JPH04165613A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04165613A
JPH04165613A JP2292593A JP29259390A JPH04165613A JP H04165613 A JPH04165613 A JP H04165613A JP 2292593 A JP2292593 A JP 2292593A JP 29259390 A JP29259390 A JP 29259390A JP H04165613 A JPH04165613 A JP H04165613A
Authority
JP
Japan
Prior art keywords
film
thin film
active layer
polycrystalline silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2292593A
Other languages
Japanese (ja)
Other versions
JP3153911B2 (en
Inventor
Takashi Noguchi
隆 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP29259390A priority Critical patent/JP3153911B2/en
Publication of JPH04165613A publication Critical patent/JPH04165613A/en
Application granted granted Critical
Publication of JP3153911B2 publication Critical patent/JP3153911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce generating ratio of a grain boundary particularly in a channel region of an active layer by patterning an amorphous semiconductor thin film formed on a base corresponding to an element forming region, and then solid growing the thin film. CONSTITUTION:An amorphous silicon thin film 5 formed on a substrate 1 is patterned in the shape of an active layer 6, and then annealed to be solid grown as a polycrystalline silicon thin film 8, thereby forming an active layer 6. Thus, the number of generated nuclei in the film 5 at the time of solid growing is reduced, and reaching grain size of the crystal grains after solid growing is increased. Thus, generating probability of a grain boundary particularly in a channel region 6c of the layer 6 is reduced.

Description

【発明の詳細な説明】 C産業上の利用分野〕・ 本発明は半導体装置の製法に関し、特に薄膜トランジス
タ(TF″T)等の多結晶シリコンによる活性層の形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming an active layer of polycrystalline silicon such as a thin film transistor (TF″T).

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置の製法において、基体上に非晶質
半導体薄膜を形成したのち、該非晶質半導体薄膜を素子
形成領域に対応してパターニングし、その後、前記非晶
質半導体薄膜を固相成長させることにより、活性層の特
にチャンネル領域への粒界の発生率を少なくして、活性
層上に形成されるデバイス(TPT等)の特性を向上さ
せるようにしたものである。
In a method for manufacturing a semiconductor device, the present invention involves forming an amorphous semiconductor thin film on a substrate, patterning the amorphous semiconductor thin film corresponding to an element formation region, and then converting the amorphous semiconductor thin film into a solid phase. This growth reduces the incidence of grain boundaries in the active layer, particularly in the channel region, and improves the characteristics of devices (such as TPT) formed on the active layer.

C従来の技術〕 従来、薄膜トランジスタ(以下、単にTPTと記す)の
多結晶シリコンによる活性層を形成する場合は、まず第
8図Aに示すように、石英基板あるいはシリコン基板(
41)上に5i02膿(42)を形成したのち、該5i
O7膜(42)上にほぼ800人厚0多結晶シリコン膜
(43)を形成する。
C. Prior Art Conventionally, when forming an active layer of polycrystalline silicon for a thin film transistor (hereinafter simply referred to as TPT), first, as shown in FIG. 8A, a quartz substrate or a silicon substrate (
41) After forming 5i02 pus (42) on the 5i
A polycrystalline silicon film (43) having a thickness of approximately 800 mm is formed on the O7 film (42).

次に、第8図已に示すように、上記多結晶シリコン膜(
43)にSビ等をイオン注入することにより、上記多結
晶シリコン膜(43)を非晶質化して、非晶質シリコン
膜(44)を形成する。
Next, as shown in FIG. 8, the polycrystalline silicon film (
The polycrystalline silicon film (43) is made amorphous by ion-implanting S-bis or the like into the polycrystalline silicon film (43), thereby forming an amorphous silicon film (44).

次に、第8図Cに示すように、アニールを行なって非晶
質シリコン膜(44)を固相成長させて、結晶粒の粒径
が大きい多結晶シリコン膜(45)を形成したのち、第
8図りに示すように、多結晶シリコン膜(45)をパタ
ーニングして、島状の活性層(46)を形成するように
している(特開昭61−127118号公報参照)。
Next, as shown in FIG. 8C, an amorphous silicon film (44) is grown in solid phase by annealing to form a polycrystalline silicon film (45) with large crystal grains. As shown in Figure 8, the polycrystalline silicon film (45) is patterned to form an island-shaped active layer (46) (see Japanese Unexamined Patent Publication No. 127118/1983).

