polycrystalline Si film 45 to make these polycrystalline Si films 45 and 47 p' type.

そして更に、多結晶Si膜45を負荷用トランジスタ2
Iの活性層のパターンにバターニングする。
Furthermore, the polycrystalline Si film 45 is applied to the load transistor 2.
Patterning is performed in the pattern of the active layer of I.

ところが、このままでは、多結晶Si膜45とn+領域
42とがpn接合となっており、両者間の接触抵抗が大
きく、電位降下等の原因になる。
However, if left as is, the polycrystalline Si film 45 and the n+ region 42 form a pn junction, and the contact resistance between them is large, causing a potential drop and the like.

そこで、第2図に示す様に、多結晶Sill45とn+
Jli域42との接触部及びその近傍のみを露出させる
様にレーザマスク53をパターニングし、この状態で、
XeCl!の希ガス・ハライドエキシマレーザ(波長−
3 0 8 nm)を1.5 〜2.O Jcm−”程
度のエネルギで照射する。
Therefore, as shown in Fig. 2, polycrystalline Sill45 and n+
The laser mask 53 is patterned to expose only the contact portion with the Jli region 42 and its vicinity, and in this state,
XeCl! Noble gas halide excimer laser (wavelength -
308 nm) to 1.5 to 2. Irradiation is performed with an energy of approximately 0 Jcm-''.

その結果、被照射部の多結晶Si膜45とn″領域42
とが溶融してアロイ部54となり、両者の接触抵抗が低
減する。その後は、従来公知の工程によって、この第1
実施例を完威させる。
As a result, the polycrystalline Si film 45 of the irradiated area and the n'' region 42
are melted to form the alloy portion 54, and the contact resistance between the two is reduced. After that, this first step is performed by a conventionally known process.
Complete the example.

ところで、薄膜トランジスタである負荷用トランジスタ
2I、22におけるリークは、主にドレイン領域近傍の
p″ i接合で生じる。しかしこの9 第1実施例では、負荷用トランジスタ2l、22がダブ
ルゲート構造であるので、1個のドレイン領域近傍のp
″ i接合における電圧が低く、リーク電流が大幅に低
減されている。
By the way, leakage in the load transistors 2I and 22, which are thin film transistors, mainly occurs at the p''i junction near the drain region.However, in this 9th embodiment, the load transistors 2I and 22 have a double gate structure. , p near one drain region
″ The voltage at the i-junction is low, and leakage current is significantly reduced.

なお、リーク電流を低減させるために、チャネル長を2
倍にしたり、オフセットゲート構造にしたりすることも
考えられている。しかし、上述の様にリークが主にドレ
イン領域近傍のp +  +接合で生しるので、この第
1実施例に比べて効果が少ない。
Note that in order to reduce leakage current, the channel length is set to 2.
It is also being considered to double the size or create an offset gate structure. However, as mentioned above, since leakage occurs mainly at the p + + junction near the drain region, this embodiment is less effective than the first embodiment.

第3図は第2実施例のうちのインバータ14を示してい
る。この第2実施例は、多結晶Si膜45とn.w4域
42とが主にTiSiz膜55を介して接続されている
ことを除いて、上述の第1実施例と実質的に同様の構成
を有している。
FIG. 3 shows the inverter 14 of the second embodiment. This second embodiment has a polycrystalline Si film 45 and an n. It has substantially the same configuration as the first embodiment described above, except that the w4 region 42 is connected mainly through the TiSiz film 55.

TiSi2膜55を形戒するには、ゲート電極51、5
2にSi02膜56の側壁を形威し、この状態でTi膜
(図示せず)をスバソタリングで堆積させる。
To improve the shape of the TiSi2 film 55, the gate electrodes 51, 5
2, the side walls of the Si02 film 56 are shaped, and in this state a Ti film (not shown) is deposited by subsotering.

そして、600℃程度の第1段階目のアニールでTi膜
とSi基板31及び多結晶Si膜45、47とを10 反応させてTiSi膜を形威し、800℃程度の第2段
階目のアニールでTiSi膜をTiSiz膜55にし、
未反応のTi膜を除去する。
Then, the Ti film is reacted with the Si substrate 31 and the polycrystalline Si films 45 and 47 in a first stage annealing at about 600°C to form a TiSi film, and then annealed in a second stage at about 800°C. to change the TiSi film to TiSiz film 55,
Remove unreacted Ti film.

