JPH03157989A - Bonding structure of ceramic board and metal plate - Google Patents

Bonding structure of ceramic board and metal plate

Info

Publication number
JPH03157989A
JPH03157989A JP29713189A JP29713189A JPH03157989A JP H03157989 A JPH03157989 A JP H03157989A JP 29713189 A JP29713189 A JP 29713189A JP 29713189 A JP29713189 A JP 29713189A JP H03157989 A JPH03157989 A JP H03157989A
Authority
JP
Japan
Prior art keywords
metal
ceramic
material layer
ceramic substrate
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29713189A
Other languages
Japanese (ja)
Inventor
Yutaka Takeshima
裕 竹島
Yukio Sakabe
行雄 坂部
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29713189A priority Critical patent/JPH03157989A/en
Publication of JPH03157989A publication Critical patent/JPH03157989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To avoid the exfoliation caused by thermal stress by a method wherein, a ceramic-metal inclined composition material layer is used, when a ceramic board is to be bonded to a metal plate, with one surface of the ceramic-rich side is made to abut against the ceramic board, and bonding is performed by simultaneous baking. CONSTITUTION:When a ceramic board 1 is to be bonded to a metal plate 5, the following are laminated between the board 1 and the plate 5 from the board 1 side; a ceramic-metal gradient composition material layer 2, a metal material layer 3, and solder or wax material layer 4. In the material layer 2, the composition ratio of ceramic and metal gradually changes, and therefore the thermal expansion coefficient also gradually changes. Since the ceramic-rich side is positioned on the board 1 side, the thermal stress between the board 1 and the plate 5 is dispersed into the material layer 2, so that the thermal stress caused by the difference of thermal expansion coefficients becomes gentle. Thereby the exfoliation of the board 1 and the plate 5 can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック基板と金属板を強固に接合させる
ための構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure for firmly bonding a ceramic substrate and a metal plate.

さらに具体的にいえば、例えばICパッケージやパワー
ダイオード等の発熱部品を搭載するセラミック基板と放
熱用の金属板を接合させるための技術に関する。
More specifically, the present invention relates to a technique for bonding a ceramic substrate on which a heat generating component such as an IC package or a power diode is mounted, and a metal plate for heat radiation.

[背景技術] 一般に、パワーダイオード等の発熱部品は、その内部温
度が所定の限界温度を超えないよう、常に放熱性を良好
にしておく必要がある。このため、パワーダイオード等
を搭載したセラミック基板を金属板(例えば、銅板)の
上に接合させ、放熱性を良好にしている。
[Background Art] In general, heat-generating components such as power diodes must always have good heat dissipation so that their internal temperature does not exceed a predetermined temperature limit. For this reason, a ceramic substrate on which power diodes and the like are mounted is bonded onto a metal plate (for example, a copper plate) to improve heat dissipation.

第2図に示すものは、従来のセラミック基板11と銅板
14との接合構造である。この構造にあっては、セラミ
ック基板11の両表面に例えば厚膜焼付は法によってあ
らかじめ銅メタライズ層15.12を形成しておき、前
記セラミック基板11の他方表面の銅メタライズ層12
を半田13を介して銅板14に接合させ、それによって
銅板14とセラミック基板11を一体化させている。さ
らに、セラミック基板11の一方表面の銅メクライズ層
15の上に半田16によりパワーダイオード17を接合
させ、これによってセラミック基板11の上にパワーダ
イオード17を搭載している。
What is shown in FIG. 2 is a conventional bonding structure between a ceramic substrate 11 and a copper plate 14. As shown in FIG. In this structure, copper metallized layers 15 and 12 are formed in advance on both surfaces of the ceramic substrate 11 by, for example, a thick film baking method, and the copper metallized layers 15 and 12 on the other surface of the ceramic substrate 11 are
is bonded to a copper plate 14 via solder 13, thereby integrating the copper plate 14 and the ceramic substrate 11. Further, a power diode 17 is bonded to the copper meclyzed layer 15 on one surface of the ceramic substrate 11 by solder 16, thereby mounting the power diode 17 on the ceramic substrate 11.

よって、銅板14はヒートシンクとして有効に機能し、
パワーダイオード17で発生した熱は、パワーダイオー
ド17からセラミック基板11゜銅板14へと伝導され
て銅板14から放熱される。
Therefore, the copper plate 14 effectively functions as a heat sink,
The heat generated by the power diode 17 is conducted from the power diode 17 to the ceramic substrate 11° and the copper plate 14, and is radiated from the copper plate 14.

[発明が解決しようとする課題] しかしながら、上記のようなセラミック基板と金属板と
の接合構造では、セラミック基板と金属融液との濡れ性
が悪いため、セラミック基板と銅メタライズ層の間で必
要な接合強度を得ることが困難であった。
[Problems to be Solved by the Invention] However, in the above-mentioned bonding structure between a ceramic substrate and a metal plate, the wettability of the ceramic substrate and the metal melt is poor, so that a bond between the ceramic substrate and the copper metallized layer is necessary. It was difficult to obtain sufficient bonding strength.

また、セラミック基板と金属板は互いに熱膨張率の差が
大きいため(特に、窒化アルミニウムなどは、熱膨張率
が小さい)、作業温度や使用雰囲気温度の影響により熱
応力が生じ、金属板とセラミック基板との間に剥離が起
こり易く、接合体の品質に対する信頼性が低いという問
題があった。
In addition, since the ceramic substrate and the metal plate have a large difference in thermal expansion coefficient from each other (aluminum nitride, etc., have a small thermal expansion coefficient), thermal stress occurs due to the influence of the working temperature and the operating atmosphere temperature, and the metal plate and the ceramic There was a problem in that peeling easily occurred between the bonded body and the substrate, and the reliability of the quality of the bonded body was low.

本発明は、上記従来例の欠点に鑑みてなされたものであ
り、その目的とするところは、セラミック基板と金属板
の間の接合強度を改善すると共に、セラミック基板と金
属板の間に熱膨張率の差に基因する剥離が生じるのを防
止することにある。
The present invention has been made in view of the above-mentioned drawbacks of the conventional examples, and its purpose is to improve the bonding strength between the ceramic substrate and the metal plate, and to reduce the difference in thermal expansion coefficient between the ceramic substrate and the metal plate. The purpose is to prevent the occurrence of peeling.

[課題を解決するための手段] このため、本発明のセラミック基板と金属板の接合構造
は、セラミック基板と、当該セラミック基板と同じ組成
のセラミックと金属とからなり、一方表面から他方表面
へ向けて金属組成比が漸増し、セラミックリッチ側の一
方表面を同時焼成によって前記セラミック基板の表面に
接合させられたセラミック−金属領斜組成材料層と、前
記セラミック−金属領斜組成材料層の金属リッチ側の他
方表面に形成された金属材層と、ろう材もしくは半田に
よって前記金属材層に接合された金属板とからなること
を特徴としている。
[Means for Solving the Problems] Therefore, the bonding structure of a ceramic substrate and a metal plate of the present invention consists of a ceramic substrate, a ceramic and a metal having the same composition as the ceramic substrate, and has a structure in which the bonding structure is made of a ceramic substrate and a metal having the same composition as the ceramic substrate. The metal composition ratio gradually increases, and the ceramic-metal diagonal composition material layer is bonded to the surface of the ceramic substrate by co-firing one surface on the ceramic-rich side, and the metal-rich ceramic-metal diagonal composition material layer is bonded to the surface of the ceramic substrate. It is characterized by comprising a metal material layer formed on the other surface of the side, and a metal plate joined to the metal material layer by brazing material or solder.

[作用] 本発明にあっては、セラミック−金属領斜組成材料層の
セラミックリッチ側の一方表面をセラミック基板に同時
焼成によって接合させているので、セラミック基板とセ
ラミック−金属領斜組成材料層とを強固に接合させるこ
とができる。また、セラミック−金属領斜組成材料層の
金属リッチ側の他方表面に金属材層を形成しているので
、強固な金属材層を形成できる。さらに、金属材層に半
田もしくはろう材によって金属板をろう付けしているの
で、しっかりと金属板を接合させることができる。この
結果、セラミック基板と金属板の接合強度を大きくでき
る。
[Function] In the present invention, one surface of the ceramic-rich side of the ceramic-metal domain composition material layer is bonded to the ceramic substrate by simultaneous firing, so that the ceramic substrate and the ceramic-metal domain composition material layer are bonded to each other by simultaneous firing. can be firmly joined. Moreover, since the metal material layer is formed on the other surface of the metal-rich side of the ceramic-metal diagonal composition material layer, a strong metal material layer can be formed. Furthermore, since the metal plate is brazed to the metal layer using solder or brazing material, the metal plate can be firmly joined. As a result, the bonding strength between the ceramic substrate and the metal plate can be increased.

しかも、本発明にあっては、セラミック基板と金属板と
の間に、セラミックと金属の組成比が徐々に変化してい
るセラミック−金属領斜組成材料層が設けられているの
で、セラミック−金属領斜組成材料層で熱膨張率が徐々
に変化している。このなめ、セラミック基板と金属板と
の間の熱応力がセラミック−金属領斜組成材料層中に分
散させられ、金属板とセラミック基板の熱膨張率の差に
基因して生じる熱応力を緩和させてセラミック基板と金
属板の間の剥離を防止できる。
Moreover, in the present invention, the ceramic-metal diagonal composition material layer in which the composition ratio of ceramic and metal gradually changes is provided between the ceramic substrate and the metal plate. The coefficient of thermal expansion gradually changes in the layer of diagonal composition material. Due to this slant, the thermal stress between the ceramic substrate and the metal plate is dispersed in the ceramic-metal diagonal composition material layer, and the thermal stress caused due to the difference in thermal expansion coefficient between the metal plate and the ceramic substrate is alleviated. This can prevent peeling between the ceramic substrate and the metal plate.

[実施例] 以下、本発明の実施例を添付図に基づいて詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、セラミック基板と金属板の接合構造体の一実
施例を示す断面図である。この実施例にあっては、パワ
ーダイオード等の発熱部品を搭載するための窒化アルミ
ニウムやアルミナ等のセラミック基板lの下面に、セラ
ミック基板1と同材質のセラミックとタングステン等の
重金属からなるセラミック−金属領斜組成材料層2が設
けられており、さらにセラミック−金属領斜組成材料層
2の表面には、ニッケル、銅または銀などの金属材料に
よって形成された金属材層3が設けられており、この金
属材層3の表面に半田又はろう材4を介して銅板等の金
属板5が接合されている。上記セラミック−金属領斜組
成材料層2は、セラミック基板】と同材質のセラミック
とタングステン等の金属からなるものであって、表面と
平行な層6 内では両材料の組成比がほぼ一定となっているが、厚み
方向では両材料は傾斜組成となっている。すなわち、セ
ラミック−金属領斜組成材料層2の一方表面ではセラミ
ック過多の組成(セラミックリッチ)となっており、他
方表面では金属過多の組成(金属リッチ)となっており
、その中間ではセラミックリッチ面から金属リッチ面に
向けてセラミックの組成比が徐々に減少している。また
、セラミック−金属領斜組成材料層2のタングステンリ
ッチ側の他方表面ではタングステン組成がほぼ100%
となっている。そして、セラミック金属傾斜組成材料層
2は、セラミックリッチ側の一方表面がセラミック基板
1に接合され、金属リッチ側の他方表面に金属材層3が
設けられている。
FIG. 1 is a sectional view showing an example of a bonded structure of a ceramic substrate and a metal plate. In this embodiment, on the bottom surface of a ceramic substrate l made of aluminum nitride, alumina, etc., on which heat-generating components such as power diodes are mounted, a ceramic-metal made of ceramic of the same material as the ceramic substrate 1 and a heavy metal such as tungsten is placed. A diagonal composition material layer 2 is provided, and a metal material layer 3 made of a metal material such as nickel, copper or silver is provided on the surface of the ceramic-metal diagonal composition material layer 2. A metal plate 5 such as a copper plate is bonded to the surface of this metal material layer 3 via solder or a brazing material 4. The ceramic-metal layer 2 is made of the same ceramic material as the ceramic substrate and a metal such as tungsten, and the composition ratio of both materials is almost constant within the layer 6 parallel to the surface. However, both materials have a gradient composition in the thickness direction. That is, one surface of the ceramic-metal gradient composition material layer 2 has a ceramic-rich composition (ceramic-rich), the other surface has a metal-rich composition (metal-rich), and in the middle there is a ceramic-rich surface. The ceramic composition ratio gradually decreases from 1 to 3 toward the metal-rich surface. Furthermore, on the other surface of the tungsten-rich side of the ceramic-metal gradient composition material layer 2, the tungsten composition is almost 100%.
It becomes. One surface of the ceramic-metal gradient composition material layer 2 on the ceramic-rich side is joined to the ceramic substrate 1, and the metal material layer 3 is provided on the other surface on the metal-rich side.

次に、この接合構造体の製造方法をより具体的に説明す
る。まず、窒化アルミニウム(以下、AQNと記す)粉
末と、焼結助剤として酸化イツトリウム(以下、Y2O
3と記す)粉末を用意し、AQN粉末にY2O3粉末を
3wt%添加して混合し、さらに有機バインダーを加え
、ドクターブレード法等によってAQNのグリーンシー
トを成形する。次に、セラミック−金属領斜組成材料層
を形成するため、上記AQNとY2O3の混合粉末に対
して200wt%の割合でタングステン(W)粉末を添
加し、さらに有機バインダーを加えて混合攪拌し、ドク
ターブレード法等によって厚み100ρのグリーンシー
トを成形する。この後、このグリーンシートを乾燥速度
を遅くして乾燥させることによりタングステン粉末を沈
降させる。この乾燥工程においては、乾燥速度を遅くし
ているので、硬化するまでの間にAQNのスラリーより
も比重の大きなタングステン(重金属)が自重で沈降し
、他方表面側でタングステンリッチとなり、一方表面側
でAQNリッチとなる。この後、AQNリッチ側の一方
表面を接触させるようにしてAQN−Y2O3−タング
ステンのグリーンシートとAQN−Y2O3のグリーン
シートを積層し、加圧して互いに圧着させる。この後、
AQNY203−タングステンのグリーンシートのタン
グステンリッチ側の他方表面にタングステンペーストを
塗布及び乾燥させ、セラミック−金属領斜組成材料層の
表面でタングステンの組成がほぼ100%となるように
した。こうして圧着させた両グリーンシートの積層体を
、窒素雰囲気中において800℃で2時間の脱バインダ
ー処理を行ない、この後、さらに窒素雰囲気中において
1850°Cで5時間一体焼成し、セラミック基板を焼
成すると同時に、セラミック基板の表面にセラミック−
金属領斜組成材料層を強固に接合させる。
Next, a method for manufacturing this bonded structure will be explained in more detail. First, aluminum nitride (hereinafter referred to as AQN) powder and yttrium oxide (hereinafter referred to as Y2O
3) powder is prepared, 3 wt% of Y2O3 powder is added and mixed with AQN powder, an organic binder is further added, and an AQN green sheet is formed by a doctor blade method or the like. Next, in order to form a ceramic-metal domain gradient composition material layer, tungsten (W) powder was added at a ratio of 200 wt% to the mixed powder of AQN and Y2O3, and an organic binder was further added and mixed and stirred. A green sheet with a thickness of 100ρ is formed by a doctor blade method or the like. Thereafter, the green sheet is dried at a slow drying speed to precipitate the tungsten powder. In this drying process, the drying speed is slow, so tungsten (heavy metal), which has a higher specific gravity than the AQN slurry, settles under its own weight until it hardens, becoming tungsten-rich on the other surface side, and Become AQN rich. Thereafter, the AQN-Y2O3-tungsten green sheet and the AQN-Y2O3 green sheet are laminated so that one surface on the AQN rich side is in contact with each other, and pressure is applied to bond them to each other. After this,
A tungsten paste was applied to the other surface of the tungsten-rich side of the AQNY203-tungsten green sheet and dried so that the tungsten composition was approximately 100% on the surface of the ceramic-metal diagonal composition material layer. The laminate of both green sheets pressed together in this way was subjected to binder removal treatment at 800°C in a nitrogen atmosphere for 2 hours, and then integrally fired at 1850°C in a nitrogen atmosphere for 5 hours to form a ceramic substrate. At the same time, a ceramic coating is applied to the surface of the ceramic substrate.
To firmly bond the metal domain diagonal composition material layer.

上記のようにして、セラミック基板とセラミック−金属
領斜組成材料層を積層し、同時焼成しな後、このタング
ステン層の表面に電解メツキによってニラクルの金属材
層を形成しな。ついで、金属材層の上に半田によって銅
板を半田付けし、半田を介してセラミック基板に銅板を
強固に接合させる。
After laminating the ceramic substrate and the ceramic-metal gradient composition material layer and co-firing them as described above, a Niracle metal material layer is formed on the surface of the tungsten layer by electrolytic plating. Next, a copper plate is soldered onto the metal material layer, and the copper plate is firmly joined to the ceramic substrate via the solder.

しかして、上記のような接合体においては、セラミック
−金属領斜組成材料層2のセラミックリッチ側の一方表
面をセラミック基板に同時焼成によって接合させている
ので、セラミック基板1の表面に強固にセラミック−金
属領斜組成材料層2を接合させることができる。また、
金属材層3はセラミック−金属領斜組成材料層2の金属
リッチ側の他方表面に強固に形成できる。さらに、金属
材層3に半田もしくはろう材4によって金属板5を接合
させているので、セラミック基板1と金属板5の間に接
合強度の弱い部分が生じることがなく、セラミック基板
1と金属板5とを強固に接合させることができる。さら
に、セラミック−金属領斜組成材料層2では、セラミッ
クと金属との組成比が徐々に変化しているので、セラミ
ック基板1と金属板5との間で熱膨張率が徐々に変化し
ており、熱応力がセラミック−金属領斜組成材料層2で
応力集中しに<<、セラミック基板1と金属板5とで剥
離を生じにくい。
In the above-described bonded body, one surface of the ceramic-rich side of the ceramic-metal domain composition material layer 2 is bonded to the ceramic substrate by simultaneous firing, so that the ceramic is firmly bonded to the surface of the ceramic substrate 1. - The metal domain gradient composition material layer 2 can be bonded. Also,
The metal material layer 3 can be firmly formed on the other surface of the metal-rich side of the ceramic-metal diagonal composition material layer 2. Furthermore, since the metal plate 5 is bonded to the metal material layer 3 by solder or brazing material 4, there will be no weak bonding strength between the ceramic substrate 1 and the metal plate 5. 5 can be firmly joined. Furthermore, in the ceramic-metal diagonal composition material layer 2, the composition ratio of ceramic and metal gradually changes, so the coefficient of thermal expansion gradually changes between the ceramic substrate 1 and the metal plate 5. Since the thermal stress concentrates in the ceramic-metal diagonal composition material layer 2, peeling between the ceramic substrate 1 and the metal plate 5 is less likely to occur.

なお、本発明の効果を試験するため、上記のようにして
製造された接合構造体に、−40℃〜125℃でヒート
サイクルテストを方伍しなところ、100サイクル後で
もセラミック基板にクラックは発生せず、銅板の剥離も
生じなかった。
In addition, in order to test the effects of the present invention, the bonded structure manufactured as described above was subjected to a heat cycle test at -40°C to 125°C. However, there were no cracks in the ceramic substrate even after 100 cycles. This did not occur, and no peeling of the copper plate occurred.

]0 [発明の効果] 本発明によれば、セラミック基板の表面に大きな接合強
度で金属板を接合することができる。しかも、セラミッ
ク−金属領斜組成材料層では組成比が徐々に変化してい
るので、熱膨張率が徐々に変化しており、熱応力集中が
緩和され、セラミック基板と金属板の熱膨張率の差によ
り生じる熱応力のためにセラミック基板と金属板が剥離
するのを防止できる。
]0 [Effects of the Invention] According to the present invention, a metal plate can be bonded to the surface of a ceramic substrate with high bonding strength. Moreover, since the composition ratio of the ceramic-metal diagonal composition material layer gradually changes, the thermal expansion coefficient gradually changes, which alleviates thermal stress concentration and reduces the thermal expansion coefficient of the ceramic substrate and metal plate. It is possible to prevent the ceramic substrate and the metal plate from peeling off due to thermal stress caused by the difference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略断面図、第2図は
従来例の概略断面図である。 1・・・セラミック基板 2・・・セラミック−金属領斜組成材料層3・・・金属
材層 4・・・半田又はろう材 5・・・金属板
FIG. 1 is a schematic sectional view showing one embodiment of the present invention, and FIG. 2 is a schematic sectional view of a conventional example. 1...Ceramic substrate 2...Ceramic-metal diagonal composition material layer 3...Metal material layer 4...Solder or brazing material 5...Metal plate

Claims (1)

【特許請求の範囲】[Claims] (1)セラミック基板と、 当該セラミック基板と同じ組成のセラミックと金属とか
らなり、一方表面から他方表面へ向けて金属組成比が漸
増し、セラミックリッチ側の一方表面が同時焼成によっ
て前記セラミック基板の表面に接合させられたセラミッ
ク−金属領斜組成材料層と、 前記セラミック−金属領斜組成材料層の金属リッチ側の
他方表面に形成された金属材層と、ろう材もしくは半田
によって前記金属材層に接合された金属板とからなるこ
とを特徴とするセラミック基板と金属板の接合構造。
(1) A ceramic substrate made of a ceramic and a metal having the same composition as the ceramic substrate, the metal composition ratio gradually increasing from one surface to the other surface, and one surface on the ceramic-rich side is co-fired to form the ceramic substrate. a ceramic-metal diagonal composition material layer bonded to the surface; a metal material layer formed on the other surface of the metal-rich side of the ceramic-metal diagonal composition material layer; and a brazing material or solder to bond the metal material layer. A bonding structure of a ceramic substrate and a metal plate, characterized by comprising a metal plate bonded to a ceramic substrate and a metal plate.
JP29713189A 1989-11-15 1989-11-15 Bonding structure of ceramic board and metal plate Pending JPH03157989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29713189A JPH03157989A (en) 1989-11-15 1989-11-15 Bonding structure of ceramic board and metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29713189A JPH03157989A (en) 1989-11-15 1989-11-15 Bonding structure of ceramic board and metal plate

Publications (1)

Publication Number Publication Date
JPH03157989A true JPH03157989A (en) 1991-07-05

Family

ID=17842609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29713189A Pending JPH03157989A (en) 1989-11-15 1989-11-15 Bonding structure of ceramic board and metal plate

Country Status (1)

Country Link
JP (1) JPH03157989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533466U (en) * 1991-10-08 1993-04-30 株式会社フジ電科 Airtight terminal
JP2011009405A (en) * 2009-06-25 2011-01-13 Kyocera Corp Thermoelectric conversion module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533466U (en) * 1991-10-08 1993-04-30 株式会社フジ電科 Airtight terminal
JP2011009405A (en) * 2009-06-25 2011-01-13 Kyocera Corp Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
JP5023165B2 (en) Ceramic circuit board
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JPH05347469A (en) Ceramic circuit board
US20240006266A1 (en) Direct bonded copper substrates fabricated using silver sintering
TW202008862A (en) Method for improving adhesive force between ceramic carrier board and thick film circuit which can reduce time and processing cost through the ceramic-metal co-crystal layer
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
JPH03157989A (en) Bonding structure of ceramic board and metal plate
JPH0770644B2 (en) Thermal conductive substrate
JP2861357B2 (en) Aluminum nitride-copper bonding method
JPH0272655A (en) Mounted part
JPH06263554A (en) Jointed substrate of ceramics-metal
JP2517024B2 (en) Ceramic package and its manufacturing method
JP2001308519A (en) Aluminum nitride circuit board
JP2654868B2 (en) Ceramic substrate with copper circuit
JP2734170B2 (en) Aluminum nitride multilayer substrate wiring paste
JP2652014B2 (en) Composite ceramic substrate
JP2004327737A (en) Compound substrate and manufacturing method therefor
JP2715686B2 (en) Method for manufacturing ceramic-metal joined body
JPS62197375A (en) Aluminum nitride substrate
JPH03141169A (en) Metallized structure of aluminum nitride substrate and bond structure of aluminum nitride substrate with metal plate
JPH0344064A (en) Junction structure of aluminum nitride substrate and metal substrate
JPH0255271A (en) Bond structure consisting of aluminum nitride substrate and metallic plate
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JPH02240995A (en) Ceramic substrate for electronic component mounting