ご発明が解決しようとする課題〕 しかしながら、従来の上記製法においては、非晶質シリ
コン膜(44)を固相成長させて多結晶シリコン膜(4
5)にした後、該多結晶シリコン膜(45)を島状にバ
ターニングして活性層(46)を形成するようにしてい
るたt、上記固相成長の際、非晶質シリコン膜(44)
中に核がランダムに発生し、核の発生が少ない疎の領域
においては、上記固相成長にて、結晶粒の到達粒径が互
いに大きくなり、核の発生が多い密の領域では、結晶粒
の到達粒径が互いに小さくな、る。従って、上記バター
ニングにおいて、到達粒径が互いに小さい結晶粒の存す
る領域(密の領域)が活性層(46)としてバターニン
グされる場合がある。この場合、TPTの動作領域であ
るチャンネル領域に粒界が多く存在することになり、活
性層(46)上に形成されるTPTの特性(リーク電流
、移動度、ゲート電圧スイング等)が著しく劣化すると
いう不都合がある。
[Problems to be Solved by the Invention] However, in the above conventional manufacturing method, the amorphous silicon film (44) is grown in a solid phase and the polycrystalline silicon film (44) is grown in a solid phase.
5), the polycrystalline silicon film (45) is patterned into an island shape to form an active layer (46). 44)
In sparse regions where nuclei are generated randomly and few nuclei occur, the final grain sizes of the crystal grains become larger than each other in the solid-phase growth described above, and in dense regions where many nuclei occur, the crystal grains The final particle sizes of the two become smaller than each other. Therefore, in the above-mentioned buttering, a region (dense region) where crystal grains having mutually smaller ultimate grain sizes exist may be patterned as the active layer (46). In this case, many grain boundaries will exist in the channel region, which is the operating region of the TPT, and the characteristics (leakage current, mobility, gate voltage swing, etc.) of the TPT formed on the active layer (46) will be significantly deteriorated. There is the inconvenience of doing so.

本発明は、このような点に鑑み成されたもので、その目
的とするところは、活性層の特にチャンネル領域への粒
界の発生率を少なくすることができ、活性層上に形成さ
れるデバイス(TPT等)の特性を向上させることがで
きる半導体装置の製法を提供することにある。
The present invention has been made in view of these points, and its purpose is to reduce the incidence of grain boundaries in the active layer, particularly in the channel region, and to reduce the occurrence of grain boundaries formed on the active layer. An object of the present invention is to provide a method for manufacturing a semiconductor device that can improve the characteristics of a device (TPT, etc.).

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製法は、基体(1)上に非晶質半
導体薄膜〔5)を形成したのち、非晶質半導体薄膜(5
)を素子形成領域に対応してバターニングし、その後、
非晶質半導体薄膜(5)を面相成長させる。
The method for manufacturing a semiconductor device of the present invention includes forming an amorphous semiconductor thin film [5] on a substrate (1), and then forming an amorphous semiconductor thin film [5] on a substrate (1).
) is patterned corresponding to the element forming area, and then
An amorphous semiconductor thin film (5) is grown in a planar phase.

〔作用〕[Effect]

上述の本発明の製法によれば、非晶質半導体薄膜(5)
を固相成長させる前に、非晶質半導体薄膜(5)を活性
層(6)のかたち(例えば島状)にパターンニングする
ようにしたので、その後の固相成長時における上記バタ
ーニングされた非晶質半導体薄膜(5)での核の発生は
少なくなり、面相成長後、結晶粒の粒径は互いに大きく
なる。
According to the manufacturing method of the present invention described above, an amorphous semiconductor thin film (5)
Since the amorphous semiconductor thin film (5) is patterned into the shape of the active layer (6) (for example, island shape) before solid phase growth, the patterned pattern during the subsequent solid phase growth is The generation of nuclei in the amorphous semiconductor thin film (5) is reduced, and the grain sizes of crystal grains become larger than each other after surface phase growth.

従って、活性層(6)の特にチャンネル領域(6C)で
の粒界の発生確率が大幅に小さくなり、活性層(6)上
に形成されるデバイス(TPT等)の特性を向上させる
ことができる。
Therefore, the probability of occurrence of grain boundaries in the active layer (6), especially in the channel region (6C), is significantly reduced, making it possible to improve the characteristics of devices (TPT, etc.) formed on the active layer (6). .

〔実施例〕〔Example〕

以下、第1図〜第7図を参照しながら本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 to 7.

第1図は、本実施例に係る半導体装置の製法、特に薄膜
トランジスタ(以下、単にTPTと記す)における活性
層の形成方法を示す工程図である。
FIG. 1 is a process diagram showing a method for manufacturing a semiconductor device according to this embodiment, particularly a method for forming an active layer in a thin film transistor (hereinafter simply referred to as TPT).

以下、順にその工程を説明する。The steps will be explained in order below.