この様な第2実施例では、多結晶Si膜45とr)゛領
域42との接触抵抗が低く、また負荷用トランジスタ2
1のソース・l・レイン領域、ゲート電極51、52及
び電源線23のシート抵抗も低い。
In the second embodiment, the contact resistance between the polycrystalline Si film 45 and the r) region 42 is low, and the load transistor 2
The sheet resistance of the source/l/rain regions of No. 1, the gate electrodes 51 and 52, and the power supply line 23 is also low.

第4図は、第3実施例のうちのインハータ14の製造工
程を示している。この第3実施例の製造に際しても、コ
ンタク1・孔44の形戒までは上述の第■及び第2実施
例と実質的に同様の工程を実行する。
FIG. 4 shows the manufacturing process of the inharter 14 of the third embodiment. In manufacturing this third embodiment, substantially the same steps as in the above-mentioned embodiments 1 and 2 are performed up to the shape of the contact 1 and the hole 44.

その後、第4A図に示す様に、Wの選択C V I〕に
よってコンタク1・孔44をW膜57で埋める。
Thereafter, as shown in FIG. 4A, the contact 1/hole 44 is filled with a W film 57 by selection of W [CV I].

そして再び、第2実施例の場合と実質的に同様に、第4
B図に示す様に300人程度の厚さのp゛型の多結晶S
i膜45を形威し、第4C図に示す様にゲート電極5l
、52を形威し、第4D図に示ず様にSin2膜56を
ゲート電極51、52の側壁として形或する。
And again, substantially the same as in the second embodiment, the fourth
As shown in Figure B, a p-type polycrystalline S with a thickness of about 300
The i film 45 is formed, and the gate electrode 5l is formed as shown in FIG. 4C.
, 52, and a Sin2 film 56 is formed as the side walls of the gate electrodes 51 and 52 as shown in FIG. 4D.

I ■ 次に、第4E図に示す様に、露出している多結晶Si膜
45、47を種として選択的にW膜58を戒長させ、露
出している多結晶Si膜45の総てをW膜58で置換ず
る。但し、この状態ではゲート電極51、52下の多結
晶Si膜45とW膜58とが直接に接触しているが、両
者の接触抵抗は十分には低くない。
I ■ Next, as shown in FIG. 4E, the exposed polycrystalline Si films 45 and 47 are used as seeds to selectively lengthen the W film 58, and all of the exposed polycrystalline Si film 45 is is replaced with a W film 58. However, in this state, although the polycrystalline Si film 45 and the W film 58 under the gate electrodes 51 and 52 are in direct contact, the contact resistance therebetween is not sufficiently low.

そこで、その後、600℃程度のアニールを行う。する
と、W膜58と多結晶Si膜45との界面にWSi2膜
(図示せず)が形威され、W膜58/WSi2膜/多結
晶Si膜45の接触構造となって、低抵抗が得られる。
Therefore, annealing at about 600° C. is then performed. Then, a WSi2 film (not shown) is formed at the interface between the W film 58 and the polycrystalline Si film 45, forming a contact structure of W film 58/WSi2 film/polycrystalline Si film 45, resulting in low resistance. It will be done.

その後は、従来公知の工程によって、この第3実施例を
完威させる。
Thereafter, this third embodiment is completed by a conventionally known process.

この様な第3実施例では、多結晶Si膜45とn゛領域
42との間のみならず、多結晶St膜45と多結晶St
膜36との間にもW膜57、58が介在しており、しか
もW膜58と多結晶Si膜45との間の接触構造の抵抗
も低い。従って、多結晶Si膜45と多結晶Si膜36
との間の接触抵抗が、第1及び第2実施例よりも更に低
い。
In such a third embodiment, not only the space between the polycrystalline Si film 45 and the n' region 42 but also the space between the polycrystalline St film 45 and the polycrystalline St film 45 and the
W films 57 and 58 are also interposed between the film 36 and the resistance of the contact structure between the W film 58 and the polycrystalline Si film 45 is low. Therefore, the polycrystalline Si film 45 and the polycrystalline Si film 36
The contact resistance between the first and second embodiments is even lower than that of the first and second embodiments.

1 2 ?5図は、第4実施例のうちのインバータ14の製造工
程の一部を示している。この第4実施例の製造に際して
も、ゲート電極51、52の側壁であるSiO■膜56
の形或までは、上述の第3実施例と実質的に同様の工程
を実行する。
1 2? FIG. 5 shows a part of the manufacturing process of the inverter 14 in the fourth embodiment. In manufacturing this fourth embodiment, the SiO2 film 56 which is the side wall of the gate electrodes 51 and 52 is
Up to this point, substantially the same steps as in the third embodiment described above are executed.

