JPH03116903A - Manufacture of varistor - Google Patents

Manufacture of varistor

Info

Publication number
JPH03116903A
JPH03116903A JP1255389A JP25538989A JPH03116903A JP H03116903 A JPH03116903 A JP H03116903A JP 1255389 A JP1255389 A JP 1255389A JP 25538989 A JP25538989 A JP 25538989A JP H03116903 A JPH03116903 A JP H03116903A
Authority
JP
Japan
Prior art keywords
varistor
raw material
mixed
zno
mixed raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1255389A
Other languages
Japanese (ja)
Inventor
Toru Azuma
亨 東
Kazuyoshi Nakamura
和敬 中村
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1255389A priority Critical patent/JPH03116903A/en
Publication of JPH03116903A publication Critical patent/JPH03116903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To make it possible to stably obtain larger surge resistivity by a method wherein MnO and Ci2O3 only of auxiliary raw material are uniformly dispersed into ZnO in advance separately from other auxiliary component. CONSTITUTION:A first mixed material, which is formed by weighing MnO and Co2O3 in the ratio of 97.8mol%, 0.5mol% and 0.5mol%, and by mixing and pulverizing them by a ball mill, and Mn and Co are solidified into ZnO. Into the obtained first mixed raw material, Bi2O3 and Sb2O3 of other auxiliary composition raw materials of 0.5 and 0.7mol% are added, they are wet mixed and pulverized by a ball mill, and the second mixed raw material is obtained. To be more precise, as Mn and Co are uniformly dispersed and solidified in ZnO in the stage of the first mixed raw material, the irregularity of surge resistivity can be reduced by deforming and calcinating the second mixed raw material which is obtained by mixing and pulverizing other auxiliary component. As a result, a varistor on which local current concentration is hardly generated can be obtained in a stable manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ZnOを主成分とするバリスタの製造方法に
関し、特に、副成分原料であるMn及びCoの酸化物を
均一に分散させ得ることを可能とするZnOバリスタの
製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a varistor containing ZnO as a main component, and in particular, to a method for uniformly dispersing Mn and Co oxides as subsidiary component raw materials. The present invention relates to a method for manufacturing a ZnO varistor that enables the following.

〔従来の技術〕[Conventional technology]

バリスタは、印加電圧に応じて抵抗値が非直線的に変化
する電圧非直線性抵抗体素子として知られており、サー
ジ吸収素子や電圧安定化素子等に広く用いられている。
A varistor is known as a voltage nonlinear resistor element whose resistance value changes nonlinearly depending on an applied voltage, and is widely used as a surge absorbing element, a voltage stabilizing element, and the like.

上記の用途に用いられるバリスタとしては、ディスク型
バリスタ及び積層型バリスタ等がある。
Varistors used for the above applications include disk-type varistors, laminated-type varistors, and the like.

ディスク型バリスタは、電圧非直線性を示す材料からな
る板状のバリスタ素子の両生面に電極が形成されており
、該電極にリード線が接合されており、さらにリード線
の引出されている部分を除いて全体が外装樹脂で被覆さ
れた構造を有する。また、積層型バリスタは、バリスタ
特性を有する焼結体内にバリスタ層を介して重なり合う
複数の内部電極が配置されており、この複数の内部電極
は、焼結体の対向する両端面に交互に引出されており、
該焼結体の対向両端面に上記内部電極と電気的に接続さ
れる外部電極が形成された構造を有する。
A disc-type varistor has electrodes formed on both sides of a plate-shaped varistor element made of a material that exhibits voltage non-linearity, a lead wire connected to the electrode, and a part from which the lead wire is drawn out. The entire structure is covered with exterior resin except for. In addition, a multilayer varistor has a plurality of internal electrodes arranged inside a sintered body having varistor properties, which overlap with each other via varistor layers, and these internal electrodes are drawn out alternately on both opposing end faces of the sintered body. has been
The sintered body has a structure in which external electrodes electrically connected to the internal electrodes are formed on opposite end surfaces of the sintered body.

ところで、ディスク型バリスタ及び積層型バリスタに用
いられる電圧非直線性を示すバリスタ材料としては、Z
nOを主体とするものが広く用いられている。また、製
造に際しては、バリスタ特性を改善するために、ZnO
に、副成分原料としてB i、co、Mnまたはsb等
の酸化物を添加して混合・粉砕し、得られた混合原料の
成形体を焼成することにより、バリスタ特性を示す焼結
体を得ていた。
By the way, Z
Those mainly composed of nO are widely used. In addition, during manufacturing, ZnO is used to improve varistor characteristics.
A sintered body exhibiting varistor properties is obtained by adding an oxide such as Bi, co, Mn or sb as a subcomponent raw material, mixing and pulverizing the mixture, and firing a molded body of the obtained mixed raw material. was.

〔発明が解決しようとする技術的課題〕しかしながら、
上記の製造方法により製造された焼結体を用いたバリス
タでは、所望のサージ耐量を得ることができなかうた。
[Technical problem to be solved by the invention] However,
In the varistor using the sintered body manufactured by the above manufacturing method, it was not possible to obtain the desired surge resistance.

例えば、200■電源用に用いられるバリスタでは、1
500A程度の8×20μ秒のサージ電流を通電した場
合、V+@A (バリスタに1mAの電流が流れた時に
、バリスタの両端にかかる電圧値を示す)の変化率が±
10%以内であることが要求される。しかしながら、従
来の製造方法により得たバリスタでは、150OA以上
のサージ耐量を安定に得ることが困難であった。
For example, in a varistor used for a 200μ power supply, 1
When a surge current of about 500A is applied for 8 x 20μ seconds, the rate of change of V+@A (indicates the voltage applied to both ends of the varistor when a current of 1mA flows through the varistor) is ±
It is required that it be within 10%. However, with varistors obtained by conventional manufacturing methods, it has been difficult to stably obtain surge resistance of 150 OA or more.

よって、本発明の目的は、より大きなサージ耐量を安定
に得ることができるバリスタの製造方法を提供すること
にある。
Therefore, an object of the present invention is to provide a method for manufacturing a varistor that can stably obtain a larger surge resistance.

〔技術的課題を解決するための手段〕[Means for solving technical problems]

本願発明者らは、上述の問題点を種々検討した結果、Z
nOバリスタにおけるサージ耐量のばらつきが生じる原
因を、製造工程において、主成分原料のZnOに対して
副成分原料のBi、、Co、Mnまたはsb等の酸化物
の分散状態の不均一性によることを見出し、特に、Zn
Oに固溶されるMn及びCoが非直線性及びサージ耐量
を向上させる上で重要な副成分原料であり、ZnOに均
一に固溶されない場合、サージ耐量にばらつきが生しる
ことを見出し、本発明をなすに至った。
As a result of various studies on the above-mentioned problems, the inventors of the present application discovered that Z
The cause of variation in surge resistance in nO varistors is due to non-uniformity in the dispersion state of oxides such as Bi, Co, Mn, or sb, which are auxiliary component materials, relative to ZnO, which is the main component material, during the manufacturing process. Headings, especially Zn
We discovered that Mn and Co, which are solid-dissolved in O, are important subcomponent raw materials for improving nonlinearity and surge resistance, and that if they are not uniformly dissolved in ZnO, variations in surge resistance occur. The present invention has been accomplished.

すなわち、本発明は、副成分原料として、少なくともM
nO及びCozOzを含むZnOバリスタの製造方法で
あって、下記の工程を備えることを特徴とする。
That is, the present invention provides at least M as a subcomponent raw material.
A method for manufacturing a ZnO varistor containing nO and CozOz, which is characterized by comprising the following steps.

本発明では、まず、主成分原料としてZnOが、副成分
原料としてのMnO及びCo、O,と混合されて粉砕さ
れ、さらに熱処理されて、ZnO中にMn及びCoが固
溶された第1の混合原料が得られる。
In the present invention, first, ZnO as a main component raw material is mixed with MnO, Co, and O as subcomponent raw materials, pulverized, and further heat-treated to form a first powder in which Mn and Co are dissolved as a solid solution in ZnO. A mixed raw material is obtained.

次に、上記第1の混合原料中に、MnO及びCo2O3
以外の副成分原料が混合・粉砕され、第2の混合原料が
得られる。
Next, MnO and Co2O3 are added to the first mixed raw material.
The subcomponent raw materials other than the above are mixed and pulverized to obtain a second mixed raw material.

しかる後、上記第2の混合原料が成形されて成形体が得
られ、この成形体を焼成する・ことによりバリスタ特性
を有する焼結体が得られる。
Thereafter, the second mixed raw material is molded to obtain a molded body, and this molded body is fired to obtain a sintered body having varistor characteristics.

〔作用〕[Effect]

種々の副成分原料のうち、電圧非直線性及びサージ耐量
を改善させる上で重要な役割を果たすMn及びCoが予
めZnOに混合され、粉砕及び熱処理されるので、第1
の混合原料においてはZnOにMn及びCoが均一に固
溶され分散される。
Among the various subcomponent raw materials, Mn and Co, which play an important role in improving voltage nonlinearity and surge resistance, are mixed with ZnO in advance and are pulverized and heat treated.
In the mixed raw material, Mn and Co are uniformly dissolved and dispersed in ZnO.

従って、Mn及びCoが均一に分散されるため、局所的
な電流集中が防止され、それによってサージ耐量のばら
つきが低減される。
Therefore, since Mn and Co are uniformly dispersed, local current concentration is prevented, thereby reducing variations in surge resistance.

すなわち、本発明は、サージ耐量及び電圧非直線性に大
きく影響する副成分原料であるM n O及びCo、O
,のみを他の)1成分原料とは別に予めZnO中に均一
に分散させたことに特徴を有するものである。なお、他
の副成分原料としては、Biやsb等の酸化物のように
、従来より用いられている種々の副成分原料を用いるこ
とができる。
That is, the present invention uses MnO and Co, O, which are subcomponent raw materials that greatly affect surge resistance and voltage nonlinearity.
, is unique in that it is uniformly dispersed in advance in ZnO separately from the other one-component raw materials. Note that as other subcomponent raw materials, various conventionally used subcomponent raw materials such as oxides such as Bi and sb can be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1の混合原料の段階でMn及びCo
がZnO中に均一に分散させて固溶されているため、他
の副成分を混合・粉砕して得られる第2の混合原料を成
形・焼成することにより、サージ耐量のばらつきが少な
く、局所的な電流集中の生じ難いバリスタを安定に得る
ことができる。
According to the present invention, Mn and Co are added at the stage of the first mixed raw material.
is uniformly dispersed and dissolved in ZnO, so by molding and firing the second mixed raw material obtained by mixing and pulverizing other subcomponents, there is little variation in surge resistance and local Therefore, it is possible to stably obtain a varistor in which current concentration is unlikely to occur.

そして、局所的な電流集中を防止することができるので
、バリスタのサージ耐量及び電圧非直線性も高められ、
例えば1500A以上のサージ耐量を安定に得ることが
できる。
In addition, since local current concentration can be prevented, the surge resistance and voltage nonlinearity of the varistor can also be improved.
For example, a surge withstand capacity of 1500 A or more can be stably obtained.

〔実施例の説明〕[Explanation of Examples]

以下、本発明のバリスタの製造方法の実施例につき説明
する。
Examples of the method for manufacturing a varistor of the present invention will be described below.

まず、主成分原料であるZnO並びに副成分原料である
MnO及びCo、O,を、97.8モル%二0.5モル
%二0.5モル%の比率となるように秤量し、ボールミ
ルに10時間湿合・粉砕し、混合粉砕物を得た。この混
合粉砕物を700°C以上の温度で2時間熱処理し、M
n及びCoをZnO中に固溶させた第1の混合材料を得
た。
First, ZnO, which is the main component raw material, and MnO, Co, and O, which are subcomponent raw materials, are weighed so that the ratio is 97.8 mol%20.5 mol%20.5 mol%, and they are placed in a ball mill. The mixture was wetted and pulverized for 10 hours to obtain a mixed pulverized product. This mixed pulverized product was heat treated at a temperature of 700°C or higher for 2 hours, and
A first mixed material in which n and Co were dissolved in ZnO was obtained.

得られた第1の混合原料に、他の副成分原料であるBi
t’Os及び5bzOsを、それぞれ、0゜5モル%及
び0.7%添加し、ボールミルにより10時間湿式混合
し、粉砕し、それによって第2の混合原料を得た。
Bi, which is another subcomponent raw material, is added to the obtained first mixed raw material.
t'Os and 5bzOs were added at 0.5 mol% and 0.7%, respectively, and wet mixed for 10 hours using a ball mill and ground, thereby obtaining a second mixed raw material.

得られた第2の混合原料を脱水した後、760°Cの温
度で仮焼した。
The obtained second mixed raw material was dehydrated and then calcined at a temperature of 760°C.

仮焼された第2の混合原料に、バインダとして酢酸ビニ
ル2重量%及びポリビニルアルコールl。
2% by weight of vinyl acetate and 1 polyvinyl alcohol were added as a binder to the calcined second mixed raw material.

5重量%を添加し、再びボールミルにより10時間湿式
混合し、造粒粉末を得た。
5% by weight was added and wet-mixed again using a ball mill for 10 hours to obtain a granulated powder.

次に、得られた造粒粉末を、直径8m+a、厚さ1゜2
Nの大きさにプレスにより圧縮成形し、成形密度a、8
g/cIIIの円板状成形体を得た。
Next, the obtained granulated powder was heated to a diameter of 8 m+a and a thickness of 1°2.
Compression molded with a press to a size of N, molding density a, 8
A disc-shaped molded body of g/cIII was obtained.

得られた成形体を、T’OO”Cの温度で1時間加熱処
理し、バインダを飛散させ、しかる後1100°C〜1
400°Cの温度で2時間焼成し、焼結体すなわちバリ
スタ素子を得た。
The obtained molded body was heat-treated at a temperature of T'OO''C for 1 hour to scatter the binder, and then heated at 1100°C to 1
It was fired at a temperature of 400°C for 2 hours to obtain a sintered body, that is, a varistor element.

得られたバリスタ素子の両生面にAgからなるペースト
を塗布し、650°Cの温度で10分間焼付けて電極を
形成した。
A paste made of Ag was applied to both surfaces of the obtained varistor element and baked at a temperature of 650° C. for 10 minutes to form electrodes.

得られた画電極に、それぞれ、はんだ付けによりリード
を接合した。さらに、リードの引出されている部分を除
く全体を、エポキシ樹脂により被覆し、ディスク型バリ
スタ(後述の試料番号1)を得た。
Leads were connected to each of the obtained picture electrodes by soldering. Furthermore, the entire part except the part where the leads were pulled out was coated with epoxy resin to obtain a disk-shaped varistor (Sample No. 1 to be described later).

得られた試料番号1のバリスタにつき、単位厚みあたり
のバリスタ電圧(V1mA/sJ及び電圧非直線性係数
(α)並びに1000.1500及び2000Aの8×
20μ秒のサージ電流を印加し、1時間後にバリスタ特
性の変化率(%)を測定した。結果を下記の第1表に及
び第2表に示した。
For the obtained varistor of sample number 1, the varistor voltage per unit thickness (V1mA/sJ and voltage nonlinearity coefficient (α) and 8× of 1000, 1500, and 2000A)
A surge current of 20 μsec was applied, and the rate of change (%) of the varistor characteristics was measured after 1 hour. The results are shown in Tables 1 and 2 below.

なお、電圧非直線性係数αは、1/log(V+−A/
V。、+*A)により求めた。
Note that the voltage nonlinearity coefficient α is 1/log(V+-A/
V. , +*A).

また、比較例として、主成分原料ZnOに対し、第1表
に示すように、先に熱処理を行う副成分原料を変更して
製造されたバリスタ素子を用いて作製したディスク型バ
リスタ(試料番号2〜11)を用意した。さらに、従来
のバリスタの製造方法、すなわち全ての副成分原料を主
成分原料であるZnOに同時に添加して製造したバリス
タ素子を用い、同様にディスク型バリスタ(試料番号1
2)を用意した。
In addition, as a comparative example, a disk-shaped varistor (sample number 2 ~11) were prepared. Furthermore, using a conventional varistor manufacturing method, that is, a varistor element manufactured by simultaneously adding all the subcomponent raw materials to the main component raw material ZnO, a disk-type varistor (sample number 1
2) was prepared.

上記比較例及び従来例のディスク型バリスタについても
、実施例のディスク型バリスタと同様の測定を行い、そ
の結果を第1表及び第2表に併せて示した。なお、第1
表及び第2表中の*は、比較例及び従来例であることを
示す。
The disk-type varistors of the comparative example and conventional example were also measured in the same manner as the disk-type varistor of the example, and the results are also shown in Tables 1 and 2. In addition, the first
* in the table and Table 2 indicates that it is a comparative example and a conventional example.

(以下、余白) 第 表 (以下、 余白) 第 2 表 第1表及び第2表から明らかなように、実施例のディス
ク型バリスタ(試料番号1)では、比較例(試料番号2
〜11)及び従来例(試料番号12)のディスク型バリ
スタに比較して、バリスタ電圧の初期値が小さくなり、
電圧非直線性係数も大きくなっていることがわかる。
(Hereinafter, margin) Table 2 (Hereinafter, margin) Table 2 As is clear from Tables 1 and 2, the disc type varistor of the example (sample number 1) is different from the comparative example (sample number 2).
~11) and the conventional example (sample number 12) disc type varistor, the initial value of the varistor voltage is smaller,
It can be seen that the voltage nonlinearity coefficient also increases.

また、サージ電流印加後のバリスタ電圧の変化率をみて
も、実施例のディスク型バリスタの方が、初期値に対し
て±10%以内と、サージ電流印加後のバリスタ電圧の
変化率の小さいことがわかる。
Also, looking at the rate of change in varistor voltage after applying a surge current, the disc type varistor of the example has a smaller rate of change in varistor voltage after applying a surge current, within ±10% of the initial value. I understand.

特に、2000Aのサージ電流印加後においても、バリ
スタ電圧の変化率は−6,5%であり、ディスク型バリ
スタのサージ耐量も向上していることがわかる。
In particular, even after applying a surge current of 2000 A, the rate of change in the varistor voltage was -6.5%, indicating that the surge resistance of the disk type varistor was also improved.

なお、上記の実施例では、円板状のディスク型バリスタ
の製造方法に適用したものを示したが、本発明の製造方
法はこの構造のバリスタを製造する方法に限定されるも
のではない。例えば、角板状等の任意の平面形状のディ
スク型バリスタの製造方法に適用することができる。
In addition, although the above-mentioned example shows the method applied to the manufacturing method of a disk-shaped varistor, the manufacturing method of the present invention is not limited to the method of manufacturing a varistor of this structure. For example, the present invention can be applied to a method of manufacturing a disc-shaped varistor having any planar shape such as a square plate shape.

また、ディスク型バリスタだけでなく、内部電極とバリ
スタ層を交互に積層してなる積層型バリスタの製造にも
適用することができ、ディスク型バリスタの場合と同様
の効果が得られることばいうまでもない。
In addition, it can be applied not only to the manufacture of disc-type varistors, but also to the production of multilayer varistors in which internal electrodes and varistor layers are alternately laminated, and it goes without saying that the same effects as in the case of disc-type varistors can be obtained. do not have.

Claims (1)

【特許請求の範囲】  副成分として、少なくともMnO及びCo_2O_3
を含むZnOバリスタの製造方法であって、主成分原料
としてのZnOを、副成分原料としてのMnO及びCo
_2O_3と混合・粉砕及び熱処理し、ZnO中にMn
及びCoが固溶された第1の混合原料を得る工程と、 前記第1の混合原料に、MnO及びCo_2O_3以外
の副成分原料を混合し、粉砕し、第2の混合原料を得る
工程と、 前記第2の混合原料を成形して成形体を得る工程と、 前記成形体を焼成する工程とを備えることを特徴とする
バリスタの製造方法。
[Claims] At least MnO and Co_2O_3 as subcomponents.
A method for manufacturing a ZnO varistor comprising: ZnO as a main component raw material, MnO and Co as subcomponent raw materials.
Mixed with _2O_3, crushed and heat treated, Mn in ZnO
and a step of obtaining a first mixed raw material in which Co is dissolved as a solid solution; A step of mixing subcomponent raw materials other than MnO and Co_2O_3 with the first mixed raw material and pulverizing the mixture to obtain a second mixed raw material, A method for manufacturing a varistor, comprising: forming the second mixed raw material to obtain a molded body; and firing the molded body.
JP1255389A 1989-09-29 1989-09-29 Manufacture of varistor Pending JPH03116903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255389A JPH03116903A (en) 1989-09-29 1989-09-29 Manufacture of varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255389A JPH03116903A (en) 1989-09-29 1989-09-29 Manufacture of varistor

Publications (1)

Publication Number Publication Date
JPH03116903A true JPH03116903A (en) 1991-05-17

Family

ID=17278083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255389A Pending JPH03116903A (en) 1989-09-29 1989-09-29 Manufacture of varistor

Country Status (1)

Country Link
JP (1) JPH03116903A (en)

Similar Documents

Publication Publication Date Title
JPS6118321B2 (en)
JPH01128402A (en) Nonlinear resistor
US4127511A (en) Ceramic electrical resistor with nonlinear voltage characteristic
JPH03116903A (en) Manufacture of varistor
JPS59903A (en) Voltage nonlinear resistor
US4174303A (en) Ceramic electrical material with high nonlinear resistance
JPH0383846A (en) Production of varistor
JP2853424B2 (en) Manufacturing method of lead titanate porcelain
JP3830354B2 (en) Method for manufacturing voltage nonlinear resistor
JPH0330401A (en) Manufacture of varistor
JPS6249961B2 (en)
JPH02114603A (en) Manufacture of glaze varistor
JP3213647B2 (en) Negative thermistor composition and negative thermistor
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JP2558811B2 (en) Varistor manufacturing method
JPH03161902A (en) Manufacture of varistor
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JP2001052907A (en) Ceramic element and manufacturing method
JP2548297B2 (en) Varistor manufacturing method
JPS60170206A (en) Voltage nonlinear resistor
JPH02189904A (en) Manufacture of varistor
JPS59189604A (en) Method of producing nonlinear resistor
JPH0216003B2 (en)
JP2990626B2 (en) Varistor manufacturing method
JP2563970B2 (en) Oxide voltage nonlinear resistor manufacturing method