まず、第1図Aに示すように、石英基板又はンリコン基
板(1)上に3102膜(2)を形成したのち、該51
02膜(2)上に膜厚が例えば800人の多結晶シリコ
ン膜(3)を例えばLPCVD (低圧化学気相成長)
法により形成する。
First, as shown in FIG. 1A, after forming a 3102 film (2) on a quartz substrate or an silicon substrate (1),
A polycrystalline silicon film (3) having a film thickness of, for example, 800 mm is deposited on the 02 film (2) using, for example, LPCVD (low pressure chemical vapor deposition).
Formed by law.

次に、第1図已に示すように、多結晶シリコン膜(3)
に例えばSビを打込みエネルギ40KeV、ドース量1
.5 xlO”am−2でイオン注入することにより、
上記多結晶シリコン膜(3)を非晶質化して、非晶質シ
リコン膜(4)を形成する。
Next, as shown in Figure 1, a polycrystalline silicon film (3) is formed.
For example, implant S-bi at an energy of 40 KeV and a dose of 1.
.. By ion implantation at 5 xlO”am-2,
The polycrystalline silicon film (3) is made amorphous to form an amorphous silicon film (4).

次に、第1図Cに示すように、上記非晶質シリコン膜(
4)に対し、ライトエツチングを行なって該非晶質シリ
コン膜(4)を膜草約200人程度に薄膜化して非晶質
ンリコン薄膜(5)とする。
Next, as shown in FIG. 1C, the amorphous silicon film (
4), the amorphous silicon film (4) is thinned to a thickness of about 200 by light etching to form an amorphous silicon film (5).

次に、第1図りに示すように、非晶質ンリコン薄膜(5
)の所定部分をエンチング除去して、上記非晶質ンリコ
ン薄膜(5)を第2図に示すように、素子形成領域であ
る島状の活性層(6)(第1図F#照)のかたちに対応
した形状にバターニングする。この形状は、特に、後に
チャンネル領域となる部分(6C)の幅β。が他のソー
ス領域又はドレイン領域となる部分(6S)又は(6d
)の幅β、又はβd(例えば約1μm)よりも小とされ
ている。
Next, as shown in the first diagram, an amorphous silicon thin film (5
) is removed by etching, and the amorphous silicon thin film (5) is removed from the island-shaped active layer (6) (see F# in FIG. 1), which is the device formation region, as shown in FIG. Buttering into a shape that corresponds to the shape. This shape is particularly characterized by the width β of the portion (6C) that will later become the channel region. is another source region or drain region (6S) or (6d
) or βd (for example, approximately 1 μm).

次に、第1図已に示すように、バターニングされた非晶
質シリコン薄膜(5)(第1図り参照)を含む全面に5
in2膜(Cap−3in2膜)(7)を形成したのち
、例えば!112雰囲気中において例えば温度600℃
でアニール処理を行なう。このアニール処理により、上
記非晶質シリコン薄膜(5)が固相成長して、結晶粒の
到達粒径が極めて大きい多結晶シリコン薄膜(8)どな
る(粒径−〜1μm)。
Next, as shown in Figure 1, the entire surface including the patterned amorphous silicon thin film (5) (see Figure 1) is
After forming the in2 film (Cap-3in2 film) (7), for example! For example, at a temperature of 600°C in a 112 atmosphere.
Perform annealing treatment. Through this annealing treatment, the amorphous silicon thin film (5) grows in a solid phase, resulting in a polycrystalline silicon thin film (8) whose crystal grains reach an extremely large grain size (grain size - 1 μm).

この後、第1図Fに示すように、S1口2膜(7)をエ
ツチング除去して本例に係る多結晶ンリコン薄膜(8)
による活性層(6)を得る。
After this, as shown in FIG.
An active layer (6) is obtained.

上述の如く、本例によれば、非晶質ンリコン薄膜(5)
を活性層(6)のかたちにバターニングしたのち、アニ
ール処理を施して上記非晶質ンリコン薄M(5)を固を
目成長させて多結晶ンリ」:/薄膜(8)となすことに
より、;古性層(6)を形成するようにしたので、上記
固相成長時における非晶質シリコン薄膜(5)での核の
発生数が少なくなり、面相成長後の結晶粒の到達粒径は
互いに大きいものとなる。
As mentioned above, according to this example, the amorphous silicone thin film (5)
After patterning into the shape of an active layer (6), the amorphous thin film M (5) is grown solidly by annealing to form a polycrystalline thin film (8). ,; Since the old layer (6) is formed, the number of nuclei generated in the amorphous silicon thin film (5) during the solid phase growth is reduced, and the final grain size of the crystal grains after the planar phase growth is reduced. are larger than each other.

従って、活性層(6)の特にチャンネル領域(6C)で
の粒界の発生確率が大幅に小さくなり、活性層〔6)上
に形成されるTPTの特性を向上させることができ、例
えばリーク電流の低減化、移動度の向上、ゲート電圧ス
イングの低減化等を図ることができ、例え、製造上のば
らつき等があっても、リーク電流は確実に低減化される
。これは、スタンバイ電流の低減化につながり、例えば
低消費電力型SRAM等に用いて好適なものとなる。ま
た、液晶表示装置の駆動素子に適用した場合、そのスイ
ッチング動作の高速化にもつながる。
Therefore, the probability of occurrence of grain boundaries in the active layer (6), especially in the channel region (6C), is significantly reduced, and the characteristics of the TPT formed on the active layer (6) can be improved, such as leakage current. The leakage current can be reduced, the mobility can be improved, the gate voltage swing can be reduced, and even if there are manufacturing variations, the leakage current can be reliably reduced. This leads to a reduction in standby current, making it suitable for use in, for example, low power consumption type SRAMs. Furthermore, when applied to a drive element of a liquid crystal display device, it also leads to faster switching operation.

尚、上記実施例において、非晶質シリコン膜(4)を形
成する場合、予め形成した多結晶シリコン膜(3)にS
ビをイオン注入して形成するようにしたが、その他、非
晶質シリコン膜(4)を直接被着形成するようにしても
よい。
In the above example, when forming the amorphous silicon film (4), S is applied to the polycrystalline silicon film (3) formed in advance.
Although the amorphous silicon film (4) is formed by ion implantation of silicon, it is also possible to form the amorphous silicon film (4) by directly depositing it.

次に、上記活性層(6)をS RA Mに適用した例を
第3図〜第7図に基づいて説明する。
Next, an example in which the above active layer (6) is applied to an S RAM will be explained based on FIGS. 3 to 7.

ここで、その説明の前に、最近のS RA Mについて
の技術動向をみると、1MbitsRAM、 4Mbi
tSRAM等において、その動作マージン、スタンバイ
電流の低減等の理由により、第3図で示す高抵抗負荷積
層型S RA !、1から、第4図で示すCAl0S方
式、特に多結晶シリコンを活性層とするT P T積層
型スタックS RA Mへの移行が必須となってきてい
る。第3図及び第4図において、(B)及び(B)はビ
ット線、(W)はワード線である。
Before explaining this, let's look at recent technical trends regarding SRAM.
In tSRAM, etc., the high resistance load stacked type SRA shown in Fig. 3 is used for reasons such as reducing the operating margin and standby current. , 1, it has become essential to transition from the CAl0S system shown in FIG. 4, particularly to the TPT laminated type stacked SRAM in which polycrystalline silicon is used as the active layer. In FIGS. 3 and 4, (B) and (B) are bit lines, and (W) is a word line.

そして、第4図において、例えばQl 及びQ2で示す
CMO3)ランジスタの具体的構成は、第5図に示すよ
うに、シリコン基板の素子形成領域(11)1−にSi
n、からなるゲート絶縁膜(12)を介してゲート電極
(13)を形成し、このゲート電極(13)をマスクと
して素子形成領域り11)にN型のソース領域(14s
)及びドレイン領域(14d) を形成して下地のNM
O3)ランジスタQ1  を形成し、更に、ゲート電極
(13)を含む全面に例えばPSG等のりフロー膜(1
5)を形成して平坦化したのち、リフロー膜(15)上
に多結晶シリコン薄膜からなる活性層(16)を形成し
、該活性層(16)の所定領域にP型の不純物を導入し
て、上記ゲート電極(13)を共通としたPチャンネル
の薄膜トランジスタQ2 を形成してなる。
In FIG. 4, the specific structure of the CMO3) transistor indicated by Ql and Q2, for example, is as shown in FIG.
A gate electrode (13) is formed through a gate insulating film (12) consisting of n, and using this gate electrode (13) as a mask, an N-type source region (14s
) and drain region (14d) and then remove the underlying NM.
O3) A transistor Q1 is formed, and a glue flow film (1
5) is formed and planarized, an active layer (16) made of a polycrystalline silicon thin film is formed on the reflow film (15), and P-type impurities are introduced into predetermined regions of the active layer (16). A P-channel thin film transistor Q2 having the gate electrode (13) in common is formed.

この構成は、セルサイズの大型化が欠点であったCMO
3方式のS RA R4に対し、その欠点を解消させる
優れた構造となっている。
This configuration is suitable for CMO, which had the disadvantage of large cell size.
It has an excellent structure that eliminates the drawbacks of the three types of SRA R4.

そして、上記構成において、高速化のために、ゲート電
極(13)を低抵抗の例えばタングステン(W)ポリサ
イド層で形成するようにしでいる。
In the above structure, the gate electrode (13) is formed of a low-resistance polycide layer, such as tungsten (W), in order to increase the speed.

しかし、ここで問題になるのが、薄膜トランジスタQ2
側のゲート絶縁膜(17)である。即ち、ゲート電極(
13)を構成するタングステン(W)シリサイド層を直
接酸化しても膜質の良い(例えば耐圧等)ゲート絶縁膜
(17)を得ることはできない。
However, the problem here is that the thin film transistor Q2
This is the side gate insulating film (17). That is, the gate electrode (
Even if the tungsten (W) silicide layer constituting 13) is directly oxidized, it is not possible to obtain a gate insulating film (17) with good film quality (for example, high breakdown voltage).

また、ゲート絶縁膜(17)をCVD法等で形成する方
法も考えられるが、ピンホール等が多く発生し、特性上
好ましくない。
Alternatively, a method of forming the gate insulating film (17) by CVD or the like may be considered, but many pinholes and the like occur, which is not preferable in terms of characteristics.

そこで、本例では、第6図に示すように、5102膜か
らなるゲート絶縁膜(12)上に多結晶シリコン層(2
1)を形成したのち、該多結晶シリコン層(21)上に
タングステン(W)シリサイド層(22)を形成してタ
ングステン(W)ポリサイド層(23)とし、更にこの
タングステン(W)ポリサイド層<23)上に多結晶シ
リコン層(24)を形成したのち、パターンニングして
ゲート電極(25)となす。この構造は、多結晶シリコ
ン層(24)の形成工程を1回設けるだけでよく、通常
のLP−CVD法でよい。このとき、LP−CVD法に
よる形成温度は、580℃以下でもよい。この場合、多
結晶シリコン層(24)は、非晶質シリコン層となるが
かまわない。即ちゲート電極(25)の表面をンリコン
系の膜にすることにより、その後の熱酸化によって、良
質(高耐圧、ピンホール少)で剥がれにくい良好な51
02膜(ゲート絶縁膜(26))となる。この構成の場
合、タングステン(W)ポリサイド層(23)上に新た
に多結晶シリコン層(24)を形成するわけだが、配線
としては、タングステン(W)ポリサイド層(23)が
支配的であるため、高速化に支陳を来すことはない。
Therefore, in this example, as shown in FIG. 6, a polycrystalline silicon layer (2
1), a tungsten (W) silicide layer (22) is formed on the polycrystalline silicon layer (21) to form a tungsten (W) polycide layer (23), and further this tungsten (W) polycide layer < 23) After forming a polycrystalline silicon layer (24) thereon, it is patterned to form a gate electrode (25). This structure requires only one step of forming the polycrystalline silicon layer (24), and may be performed using a normal LP-CVD method. At this time, the formation temperature by the LP-CVD method may be 580° C. or lower. In this case, the polycrystalline silicon layer (24) may be an amorphous silicon layer. That is, by making the surface of the gate electrode (25) a phosphor-based film, the subsequent thermal oxidation produces a good 51 film of good quality (high withstand voltage, few pinholes) and difficult to peel off.
02 film (gate insulating film (26)). In this configuration, a new polycrystalline silicon layer (24) is formed on the tungsten (W) polycide layer (23), but since the tungsten (W) polycide layer (23) is dominant for wiring, , there is no problem with speeding up.

また、薄膜トランジスタQ2 の活性層として、本例の
形成方法による活性層(6)を用いれば、更にスタンバ
イ電流の低減化が図れ、SRAMの低消費電力化を効率
良く図ることができる。また、〜MOSトランジスタQ
、の素子形成領域(11)を本例に係る活性層(6)で
構成してもよい。
Further, by using the active layer (6) formed by the formation method of this example as the active layer of the thin film transistor Q2, the standby current can be further reduced, and the power consumption of the SRAM can be efficiently reduced. Also, ~MOS transistor Q
The element forming region (11) may be formed of the active layer (6) according to this example.

尚、不純物拡散領域の活性化アニールは、例えばランプ
アニール、レーザ(エキシマレーザ)アニール等が用い
られる。また、上記のゲート構造は、例えばEPROM
やEEPROM等のゲートとしても応用可能である。
Note that, for activation annealing of the impurity diffusion region, lamp annealing, laser (eximer laser) annealing, etc. are used, for example. Further, the above gate structure can be applied to, for example, an EPROM.
It can also be applied as a gate for EEPROM, EEPROM, etc.

次に、ゲート電極として多結晶シリコン層のみを使った
場合を第7図に基いて説明する。
Next, a case where only a polycrystalline silicon layer is used as a gate electrode will be explained with reference to FIG.

この場合の要点は、下地の〜M[]S トランジスタQ
The key point in this case is that the underlying ~M[]S transistor Q
.

を作る前に、Pチアンオルの薄膜トランジスタQ2側の
ゲート絶縁膜までを形成してし5まうことである。
Before forming the transistor, the gate insulating film on the side of the thin film transistor Q2 of the P transistor is formed.

即ち、第7図Aに示すように、素子形成領域(11)上
にSiO2膜からなるゲート絶縁膜(12)を形成した
のち、該ゲート絶縁膜(12)上に多結晶ンリコン層(
31)を形成する。
That is, as shown in FIG. 7A, after forming a gate insulating film (12) made of a SiO2 film on the element formation region (11), a polycrystalline silicon layer (12) is formed on the gate insulating film (12).
31).

その後、第7図已に示すように、熱酸化を施して、多結
晶シリコン層(31)の表面に熱酸化膜(Si02膜)
 (32)を形成する。この場合、上記熱酸化膜(32
)は、厚み約100人であり、熱酸化の温度としては、
素子形成領域(11)にソース領域及びドレイン領域が
作られていないため、高温、例えば〜1000℃を用い
ることができる。
Thereafter, as shown in FIG. 7, thermal oxidation is performed to form a thermal oxide film (Si02 film) on the surface of the polycrystalline silicon layer (31).
(32) is formed. In this case, the thermal oxide film (32
) has a thickness of approximately 100 mm, and the temperature of thermal oxidation is:
Since a source region and a drain region are not formed in the element formation region (11), a high temperature, for example ~1000° C., can be used.

次に、第7図Cに示すように、熱酸化膜(32)、多結
晶シリコン層り31)及びゲート絶縁膜(12)を選択
的にエツチング除去して多結晶シリコン層(31)によ
るゲート電極(33)を形成する。
Next, as shown in FIG. 7C, the thermal oxide film (32), the polycrystalline silicon layer 31), and the gate insulating film (12) are selectively etched away, and the gate formed by the polycrystalline silicon layer (31) is removed. Form an electrode (33).

次に、第7図りに示すように、熱酸化膜(32)上にフ
ォトレジス1−(34)を形成したのち、該フォトレジ
ス) (34)をマスクとして、素子形成領域(11)
にN型の不純物をイオン注入して該素子形成領域(11
)にソース領域(14S)及びドレイン領域(14d)
を形成する。
Next, as shown in the seventh diagram, after forming a photoresist 1-(34) on the thermal oxide film (32), using the photoresist 1-(34) as a mask, the element formation area (11) is
N-type impurity ions are implanted into the element forming region (11
) in the source region (14S) and drain region (14d)
form.

次に、第7図F、に示すように、上記フォトレジス) 
(34)を剥離したのち、全面にPSG等のりフロー膜
(15)を形成する。その後、リフローし、表面を平坦
化する。その後、ウェットエツチングによるエッチバッ
クにより、熱酸化膜(32)を露出させる。このエッチ
バック時、熱酸化膜(32)は、PSG等のりフロー膜
(15)に対し、ち密であり、選択性もあるため、リフ
ロー膜(15)と共に、エツチングさ九るということが
ない。
Next, as shown in FIG. 7F, the above photoresist)
After peeling off (34), a glue flow film (15) such as PSG is formed on the entire surface. After that, reflow is performed to flatten the surface. Thereafter, the thermal oxide film (32) is exposed by etchback using wet etching. During this etchback, the thermal oxide film (32) is dense and selective with respect to the reflow film (15) such as PSG, so it is not etched together with the reflow film (15).

その後、第7図Fに示すように、露出する熱酸化膜、即
ちゲート絶縁膜(32)上に本例に係る多結晶シリコン
薄膜による活性層(6)を形成し、該活性層(6)の所
定領域にP型の不純物を導入して本例に係るSRAMの
CMO8)ランジスタを得る。
Thereafter, as shown in FIG. 7F, an active layer (6) made of a polycrystalline silicon thin film according to this example is formed on the exposed thermal oxide film, that is, the gate insulating film (32), and the active layer (6) A P-type impurity is introduced into a predetermined region of the CMO8) transistor of the SRAM according to this example.

この実施例によれば、Pチャンネルの薄膜トランジスタ
Q2 側のゲート絶縁膜(32)を多結晶シリコン層(
31)表面の高温熱酸化により得ることができるたt、
高耐圧でピンホールが少ない膜質を得ることができ、S
 RA Mの歩留りの向上及び信頼性の向上を図ること
ができる。
According to this embodiment, the gate insulating film (32) on the P-channel thin film transistor Q2 side is covered with a polycrystalline silicon layer (
31) can be obtained by high temperature thermal oxidation of the surface,
It is possible to obtain film quality with high voltage resistance and few pinholes, and S
It is possible to improve the yield and reliability of RAM.

尚、この形成方法は、上記第6図で示すSRAMのCM
O5)ランジスタにも適用することができ、より高性能
なSRAMを得ることができる。
Note that this formation method is applicable to the SRAM CM shown in FIG. 6 above.
O5) It can also be applied to transistors, and a higher performance SRAM can be obtained.

また、第7図で示すS RA Mにおけるcuos ト
ランジスタ形成方法において素子形成領域(11)を本
例に係る活性層〔6)で構成するようにしてもよい。
Furthermore, in the method for forming a cusos transistor in an S RAM shown in FIG. 7, the element forming region (11) may be formed of the active layer [6] according to this example.

〔発明のtj1里〕 本発明に係る半導体装置の製法によれば、活性層の特に
チャンネル領域の粒界の発生率を少なくすることができ
、活性層上に形成されるデバイス(T P T等)の特
性を向上させることができる。
[Tj1 Ri of the Invention] According to the method for manufacturing a semiconductor device according to the present invention, the occurrence rate of grain boundaries in the active layer, particularly in the channel region, can be reduced, and devices formed on the active layer (such as T P T etc.) can be reduced. ) characteristics can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例に係る半導体装置の製法を示す工程図
、第2図は本実施例に係る活性層の形状の一例を示す平
面図、第3図は高抵抗負荷積層型S RA !、(を示
す回路図、第4図はい1DS方式のS RA !、+を
示ず回路図、第3図はCM OS方式のSR^1,1に
おける通常の’、1JDShランジスタを示す構成図、
第6図はCM OS方式のS RA ’、lにおける本
例のCMO3トランジスタを示す構成図、第7図はその
他の例を示す工程図、第8図は従来例に係る半導体装置
の製法を示す工程図である。 (1)は石英基板又はンリコン基板、(2)は5102
膜、(3)は多結晶ンリコン膜、(4)は非晶質シリコ
ン膜、(5)は非晶質ンリコン薄膜、(6)は活性層で
ある。 代  理  人     松  隈  秀  盛賛μ生
雁のわ4欠ど爪す平面図 第2図 1石更¥4友メ1よ〕カコン漏4刀 本史と例5 第1 罫 I図 /r77上倉を素&S晩 逓隼/)CMO5)ラレジ又夕に示ず1δ18第5図 21  フタ4f3易r〉ソコレル         
25  料ヒず石殖22 タンク又テン(Wシソブイb
噛 111憑ハ肩懺″ 本イ与りめCMOSト 第 7図
FIG. 1 is a process diagram showing a method for manufacturing a semiconductor device according to this embodiment, FIG. 2 is a plan view showing an example of the shape of an active layer according to this embodiment, and FIG. 3 is a high resistance load stacked type SRA! (Fig. 4 is a circuit diagram showing 1DS system S RA!, + is not shown. Fig. 3 is a configuration diagram showing a normal ', 1JDSh transistor in SR^1,1 of CM OS system.
Fig. 6 is a configuration diagram showing the CMO3 transistor of this example in SRA',l of the CMOS system, Fig. 7 is a process diagram showing other examples, and Fig. 8 shows a manufacturing method of a semiconductor device according to a conventional example. It is a process diagram. (1) is a quartz substrate or silicone substrate, (2) is 5102
(3) is a polycrystalline silicon film, (4) is an amorphous silicon film, (5) is an amorphous silicon thin film, and (6) is an active layer. Agent: Hide Matsukuma, Morisan μ Ikugan no Wa 4 Chido Tsumesu plan view Figure 2 1 Ishisara ¥ 4 Tomome 1] Kakon omission 4 Sword book history and examples 5 1st line I diagram / r77 Kamikura Soko & S evening drinking /) CMO 5) Laregi mata ni ni 1 δ 18 Fig. 5 21 Lid 4 f 3 I r〉 Sokorel
25 Ryohizuishi 22 Tank Matamaten (W Shisobui b
Figure 7

Claims (1)