そして、スパッタリング等でTi膜(図示せず)を堆積
させ、露出している多結晶Si膜45の総てがTiSi
z化する程度の熱処理を行う。すると、第5図に示す様
に、露出している多結晶Si膜45の総てが自己整合的
にTiSiz II!6 1に置換される。
Then, a Ti film (not shown) is deposited by sputtering or the like, so that all of the exposed polycrystalline Si film 45 becomes TiSi.
Heat treatment is performed to the extent that it becomes z. Then, as shown in FIG. 5, all of the exposed polycrystalline Si film 45 becomes TiSiz II! in a self-aligned manner. 6 Replaced by 1.

その後、未反応のTi膜を除去し、更に従来公知の工程
によって、この第4実施例を完威させる。
Thereafter, the unreacted Ti film is removed, and further steps known in the art are carried out to complete the fourth embodiment.

この様な第4実施例では、ゲート電極51、52下の多
結晶Si膜45とTiSiz膜61との接触抵抗が元々
低いので、上述の第3実施例と同様な効果を奏すること
ができる。
In such a fourth embodiment, since the contact resistance between the polycrystalline Si film 45 and the TiSiz film 61 under the gate electrodes 51 and 52 is originally low, the same effects as in the third embodiment described above can be achieved.

第6図は、第5実施例のうちの駆動用トランジスタ16
の製造工程を示している。この製造]二程では、第6A
図に示す様に、まずSi基板31の表面にSin2膜3
2、33を形威し、更にーSi)(膜3713 ?ら成るゲート電極34とn“領域41、42とSiO
■膜56とを順次に形或する。
FIG. 6 shows the driving transistor 16 of the fifth embodiment.
The manufacturing process is shown. This production] In the second stage, 6A
As shown in the figure, first, a Sin2 film 3 is deposited on the surface of a Si substrate 31.
2 and 33, and a gate electrode 34 consisting of -Si) (film 3713), n" regions 41 and 42, and SiO
(2) Shaping the film 56 in sequence.

次に、スパソタリング等によってTi膜〈図示せず)を
全面に堆積させ、赤外線ランプ光によるアニールでTi
膜とSi基板31とを反応させ、未反応のTi膜を選択
エソチングで除去する。これによって、第6B図に示す
様に、n″領域41、42の表面に自己整合的にTiS
i2膜62を形威する。
Next, a Ti film (not shown) is deposited on the entire surface by spa sottering or the like, and the Ti film (not shown) is deposited on the entire surface by annealing with infrared lamp light.
The film and the Si substrate 31 are reacted, and the unreacted Ti film is removed by selective etching. As a result, as shown in FIG. 6B, TiS is formed on the surfaces of the n'' regions 41 and 42 in a self-aligned manner.
The i2 membrane 62 is formed.

次に、第6C図に示す様にSing膜43を堆積させ、
第6D図に示す様にn4領域41、42に達するコンタ
クト孔44をSj02膜43及びTiSi2膜62に形
戒する。そして更に、第6E図に示す様に、Wの選択C
VDによってコンタクト孔44をW膜57で埋める。な
お、TiSi2膜62に対するコンタクト孔44の形或
は、Wの選択CVDの前処理時のドライ前処理で行って
もよい。
Next, as shown in FIG. 6C, a Sing film 43 is deposited,
As shown in FIG. 6D, contact holes 44 reaching the n4 regions 41 and 42 are formed in the Sj02 film 43 and the TiSi2 film 62. Furthermore, as shown in FIG. 6E, selection C of W
The contact hole 44 is filled with a W film 57 by VD. Note that this may be done in the form of a contact hole 44 for the TiSi2 film 62 or in a dry pretreatment during pretreatment of W selective CVD.

次に、例えばNH3の雰囲気中における800゜C程度
のアニールを行うことによって、第6F図に示す様に、
W膜57とn′領域41、42との界面に、バリャメタ
ルであるWN膜63を形戒する。そ14 の後、従来公知の工程によって、この第5実施例を完威
させる。
Next, by performing annealing at about 800°C in an NH3 atmosphere, for example, as shown in FIG. 6F,
A WN film 63, which is a barrier metal, is formed at the interface between the W film 57 and the n' regions 41 and 42. After step 14, this fifth embodiment is completed by a conventionally known process.

この様な第5実施例では、コンタクト孔44がTiSi
z膜62をも貫通しており、W膜57がSi基板31の
みから堆積し始める。このため、Wの選択CVDに用い
るWF6による金属フフ化膜がWllΔとSi基板31
との界面に形威されることがなく、両者の接触抵抗が低
い。
In such a fifth embodiment, the contact hole 44 is made of TiSi.
It also penetrates the Z film 62, and the W film 57 starts to be deposited only from the Si substrate 31. Therefore, the metal fufluoride film formed by WF6 used in W selective CVD is different from WllΔ and the Si substrate 31.
The contact resistance between the two is low.

これに対して、コンタクト孔44がTiSi2膜62を
貫通していなければ、Wの選択CVDの初期反応過程に
おいてTiSiz膜62とW膜57との界面にTiF膜
が形威され、W膜57とSt基板3lとの接触抵抗が高
くなる。
On the other hand, if the contact hole 44 does not penetrate the TiSi2 film 62, a TiF film is formed at the interface between the TiSiz film 62 and the W film 57 during the initial reaction process of W selective CVD, and the W film 57 and The contact resistance with the St substrate 3l increases.

なお、コンタクト孔44の内壁面としてTiSi2膜6
2が露出しているが、このTiSiz膜62の露出面に
は、フフ化水素酸ではエソチングされにくいTiN膜や
TieX膜が自然に形威される。従って、金属による還
元反応によってW膜57が堆積ずることがなく、このた
めTtF膜が形成されることもない。
Note that the TiSi2 film 6 is used as the inner wall surface of the contact hole 44.
2 is exposed, but on the exposed surface of this TiSiz film 62, a TiN film or a TieX film, which is difficult to be etched with hydrofluoric acid, is naturally formed. Therefore, the W film 57 is not deposited due to the reduction reaction caused by the metal, and therefore no TtF film is formed.

l5 一方、上記のTiN膜やTieX膜は厚さが50λ程度
と非常に薄いので、W膜57とTiSiz膜62との間
にはトンネル電流が流れる。従って、W膜57とSi基
板31及びTiSiz膜62との全体的な接触抵抗が非
常に低い。
l5 On the other hand, since the TiN film and the TieX film described above are very thin with a thickness of about 50λ, a tunnel current flows between the W film 57 and the TiSiz film 62. Therefore, the overall contact resistance between the W film 57, the Si substrate 31, and the TiSiz film 62 is extremely low.

なお、コンタクト孔44の内壁面となってぃるTiSi
z膜62の露出面にTiF膜が形威されるのを確実に防
止するために、コンタクト孔44の形威後に、例えばN
H3の雰囲気中における60(1、30秒程度のアニー
ルを行うことによって、TiSi2膜62の露出面を窒
化してもよい。
Note that the inner wall surface of the contact hole 44 is made of TiSi.
In order to reliably prevent the TiF film from forming on the exposed surface of the Z film 62, after forming the contact hole 44, for example, N.
The exposed surface of the TiSi2 film 62 may be nitrided by annealing for about 60 seconds (1.30 seconds) in an H3 atmosphere.

第7図は、第6図に示した第5実施例の変形例を示して
いる。即ち、この第7図に示す様にTiSi2膜62の
断面を凸状にずれば、W膜57とTiSi2膜62との
間の接触抵抗が更に低減する。
FIG. 7 shows a modification of the fifth embodiment shown in FIG. That is, if the cross section of the TiSi2 film 62 is shifted in a convex shape as shown in FIG. 7, the contact resistance between the W film 57 and the TiSi2 film 62 is further reduced.

第8図は、第6実施例のうちのビット線25等のAl配
線に対する接続工程を示している。第8A図に示ず様な
八2配線64に対して第6図の場合と同様にW膜の埋め
込みによって接続を行う場合も、第6図の場合と同様に
金属フン化膜が形或1 6 ?れる問題がある。
FIG. 8 shows the process of connecting the bit line 25 and other Al wiring lines in the sixth embodiment. When connecting the 82 wiring 64 not shown in FIG. 8A by embedding a W film in the same way as in the case of FIG. 6? There is a problem with

そこでこの第6実施例では、第8A図に示す様に、Si
O。膜65等である層間絶縁膜上に直接にAe配線64
を形戒ずるのではな< 、SiO■膜65上にまず50
0人程度の厚さの多結晶Si膜66を堆積させる。そし
て、1%程度のStを含有するA7!膜を多結晶Si膜
66上に堆積させ、これらのA6膜と多結晶Si膜66
とをパターニングして、A7!配線64を形威する。
Therefore, in this sixth embodiment, as shown in FIG. 8A, Si
O. The Ae wiring 64 is directly formed on the interlayer insulating film such as the film 65.
First, 50% of the SiO film 65 is
A polycrystalline Si film 66 having a thickness of approximately 0.05 mm is deposited. And A7 containing about 1% St! A film is deposited on the polycrystalline Si film 66, and these A6 films and the polycrystalline Si film 66
Pattern A7! The wiring 64 is formed.

次に、第8B図に示す様に層間絶縁膜であるSiO■膜
67を堆積させ、更に、第8C図に示す様に多結晶Si
膜66に達するコンタクト孔7IをSiO■膜67とA
I2配線64とに形成する。コンタクト孔71の形或に
際しては、当初はCHh系のガスを用いてSiO■膜6
7をエソチングし、その後に順次にBCI!3系のガス
に切り換えて露出しているA7!配線64をエソチング
する。
Next, as shown in FIG. 8B, an SiO2 film 67, which is an interlayer insulating film, is deposited, and then a polycrystalline Si film 67 is deposited as shown in FIG. 8C.
The contact hole 7I reaching the film 66 is connected to the SiO film 67 and A.
The I2 wiring 64 is formed. Initially, the shape of the contact hole 71 was determined by using a CHh-based gas to form the SiO2 film 6.
Esoching 7 and then sequentially BCI! A7 exposed after switching to type 3 gas! The wiring 64 is etched.

次に、第8 1.)図に示す様に、Wの選択CVDによ
ってコンタクト孔71をW膜72で埋める。この場合も
多結晶Si膜66を種としてW膜72が堆17 積してゆくので、W膜72とA 1’ 5[!線64と
の界面にはAlF膜が形威されず、W膜72と八l配線
64との接触抵抗が低い。
Next, 8th 1. ) As shown in the figure, the contact hole 71 is filled with a W film 72 by selective CVD of W. In this case as well, since the W film 72 is deposited using the polycrystalline Si film 66 as a seed, the W film 72 and A 1' 5[! No AlF film is formed at the interface with the wire 64, and the contact resistance between the W film 72 and the 8L wiring 64 is low.

なお、コンタクト孔71の内壁面となっているA7+配
線64の露出面には自然酸化膜として薄いA A 20
3膜等が形威されるので、このAn配線64の露出面で
はWの選択CVDが生じない。しかし、Wの選択CVD
を確実に防止するために、コンタクト孔71の形威後に
、第5実施例の場合と同様にAl配線64の露出面の窒
化を行ってもよい。
Note that the exposed surface of the A7+ wiring 64, which is the inner wall surface of the contact hole 71, is covered with a thin A20 natural oxide film.
3 film etc., selective CVD of W does not occur on the exposed surface of this An wiring 64. However, W's selection CVD
In order to reliably prevent this, the exposed surface of the Al wiring 64 may be nitrided after forming the contact hole 71, as in the case of the fifth embodiment.

第9図は、第8図に示した第6実施例の変形例を示して
いる。即ち、この第9図に示す様にAN配線64の断面
を凸状にすれば、第7図の場合と同様に、W膜72とA
A配線64との接触抵抗が更に低減する。
FIG. 9 shows a modification of the sixth embodiment shown in FIG. That is, if the cross section of the AN wiring 64 is made convex as shown in FIG. 9, the W film 72 and the A
The contact resistance with the A wiring 64 is further reduced.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体メモリでは、インバータの負荷素子
となっている薄膜トランジスタのリーク1 8 電流が少ないので、消費電力が少なく信頼性は高い。
In the semiconductor memory according to the present invention, since the leakage current of the thin film transistor serving as a load element of the inverter is small, power consumption is low and reliability is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例におけるメモリセルの回路
図、第2図及び第3図は夫々第1及び第2実施例の要部
の側断面図、第4図は第3実施例の要部の製造工程を順
次に示す側断面図、第5図は第4実施例の要部の側断面
図、第6図は第5実施例の要部の製造工程を順次に示す
側断面図、第7図は第5実施例の変形例の要部の側断面
図、第8図は第6実施例の要部の製造工程を順次に示ず
側断面図、第9図は第6実施例の変形例の要部の側断面
図である。 なお図面に用いた符号において、 1 1−−−−−−−−・−・−−−−−−−−フリソ
プフロソブl4、1 5 −−−−−−−一−−−一−
インバータ21、2 2−−−−−−一負荷用トランジ
スタ45−・−−一−−−−−−一−−−−−−−−一
−一多結晶Si膜である。 19
FIG. 1 is a circuit diagram of a memory cell according to a first embodiment of the present invention, FIGS. 2 and 3 are side sectional views of main parts of the first and second embodiments, respectively, and FIG. 4 is a circuit diagram of a memory cell according to a third embodiment. Fig. 5 is a side sectional view of the main part of the fourth embodiment, and Fig. 6 is a side sectional view of the main part of the fifth embodiment. 7 is a side sectional view of the main part of a modification of the fifth embodiment, FIG. 8 is a side sectional view of the main part of the sixth embodiment without sequentially showing the manufacturing process, and FIG. FIG. 7 is a side sectional view of a main part of a modification of the embodiment. In addition, in the codes used in the drawings, 1 1----------・---------Frisopflosoob l4, 1 5 -----------1---1-
Inverters 21, 2 2--1 load transistor 45-1--1 polycrystalline Si film. 19

Claims (1)

【特許請求の範囲】 一対のインバータから成るフリップフロップを用いてメ
モリセルが構成されており、薄膜トランジスタが前記イ
ンバータの負荷素子となっている半導体メモリにおいて
、 前記薄膜トランジスタがダブルゲート構造であることを
特徴とする半導体メモリ。
[Scope of Claims] A semiconductor memory in which a memory cell is configured using a flip-flop consisting of a pair of inverters, and a thin film transistor serves as a load element of the inverter, characterized in that the thin film transistor has a double gate structure. semiconductor memory.
JP1302487A 1989-11-21 1989-11-21 Semiconductor memory Expired - Fee Related JP2910100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1302487A JP2910100B2 (en) 1989-11-21 1989-11-21 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1302487A JP2910100B2 (en) 1989-11-21 1989-11-21 Semiconductor memory

Publications (2)

Publication Number Publication Date
JPH03161966A true JPH03161966A (en) 1991-07-11
JP2910100B2 JP2910100B2 (en) 1999-06-23

Family

ID=17909550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1302487A Expired - Fee Related JP2910100B2 (en) 1989-11-21 1989-11-21 Semiconductor memory

Country Status (1)

Country Link
JP (1) JP2910100B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548153A (en) * 1993-12-22 1996-08-20 Mitsubhisi Denki Kabushiki Kaisha Thin film transistor with means to prevent threshold variations
US7940085B2 (en) 2008-10-01 2011-05-10 Samsung Electronics Co., Ltd. Inverter, method of operating the same and logic circuit comprising inverter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548153A (en) * 1993-12-22 1996-08-20 Mitsubhisi Denki Kabushiki Kaisha Thin film transistor with means to prevent threshold variations
US7940085B2 (en) 2008-10-01 2011-05-10 Samsung Electronics Co., Ltd. Inverter, method of operating the same and logic circuit comprising inverter
US8217680B2 (en) 2008-10-01 2012-07-10 Samsung Electronics Co., Ltd. Method of operating inverter

Also Published As

Publication number Publication date
JP2910100B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JPH0451071B2 (en)
JPH01268064A (en) Formation of polycrystalline silicon thin film
JPH0613407A (en) Thin film semiconductor device and manufacture thereof
US5497022A (en) Semiconductor device and a method of manufacturing thereof
JP2805765B2 (en) Semiconductor memory device
JPH03161966A (en) Semiconductor memory
US6130463A (en) Field effect transistor and method of manufacturing same
JPS6223150A (en) Manufacture of semiconductor integrated circuit device
JPH04165613A (en) Manufacture of semiconductor device
JPH0521465A (en) Semiconductor device and manufacture thereof
JP3127866B2 (en) Method for manufacturing semiconductor device
JP2751893B2 (en) Semiconductor memory device and method of manufacturing the same
JPH1065171A (en) Manufacture of mos transistor
JP4010425B2 (en) Semiconductor device and manufacturing method thereof
KR20010061532A (en) Semiconductor device having silicide layer for interconnecting gate and drain and method for forming the same
JPH03203366A (en) Semiconductor device
JPH0456286A (en) Manufacture of semiconductor memory device
JPH03102875A (en) Semiconductor device and manufacture thereof
JP2782333B2 (en) Method for manufacturing thin film transistor
JPS6159665B2 (en)
JPH04370956A (en) Semiconductor device
JP3371169B2 (en) Method for manufacturing semiconductor device
JPH1117026A (en) Semiconductor memory
JPH04137760A (en) Static-type semiconductor memory
JPH065818A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees