JPH03161902A - Manufacture of varistor - Google Patents

Manufacture of varistor

Info

Publication number
JPH03161902A
JPH03161902A JP1302497A JP30249789A JPH03161902A JP H03161902 A JPH03161902 A JP H03161902A JP 1302497 A JP1302497 A JP 1302497A JP 30249789 A JP30249789 A JP 30249789A JP H03161902 A JPH03161902 A JP H03161902A
Authority
JP
Japan
Prior art keywords
zno
varistor
powder
mixed
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1302497A
Other languages
Japanese (ja)
Inventor
Toru Azuma
亨 東
Kazuyoshi Nakamura
和敬 中村
Hiroaki Taira
浩明 平
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1302497A priority Critical patent/JPH03161902A/en
Publication of JPH03161902A publication Critical patent/JPH03161902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To manufacture a varistor high in surge resistance by a method wherein ZnO heat-treated at specific temperature is crushed and after mixed with the secondary constituent material, crushed, molded and baked. CONSTITUTION:ZnO as the main constituent material is heat-treated at a temperature within a range of 800-1400 deg.C. Next, said material is crushed and then Bi2O3, Co2O3, Sb2O3 as the secondary constituent materials are added thereto to be wet-mixed for 10 hours and then crushed for producing a mixed material powder. Next, the mixed material powder, after calcination and with a binder added thereto is wet-mixed again using a ball mill to produce granulated powder. Then, the granulated powder after compression molding, is heat-treated to scatter the binder and then further baked to produce a varistor element. Through these procedures, the aggregation of ZnO powder can be effectively avoided so that the secondary constituent can be evenly scattered thus enhancing the surge resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ZnOを主或分原料とずるバリスタの製造方
法に関し、より特定的には、ZnO原料籾末を得る工程
が改良されたバリスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a varistor using ZnO as a main raw material, and more specifically to a method for producing a varistor in which the process of obtaining rice powder as a raw material for ZnO is improved. Relating to a manufacturing method.

〔従来の技術〕[Conventional technology]

一mに、バリスタは、印加電圧に応じて抵抗値が非直線
的に変化する抵抗体素子として知られており、電子回路
に過電圧が加わるのを防止するためのサージ吸収素子等
に用いられている。
A varistor is known as a resistor element whose resistance value changes non-linearly depending on the applied voltage, and is used as a surge absorption element to prevent overvoltage from being applied to electronic circuits. There is.

バリスタには、大別してディスク型バリスタ及び積層型
バリスタの2種の形式のものが存在する。
Varistors can be broadly classified into two types: disk-type varistors and laminated-type varistors.

何れの形式のものにおいて、電圧非直線性を示す拐料と
しては、ZnOを主或分原料とするものが広く用いられ
ている。
In either type of material, materials containing ZnO as a main raw material are widely used as the material exhibiting voltage nonlinearity.

製造に際しては、主或分原籾であるZnOに対し、副成
分原料としてBi,Co.MnまたはSb等の金属酸化
物が同時に添加される。しかる後、混合・粉砕されるこ
とにより、混合原料粉末が得られる。この混合原料粉末
を戒形して得られた成形体を焼成することにより、電圧
非直線性を示す焼結体が得られる。さらに、得られた焼
結体に所定の電極を形或することにより、バリスタが製
造されている。
During production, Bi, Co., etc. are used as auxiliary raw materials for ZnO, which is the main raw rice. A metal oxide such as Mn or Sb is added at the same time. Thereafter, mixed raw material powder is obtained by mixing and pulverizing. A sintered body exhibiting voltage nonlinearity can be obtained by firing the molded body obtained by molding this mixed raw material powder. Furthermore, a varistor is manufactured by forming a predetermined electrode on the obtained sintered body.

なお、上記した副成分原料、ずなわちBi,Co,Mn
またはsb等の副成分原料は、電圧非直線性を与えるた
めや安定性を向上させるため等の目的で添加されている
ものである。
In addition, the above-mentioned subcomponent raw materials, namely Bi, Co, Mn
Alternatively, subcomponent raw materials such as sb are added for the purpose of imparting voltage nonlinearity or improving stability.

〔発明が解決しようとする技術的課題〕?述した従来の
製造方法では、十分なザージ耐量のバリスタを得ること
が難しいという問題があった。サージ耐量とは、Vl−
A  (バリスタにlmAの電流が流れたときにバリス
タの両端にかかる電圧値)の変化率が±10%以下であ
る時の電流値の大きさを表すものであるが、例えば、直
径が71IIII1のディスク型バリスタにおいては1
500A程度の8×20μm秒のサージ電流を印加した
場合、■1■の変化率が安定的に±10%以下とならず
、1500A以上のサージ耐量を安定に得ることは困難
であった。
[Technical problem that the invention seeks to solve]? The conventional manufacturing method described above has a problem in that it is difficult to obtain a varistor with sufficient surge resistance. Surge resistance is Vl-
It represents the magnitude of the current value when the rate of change of A (the voltage value applied to both ends of the varistor when a current of lmA flows through the varistor) is ±10% or less. 1 for disc type varistors
When a surge current of about 500 A and a duration of 8×20 μm seconds was applied, the rate of change in (1) did not stably fall below ±10%, making it difficult to stably obtain a surge withstand capacity of 1500 A or more.

よって、本発明の目的は、1500A以上のザージ耐量
を安定に得ることが可能なバリスタの製造方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a method for manufacturing a varistor that can stably obtain surge resistance of 1500 A or more.

〔技術的課題を解決するための手段〕[Means for solving technical problems]

本願発明者らは、前述したようなバリスタにおけるサー
ジ耐量のばらつきが、主成分原料であるZnOに対する
Bi.Co、Mnまたはsb等の酸化物の分散状態の不
均一性により生しているのではないかと考え、ZnO及
び副成分原料の粒径3 及び凝集状態につき調査した。その結果、ZnOのI)
soが1μm以下であるにも関わらず、ZnOが凝集を
起こし易く、二次粒子の中には5μm〜10μm以上の
ものも存在することがわかった。
The inventors of the present application have discovered that the above-mentioned variation in surge resistance in varistors is due to Bi. We thought that this may be caused by the non-uniformity of the dispersion state of oxides such as Co, Mn, or sb, and investigated the particle size 3 and agglomeration state of ZnO and subcomponent raw materials. As a result, ZnO I)
Although so is 1 μm or less, ZnO tends to aggregate, and some of the secondary particles are found to be 5 μm to 10 μm or more.

すなわち、Zn○の凝集により、副威分原1′1が均一
に分散され難く、それによってサージ耐量にばらつきを
生していることを見出した。
That is, it has been found that due to the agglomeration of Zn◯, it is difficult to uniformly disperse the by-product material 1'1, which causes variations in the surge resistance.

本願発明者らは、上記の新規な知見に基づき、ZnOの
凝集を防止すれば、サージ耐量を高め得るのではないか
と考え、Zn○の凝集を阻止し得る方法につき種々検討
した結果、本願発明をなすに至った。
Based on the above-mentioned novel findings, the inventors of the present application thought that the surge resistance could be increased by preventing the aggregation of ZnO, and as a result of various studies on methods for preventing the aggregation of Zn○, the present invention was developed. I came to do this.

すなわち、本発明のバリスタの製造方法は、主或分原料
であるZn○を800゜C−1400゜Cの範囲の温度
で熱処理し、粉砕してZnO粉末を得、該Zn○粉末に
副威分原料を添加して混合粉砕し、得られた混合原料粉
末を戒形し、次に戊形体を焼威ずる各工程を備えること
を特徴とする。
That is, the method for manufacturing a varistor of the present invention involves heat-treating Zn○, which is a main raw material, at a temperature in the range of 800°C to 1400°C, pulverizing it to obtain ZnO powder, and adding side effects to the Zn○ powder. It is characterized by comprising the steps of adding raw materials, mixing and pulverizing, shaping the obtained mixed raw material powder, and then burning the oval body.

Zn○の熱処理は、上記のように800゜C−1400
゜Cの範囲の温度にZn○を保持しておくこ4 とにより行われる。この熱処理の時間は、特に限定され
るものではないが、後述のζ電位を十分大きくし得るの
に必要な時間保持することが好ましい。通常は、約2時
間程度の熱処理が行われる。
The heat treatment of Zn○ was performed at 800°C-1400°C as described above.
This is done by maintaining Zn○ at a temperature in the range of 4°C. Although the time for this heat treatment is not particularly limited, it is preferable to hold the heat treatment for a time necessary to sufficiently increase the ζ potential described below. Usually, heat treatment is performed for about 2 hours.

800“C以上1400℃以下の温度で熱処理する必要
があるのは、上記範囲外の温度でZn○を熱処理した場
合には、1500A以上のサージ耐量を実現することが
できないからである。
The reason why it is necessary to perform heat treatment at a temperature of 800"C or more and 1400C or less is because if Zn○ is heat treated at a temperature outside the above range, a surge resistance of 1500A or more cannot be achieved.

本発明は、ZnOについての上記熱処理工程を特徴とす
るものであり、熱処理後6こわ)砕して得られたZnO
粉末を副成分原料と混合し、再度粉砕して混合原料粉末
を得る。副威分原料としては、従来よりZn○バリスタ
を得るのに用いられている種々のものを適宜用いること
ができる。例えば、Bi,Pr,Sb,MnまたはCo
等の金属酸化物が適宜用いられる。
The present invention is characterized by the above-mentioned heat treatment process for ZnO, and the ZnO obtained by crushing after the heat treatment
The powder is mixed with the subcomponent raw material and ground again to obtain a mixed raw material powder. Various materials conventionally used to obtain Zn○ varistors can be used as the secondary ingredient raw materials. For example, Bi, Pr, Sb, Mn or Co
Metal oxides such as the following are used as appropriate.

また、混合原料粉末を得た後の戒形並びに焼威等につい
ては、従来のバリスタの製造方法において用いられてい
る常法を用いればよい。
In addition, for shaping, burning, etc. after obtaining the mixed raw material powder, conventional methods used in conventional varistor manufacturing methods may be used.

〔作用〕[Effect]

5 Zn○粉末の凝集要因は、ZnOのζ電位にあると考え
られ、ζ電位が±0のときに凝集がもっとも起こり易い
状態となる。すなわち、ZnO粒子がζ電位が±0に近
い程ZnO粒子同士が反発し合わずに凝集が起こり易く
なる。事実、従来法において得られたZnO原料粉末の
ζ電位は約+4mV程度である。従って、この程度の大
きさのζ電位では、ZnO粒子同士の反発力が小さく、
凝集が起こり易い状態にあると考えられる。
5 The aggregation factor of Zn○ powder is thought to be the ζ potential of ZnO, and aggregation is most likely to occur when the ζ potential is ±0. That is, the closer the ζ potential of the ZnO particles is to ±0, the more likely the ZnO particles are to agglomerate without repelling each other. In fact, the ζ potential of the ZnO raw material powder obtained by the conventional method is about +4 mV. Therefore, at a ζ potential of this magnitude, the repulsive force between ZnO particles is small;
It is thought that aggregation is likely to occur.

そこで、本発明では、上記のような熱処理を行うことに
より、ZnOのζ電位を高めている。すなわち、本発明
は、ZnOを800゜C以上1400゜C以下の温度で
熱処理することによりZnOのζ電位を高め、ZnO粒
子間に働く静電反発力を高めることにより凝集を防止し
たことに特徴を有する。
Therefore, in the present invention, the ζ potential of ZnO is increased by performing the heat treatment as described above. That is, the present invention is characterized in that aggregation is prevented by increasing the ζ potential of ZnO by heat-treating ZnO at a temperature of 800°C or more and 1400°C or less, and increasing the electrostatic repulsion that acts between ZnO particles. has.

なお、好ましくは、1000 〜1200゜cの温度で
熱処理することにより、より一層ζ電位を尚め得るため
、より一層サージ耐量の高いバリスタを得ることができ
る。
Preferably, heat treatment at a temperature of 1,000 to 1,200° C. can further reduce the ζ potential, thereby making it possible to obtain a varistor with even higher surge resistance.

6 〔発明の効果〕 本発明によれば、ZnOを800゜C〜1400゛Cの
範囲の温度で熱処理する工程を備えるため、ZnO粉末
の凝集を効果的に防止することができる。従って、Zn
O粉末に対して副成分原料を均−に分散させることが可
能となるため、サージ耐量が高められたバリスタを得る
ことができる。ずなわら、1500Aを超えるサージ耐
量を示すバリスタを安定に得ることが可能となる。
6 [Effects of the Invention] According to the present invention, since the present invention includes the step of heat treating ZnO at a temperature in the range of 800°C to 1400°C, agglomeration of ZnO powder can be effectively prevented. Therefore, Zn
Since it becomes possible to uniformly disperse the subcomponent raw material in the O powder, a varistor with increased surge resistance can be obtained. In addition, it becomes possible to stably obtain a varistor that exhibits a surge resistance exceeding 1500A.

また、後述の実施例から明らかなように、サージ耐量だ
けでなく、電圧非直線係数についても相当の従来例に対
して5以上大きくすることができる。従って、従来より
も電圧制御特性に優れたバリスタを得ることが可能とな
る。
Furthermore, as will be clear from the embodiments described below, not only the surge resistance but also the voltage nonlinear coefficient can be increased by 5 or more compared to a comparable conventional example. Therefore, it is possible to obtain a varistor with better voltage control characteristics than conventional ones.

〔実施例の説明〕[Explanation of Examples]

まず、ZnOを800’C 〜1400゜Cの範囲の種
々の温度で熱処理した。熱処理に際しては、設定した熱
処理温度雰囲気に主成分原料であるZnOを数時間保持
することにより行った。次に、熱処理されたZnOを粉
砕ずることによりZnO粉末を得た。
First, ZnO was heat treated at various temperatures ranging from 800°C to 1400°C. The heat treatment was carried out by maintaining ZnO, which is the main component raw material, in the set heat treatment temperature atmosphere for several hours. Next, ZnO powder was obtained by crushing the heat-treated ZnO.

得られたZnO粉末(97.8モル%)に対し、副戒分
原料であるB iz Ox  (0.5モル%)、Mn
○(0.5モル%)、Co,! 0,(0.5モル%)
及びSbz 03  (0.7モル%)を添加し、ポー
ルミルにより10時間湿式混合し、次に粉砕して混合原
料粉末を得た。
To the obtained ZnO powder (97.8 mol%), B iz Ox (0.5 mol%), Mn
○(0.5 mol%), Co,! 0, (0.5 mol%)
and Sbz 03 (0.7 mol %) were added, wet-mixed for 10 hours using a Pall mill, and then pulverized to obtain a mixed raw material powder.

得られた混合原料粉末を脱水し、次にa o o ’c
で2時間仮焼した。さらに、仮焼した混合原料粉末に対
し、バインダとして酢酸ビニルを2重量%及びポリビニ
ルアルコール1.5重景%添加し、再びボールごルにて
10時間湿式混合し、造粒粉末を得た。
The obtained mixed raw material powder is dehydrated, and then ao o'c
It was calcined for 2 hours. Furthermore, 2% by weight of vinyl acetate and 1.5% by weight of polyvinyl alcohol were added as a binder to the calcined mixed raw material powder, and the mixture was wet-mixed again in a bowl for 10 hours to obtain a granulated powder.

次に、得られた造粒粉末を、直径8mmX厚み1.2m
mの大きさにプレスにより圧縮成形し、成形密度3.8
g/c+1の成形体を得た。
Next, the obtained granulated powder was sized to a diameter of 8 mm and a thickness of 1.2 m.
Compression molded with a press to a size of m, molding density 3.8
A molded article of g/c+1 was obtained.

得られた成形体を、7 0 0 ’Cの温度で1時間加
熱処理し、バインダを飛散させた後、+100゜C〜l
400゜Cで2時間焼威し、パリスタ素子を得た。
The obtained molded body was heat-treated at a temperature of 700°C for 1 hour to scatter the binder, and then heated at +100°C to l
It was baked at 400°C for 2 hours to obtain a Pallister element.

得られたバリスタ素子の両主面にAgを主体とずる導電
ベース1・を塗布し、6 5 0 ’Cで10分間焼き
イ」りを行い、電極を形威した。形威された両電極に、
それぞれ、はんだ付けによりリード線を取り付けた後、
バリスタ素子全体をエボキシ樹脂により外装被覆し、デ
ィスク型バリスタ試料を得た。
A conductive base 1 consisting mainly of Ag was applied to both main surfaces of the obtained varistor element, and baked at 650'C for 10 minutes to form electrodes. With both shaped electrodes,
After attaching the lead wires by soldering,
The entire varistor element was coated with epoxy resin to obtain a disk-shaped varistor sample.

得られた試料につき、単位厚み当たりのバリスタ電圧(
 VIIIA/+1111) 、電圧非直線係数(α)
及びバリスタ電圧の変化率を測定した。結果を第1表に
示す。なお、電圧非直線係数は、α−1/1og (V
imA/VQ.l,IA )の式により求めた。また、
ハリスク電圧の変化率は、1000、1500及び20
00Aの8×20μ秒の各サージ電流を印加し、1時間
後のバリスタ電圧を測定し、サージ電流を印加する前の
バリスタ電圧の変化率を示したものである。
For the obtained sample, the varistor voltage per unit thickness (
VIIIA/+1111), voltage nonlinear coefficient (α)
and the rate of change in varistor voltage was measured. The results are shown in Table 1. Note that the voltage nonlinear coefficient is α-1/1og (V
imA/VQ. l, IA). Also,
The rate of change of Harisk voltage is 1000, 1500 and 20
Each surge current of 00 A for 8×20 μsec was applied, the varistor voltage was measured one hour later, and the rate of change in the varistor voltage before the surge current was applied is shown.

また、比較例として、ZnOを熱処理していない従来の
製造方法により製造されたディスク型バリスタの試料(
試料番号11)についても、実施9 例と同様の測定を行い、結果を第1表に併せて示した。
In addition, as a comparative example, a disk-shaped varistor sample (
Sample No. 11) was also measured in the same manner as in Example 9, and the results are also shown in Table 1.

さらに、熱処理温度が本発明の範囲外となる試料(試料
番号1,2.10)についても、実施例と同様に製作し
、かつ測定を行い、その結果を第1表に併せて示した。
Furthermore, samples whose heat treatment temperatures were outside the range of the present invention (sample numbers 1, 2.10) were also manufactured and measured in the same manner as in the examples, and the results are also shown in Table 1.

なお、第1表中における「*」印は、比較例及び本発明
の範囲外の試料であることを示す。
Note that the "*" mark in Table 1 indicates a comparative example and a sample outside the scope of the present invention.

第1表から明らかなように、ZnOの熱処理温度を80
0゜C〜1400゜Cの範囲とした本発明試料(試料番
号3〜9)では、1500Aのザージ電流に対するバリ
スタ電圧の変化率が、±10%未満と大幅に向上してい
ることがわかる。
As is clear from Table 1, the heat treatment temperature of ZnO was 80°C.
It can be seen that in the samples of the present invention (sample numbers 3 to 9) whose temperature was in the range of 0°C to 1400°C, the rate of change in varistor voltage with respect to a surge current of 1500A was significantly improved to less than ±10%.

また、電圧非直線係数αについても、比較例の試料(試
料番号11)に比べて5以上大きくなることがわかる。
Further, it can be seen that the voltage nonlinearity coefficient α is also larger by 5 or more compared to the sample of the comparative example (sample number 11).

さらに、本発明の試料(試料番号3〜10)においては
、特に、ZnO熱処理温度を1000゜C以上1200
゜C以下の温度とした試料(試料番号5〜7)において
、200OAのサージ電流に対l0 ずるバリスタ電圧の変化率も、上lO%未満となってい
ることがわかる。従って、1000゜C以上1200゜
C以下の温度でZ n Oを熱処理することが好ましい
Furthermore, in the samples of the present invention (sample numbers 3 to 10), in particular, the ZnO heat treatment temperature was set to 1000°C or higher and 1200°C or higher.
It can be seen that in the samples (sample numbers 5 to 7) kept at a temperature of 0.degree. Therefore, it is preferable to heat-treat ZnO at a temperature of 1000°C or more and 1200°C or less.

なお、上記実施例では、円板状の焼結体を用いたディス
ク型バリスタの製造方法について説明したが、本発明は
、他の形状、例えば角板型バリスタの製造方法にも適用
することができ、また積層型バリスタにも適用すること
が可能であり、本実施例と同様の効果を得ることができ
ることを指摘しておく。
In addition, in the above embodiment, a method for manufacturing a disc-shaped varistor using a disc-shaped sintered body was explained, but the present invention can also be applied to a method for manufacturing a varistor of other shapes, such as a square plate-type varistor. It should be pointed out that this embodiment can also be applied to a multilayer varistor, and the same effects as in this embodiment can be obtained.

(以下、余白) 第 1 表(Hereafter, margin) No. 1 table

Claims (1)

【特許請求の範囲】[Claims] 主成分原料であるZnOを800゜C〜1400゜Cの
範囲の温度で熱処理した後、粉砕してZnO粉未を得、
該ZnO粉末に副成分原料を混合した後粉砕し、得られ
た混合原料粉末を成形し、次に成形体を焼成する各工程
を備えることを特徴とするバリスタの製造方法。
After heat-treating ZnO, which is the main component raw material, at a temperature in the range of 800°C to 1400°C, it is pulverized to obtain ZnO powder,
A method for producing a varistor, comprising the steps of mixing the ZnO powder with a subcomponent raw material, pulverizing the ZnO powder, molding the obtained mixed raw material powder, and then firing a molded body.
JP1302497A 1989-11-21 1989-11-21 Manufacture of varistor Pending JPH03161902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1302497A JPH03161902A (en) 1989-11-21 1989-11-21 Manufacture of varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1302497A JPH03161902A (en) 1989-11-21 1989-11-21 Manufacture of varistor

Publications (1)

Publication Number Publication Date
JPH03161902A true JPH03161902A (en) 1991-07-11

Family

ID=17909671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1302497A Pending JPH03161902A (en) 1989-11-21 1989-11-21 Manufacture of varistor

Country Status (1)

Country Link
JP (1) JPH03161902A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060793A (en) * 1973-10-01 1975-05-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060793A (en) * 1973-10-01 1975-05-24

Similar Documents

Publication Publication Date Title
JPH03161902A (en) Manufacture of varistor
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
KR920005155B1 (en) Zno-varistor making method
JPH0552642B2 (en)
JPH01317158A (en) Production of varister material
JPH0383846A (en) Production of varistor
JPH06204006A (en) Manufacture of zinc oxide varistor
JPH01289218A (en) Manufacture of varistor
JPS6054401A (en) Method of producing barium titanate pto thermistor
JPH02114603A (en) Manufacture of glaze varistor
JP2558811B2 (en) Varistor manufacturing method
JPS62237704A (en) Manufacture of voltage nonlinear resistance element
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JP2000044333A (en) Production of zinc oxide varistor
JPH03116903A (en) Manufacture of varistor
JPS63110601A (en) Manufacture of semiconductor porcelain material
JP2876770B2 (en) Method for producing semiconductor porcelain composition for voltage nonlinear resistor
JP2563970B2 (en) Oxide voltage nonlinear resistor manufacturing method
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPH11176612A (en) Manufacture of voltage non-linear resistor
JPH0383855A (en) Production of barium titanate-based semiconductor porcelain
JPS5850705A (en) Method of producing voltage nonlinear resistor
JPH0645104A (en) Manufacture of semiconductor procelain with positive temperature coefficient of resistance
JPH0253922B2 (en)
JPS59188906A (en) Semiconductor porcelain composition for voltage nonlinear resistor