【特許請求の範囲】[Claims]  基体上に非晶質半導体薄膜を形成する工程と、該非晶
質半導体薄膜を素子形成領域に対応してパターニングす
る工程と、前記非晶質半導体薄膜を固相成長させる工程
とを有してなる半導体装置の製法。
The method comprises the steps of forming an amorphous semiconductor thin film on a substrate, patterning the amorphous semiconductor thin film in correspondence with an element formation region, and growing the amorphous semiconductor thin film in a solid phase. Manufacturing method for semiconductor devices.
JP29259390A 1990-10-30 1990-10-30 Semiconductor device manufacturing method Expired - Fee Related JP3153911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29259390A JP3153911B2 (en) 1990-10-30 1990-10-30 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29259390A JP3153911B2 (en) 1990-10-30 1990-10-30 Semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH04165613A true JPH04165613A (en) 1992-06-11
JP3153911B2 JP3153911B2 (en) 2001-04-09

Family

ID=17783791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29259390A Expired - Fee Related JP3153911B2 (en) 1990-10-30 1990-10-30 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP3153911B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231095A (en) * 1994-02-01 1995-08-29 Lg Semicon Co Ltd Manufacture of thin film transistor
US5550070A (en) * 1993-12-27 1996-08-27 Sharp Kabushiki Kaisha Method for producing crystalline semiconductor film having reduced concentration of catalyst elements for crystallization and semiconductor device having the same
US5696003A (en) * 1993-12-20 1997-12-09 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device using a catalyst introduction region
US6162667A (en) * 1994-03-28 2000-12-19 Sharp Kabushiki Kaisha Method for fabricating thin film transistors
JP2007067431A (en) * 2001-08-30 2007-03-15 Sharp Corp Semiconductor device
US7262431B2 (en) 1998-07-13 2007-08-28 Sharp Kabushiki Kaisha Semiconductor thin film forming method and semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721794B (en) 2020-02-24 2021-03-11 亨將精密工業股份有限公司 Reinforced structure of composite chopsticks

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696003A (en) * 1993-12-20 1997-12-09 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device using a catalyst introduction region
US5821562A (en) * 1993-12-20 1998-10-13 Sharp Kabushiki Kaisha Semiconductor device formed within asymetrically-shaped seed crystal region
US5550070A (en) * 1993-12-27 1996-08-27 Sharp Kabushiki Kaisha Method for producing crystalline semiconductor film having reduced concentration of catalyst elements for crystallization and semiconductor device having the same
JPH07231095A (en) * 1994-02-01 1995-08-29 Lg Semicon Co Ltd Manufacture of thin film transistor
US6162667A (en) * 1994-03-28 2000-12-19 Sharp Kabushiki Kaisha Method for fabricating thin film transistors
US7262431B2 (en) 1998-07-13 2007-08-28 Sharp Kabushiki Kaisha Semiconductor thin film forming method and semiconductor device
JP2007067431A (en) * 2001-08-30 2007-03-15 Sharp Corp Semiconductor device
JP4663615B2 (en) * 2001-08-30 2011-04-06 シャープ株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP3153911B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
TWI285763B (en) Thin film transistor and method for manufacturing same
JPH04165613A (en) Manufacture of semiconductor device
JP3565993B2 (en) Method for manufacturing semiconductor device
JPH10270380A (en) Semiconductor device
US6482682B2 (en) Manufacturing method for improving reliability of polysilicon thin film transistors
JP3374455B2 (en) Method for manufacturing thin film transistor
JPH098298A (en) Manufacture of semiconductor device
JPH06260644A (en) Manufacture of semiconductor device
JP2997554B2 (en) Method for manufacturing semiconductor device
JP2004336073A (en) Top gate type thin film transistor and its manufacturing method
JP2910100B2 (en) Semiconductor memory
KR100469760B1 (en) Method for forming gate oxide of merged semiconductor device
JP2002033485A (en) Tft liquid crystal display device and its manufacturing method
JPH04328872A (en) Manufacture of polycrystalline thin film transistor and polycrystalline thin film transistor
JPH0228931A (en) Manufacture of semiconductor device
JP3071258B2 (en) Method for manufacturing capacitor
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JP3309469B2 (en) Active matrix substrate and manufacturing method thereof
JP3203715B2 (en) Method for manufacturing semiconductor device
JPH03102875A (en) Semiconductor device and manufacture thereof
JPH0621458A (en) Semiconductor device and manufacture thereof
JP2002261286A (en) Manufacturing method for improving reliability in polysilicon thin-film transistor
JPH04113677A (en) Thin film transistor and manufacture thereof
JPH03175676A (en) Semiconductor device
JPH07169969A (en) Manufacture of thin film transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees