TW202008862A - Method for improving adhesive force between ceramic carrier board and thick film circuit which can reduce time and processing cost through the ceramic-metal co-crystal layer - Google Patents

Method for improving adhesive force between ceramic carrier board and thick film circuit which can reduce time and processing cost through the ceramic-metal co-crystal layer Download PDF

Info

Publication number
TW202008862A
TW202008862A TW107126801A TW107126801A TW202008862A TW 202008862 A TW202008862 A TW 202008862A TW 107126801 A TW107126801 A TW 107126801A TW 107126801 A TW107126801 A TW 107126801A TW 202008862 A TW202008862 A TW 202008862A
Authority
TW
Taiwan
Prior art keywords
carrier board
ceramic carrier
ceramic
thick film
circuit
Prior art date
Application number
TW107126801A
Other languages
Chinese (zh)
Other versions
TWI654914B (en
Inventor
林嘉鼎
姚錦富
郭養國
呂忠諺
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW107126801A priority Critical patent/TWI654914B/en
Application granted granted Critical
Publication of TWI654914B publication Critical patent/TWI654914B/en
Publication of TW202008862A publication Critical patent/TW202008862A/en

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Ceramic Products (AREA)

Abstract

The invention relates to a method for improving adhesive force between ceramic carrier board and thick film circuit, and more particularly to a method for accelerating the generation of ceramic-metal co-crystal phase by solid-phase diffusion binding between the ceramic carrier board and the meal circuit when the atmosphere is at a positive pressure state. It mainly uses metal conductive slurry or its oxide slurry to print a circuit pattern on a surface of the ceramic carrier board by a thick film screen printing circuit. The carrier board is then placed in an oven with programmable temperature control, and the ambient atmosphere condition is set as a positive pressure inert gas, including nitrogen, hydrogen or nitrogen/hydrogen mixed gas. The co-crystal phase is generated between the ceramic carrier board and the metal circuit after the high-temperature co-crystal condition. Accordingly, the adhesive force between the ceramic carrier board and the thick film circuit can be enhanced.

Description

一種提升陶瓷載板與厚膜電路附著力之方法 Method for improving adhesion between ceramic carrier board and thick film circuit

本發明係關於一種提高陶瓷載板與金屬厚膜電路附著力之方法,特別是關於高溫之共晶條件下,以正壓之氣氛,以固相擴散接合產生陶瓷-金屬之共晶相,藉以提高陶瓷載板與金屬厚膜電路之附著力。 The invention relates to a method for improving the adhesion between a ceramic carrier board and a metal thick-film circuit, in particular to a ceramic-metal eutectic phase produced by solid phase diffusion bonding in a positive pressure atmosphere under high-temperature eutectic conditions with solid-phase diffusion bonding. Improve the adhesion between ceramic carrier board and metal thick film circuit.

陶瓷散熱載板已廣泛應用於各式LED、功率模組等電子相關領域。厚膜技術採用網版印刷電路於各式載板上,再經由LTCC(低溫共燒多層陶瓷)或是HTCC(高溫共燒多層陶瓷)等方式固定於陶瓷表面;至於直接覆銅技術(Direct Bonded Copper)主要是將銅金屬電路與陶瓷基板在氣氛環境的共晶溫度下產生氧化銅的共晶相,將兩者緊密接合,提高電路附著力。 Ceramic heat dissipation carrier board has been widely used in various electronic related fields such as various LEDs, power modules and so on. Thick film technology uses screen printed circuits on various types of carrier boards, and then fixed to the ceramic surface by means of LTCC (low temperature co-fired multilayer ceramic) or HTCC (high temperature co-fired multilayer ceramic); as for direct bonding technology (Direct Bonded Copper) is mainly to produce a eutectic phase of copper oxide at the eutectic temperature of the atmosphere between the copper metal circuit and the ceramic substrate, and tightly join the two to improve circuit adhesion.

目前陶瓷散熱基板與電路的接合包含了DBC、DPC(直接鍍銅技術)、LTCC及HTCC等方式進行金屬化製程。DBC製程雖然擁有高機械強度等優點,但是仍然需要利用黃光微影及蝕刻等高成本製程技術將表面覆蓋多餘的銅箔加以去除,DPC技術亦然,還因為本身製程條件限制導致電路厚度無 法大於150μm,對於高功率應用端有所限制;LCTT及HTCC則因為物理條件的限制,一般僅適合採用銅電路及氧化鋁載板的組合,若是使用熱傳導係數更高的氮化鋁則會因為燒結溫度遠大於金屬銅之熔點,而不易形成電路圖形。 At present, the connection between the ceramic heat dissipation substrate and the circuit includes DBC, DPC (direct copper plating technology), LTCC, and HTCC metallization processes. Although the DBC process has the advantages of high mechanical strength and other advantages, it still needs to use high-cost process technologies such as yellow light lithography and etching to remove the excess copper foil covered on the surface, as is the DPC technology, and the circuit thickness cannot be greater than 150 μm because of its own process conditions. For high-power applications, there are restrictions; LCTT and HTCC are generally only suitable for the combination of copper circuits and alumina carrier boards because of physical conditions. If aluminum nitride with a higher thermal conductivity is used, the sintering temperature will be much larger Due to the melting point of metallic copper, it is not easy to form circuit patterns.

傳統網版印刷電路為了要提高電路與載板之間的附著力,則需要利用中介層,用以平衡差異過大的熱膨脹係數,進而提高電路強度,但也因為中介層的關係,製程上仍然必須考慮蝕刻或是微影等相關步驟。 In order to improve the adhesion between the circuit and the carrier board, the traditional screen printed circuit needs to use an intermediary layer to balance the thermal expansion coefficient of the excessive difference, thereby improving the strength of the circuit, but because of the relationship between the interlayer, the process must still be Consider related steps such as etching or lithography.

因此,業界亟需一種可以有效率的提高陶瓷載板與金屬電路之間附著力的方法,並且降低時間及製程成本。 Therefore, the industry urgently needs a method that can effectively improve the adhesion between the ceramic carrier and the metal circuit, and reduce the time and process cost.

本發明之目的在於提供一種結合厚膜網印與陶瓷-金屬共晶相製程的方法,其中包括改善附著力之方法。 The object of the present invention is to provide a method for combining thick film screen printing with a ceramic-metal eutectic phase process, which includes a method for improving adhesion.

鑒於上述悉知技術之缺點,本發明發展出一種提高金屬電路與陶瓷載板之附著力的方法,並藉由陶瓷-金屬共晶層的生成,降低時間及製程成本。 In view of the shortcomings of the above known technology, the present invention develops a method to improve the adhesion between the metal circuit and the ceramic carrier board, and reduces the time and process cost by the formation of the ceramic-metal eutectic layer.

為了達到上述目的,根據本發明提出的方案,提供一種提高陶瓷-金屬銅電路附著力之製程方法,於第一實施中,該方法包含提供一陶瓷載板,其中包含表面已採用網版印刷厚膜技術所產生之金屬銅氧化層電路圖型;於烘箱中進行表面乾燥,以移除金屬銅氧化物層中多餘的溶劑;置入一氣氛環境之高溫爐中,同時加以40kgf/cm2以下並垂直載板方 向之壓力;以及,設定高溫爐溫度在金屬銅與陶瓷載板之共晶溫度±10℃以內,使得該陶瓷載板與金屬銅之間產生金屬銅-陶瓷共晶層。 In order to achieve the above object, according to the solution proposed by the present invention, a process method for improving the adhesion of a ceramic-metal copper circuit is provided. In the first implementation, the method includes providing a ceramic carrier board, which includes a surface that has been screen-thick printed. Circuit pattern of the metal copper oxide layer produced by the membrane technology; surface drying in an oven to remove excess solvent in the metal copper oxide layer; placed in a high-temperature furnace in an atmospheric environment, while adding below 40kgf/cm 2 and The pressure in the direction perpendicular to the carrier board; and, setting the temperature of the high-temperature furnace to within ±10°C of the eutectic temperature of the metallic copper and ceramic carrier board, so that a metallic copper-ceramic eutectic layer is generated between the ceramic carrier board and the metallic copper.

上述中,該方法可以將金屬銅與陶瓷載板之間產生一金屬銅-陶瓷共晶層,利用此共晶層提高金屬銅電路與陶瓷載板之間的附著力,避免因為熱膨脹係數差異或是外力所容易造成的金屬銅電路與陶瓷載板剝離;此外利用垂直載板方向之壓力可以提高固態擴散接合效率,進而幫助金屬銅-陶瓷共晶層的生成。 In the above, this method can produce a metallic copper-ceramic eutectic layer between the metallic copper and the ceramic carrier board, and use this eutectic layer to improve the adhesion between the metallic copper circuit and the ceramic carrier board to avoid the difference in thermal expansion coefficient or It is easy to cause the peeling of the metal copper circuit and the ceramic carrier board caused by external force; in addition, the use of pressure perpendicular to the direction of the carrier board can improve the efficiency of solid diffusion bonding, and thus help the formation of the metal copper-ceramic eutectic layer.

此發明的的方法,步驟包括:(A)提供一陶瓷材料之載板本體;(B)清潔該陶瓷載板,並且經由拋光及研磨程序,使之平整光滑;(C)將金屬銅或金屬銅氧化物經由網版印刷技術,將電路圖案印刷至該陶瓷載板表面,使電路圖案緊密貼合於該陶瓷載板表面;(D)將該陶瓷載板置入烘箱,以低於105℃進行烘乾;(E)將該陶瓷載板置入一氣氛環境之高溫爐中,同時加以40kgf/cm2以下並垂直載板方向之壓力;(F)設定高溫爐溫度在金屬銅與陶瓷載板之共晶溫度±10℃以內,使得該陶瓷載板與金屬銅之間產生金屬銅-陶瓷共晶層。 In the method of the present invention, the steps include: (A) providing a carrier body of ceramic material; (B) cleaning the ceramic carrier board and making it smooth and smooth through polishing and grinding procedures; (C) metal copper or metal The copper oxide prints the circuit pattern on the surface of the ceramic carrier board through the screen printing technology, so that the circuit pattern closely adheres to the surface of the ceramic carrier board; (D) the ceramic carrier board is placed in an oven at a temperature below 105℃ Carry out drying; (E) Put the ceramic carrier plate into an atmosphere of high temperature furnace, and simultaneously apply the pressure below 40kgf/cm 2 and perpendicular to the direction of the carrier plate; (F) Set the temperature of the high temperature furnace between metal copper and ceramic The eutectic temperature of the board is within ±10°C, so that a metallic copper-ceramic eutectic layer is generated between the ceramic carrier board and the metallic copper.

以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本創作達到預定目的所採取的方式、手段及功效。而有關本創作的其他目的及優點,將在後續的說明及圖式中加以闡述。 The above summary, the following detailed description and the accompanying drawings are intended to further illustrate the ways, means and effects of this creation to achieve its intended purpose. The other purposes and advantages of this creation will be explained in the subsequent description and drawings.

1‧‧‧散熱鰭片 1‧‧‧ cooling fins

2‧‧‧導熱膠 2‧‧‧thermal conductive adhesive

3‧‧‧陶瓷載板 3‧‧‧Ceramic carrier board

4‧‧‧金屬電路 4‧‧‧Metal circuit

5‧‧‧焊料層 5‧‧‧ solder layer

6‧‧‧半導體元件 6‧‧‧Semiconductor components

7‧‧‧金屬銅-陶瓷共晶層 7‧‧‧Metal copper-ceramic eutectic layer

S101-S106‧‧‧步驟 S101-S106‧‧‧Step

第一圖係為本發明第一實施例之元件概略剖面示意圖。 The first figure is a schematic cross-sectional view of the device according to the first embodiment of the present invention.

第二圖係為圖一中金屬銅與陶瓷載板之接合部分的放大說明圖。 The second figure is an enlarged explanatory diagram of the joint portion of the metal copper and the ceramic carrier plate in FIG.

第三圖係為本發明一種提升陶瓷載板與厚膜電路附著力之方法示意流程圖。 The third figure is a schematic flow chart of a method for enhancing the adhesion between a ceramic carrier board and a thick film circuit of the present invention.

以下係藉由特定的具體實例說明本創作之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地了解本創作之優點及功效。 The following is a specific example to illustrate the implementation of this creation. Those familiar with this skill can easily understand the advantages and effects of this creation from the content disclosed in this specification.

現有的金屬化電路於陶瓷載板上技術,多使用到微影、黃光、蝕刻等半導體製程,不僅費時費工,成本也高;傳統使用網版印刷等厚膜技術則會因為許多原材料上不同的特性,造成相容性的問題,往往不能採取單一製程技術,須配合搭配複合型的材料或製程。本發明則發展出一種提升陶瓷載板與厚膜電路附著力之方法,係將金屬銅與陶瓷載板之間利用高溫時的共晶條件,在介面處產生一金屬銅-陶瓷共晶層,並且同時使用垂直於載板表面的正向壓力,提高金屬銅-陶瓷共晶層的生成效率;本發明可以以一道製程技術即可提高陶瓷載板上的金屬電路的附著力,不需額外的材料或製程技術,並且可以藉此解決薄膜製程應用於陶瓷載板金 屬化製程時所產生的成本,及氮化鋁與金屬銅無法共燒的問題。 The existing metallized circuit technology on the ceramic carrier board mostly uses semiconductor processes such as lithography, yellow light, etching, etc., which is not only time-consuming and labor-intensive, but also costly; traditional thick-film technologies such as screen printing are used because of many raw materials. Different characteristics, causing compatibility problems, often cannot adopt a single process technology, and must be matched with composite materials or processes. The present invention develops a method to improve the adhesion between the ceramic carrier board and the thick film circuit, which utilizes the eutectic conditions between the metallic copper and the ceramic carrier board at high temperature to produce a metallic copper-ceramic eutectic layer at the interface, At the same time, the positive pressure perpendicular to the surface of the carrier board is used to improve the generation efficiency of the metal copper-ceramic eutectic layer; the present invention can improve the adhesion of the metal circuit on the ceramic carrier board with one process technology without additional Material or process technology, and can solve the cost of the thin film process applied to the ceramic carrier metallization process, and the problem that aluminum nitride and copper metal cannot be co-fired.

請參閱第一圖及第二圖,其係顯示本發明一實施例之元件剖面圖。 Please refer to the first and second figures, which are cross-sectional views of components according to an embodiment of the present invention.

請參閱第一圖,將半導體元件6利用焊料層5固定於金屬電路4上,而金屬電路4則採用本發明之提升陶瓷載板與厚膜電路附著力之方法固定於陶瓷載板3上,陶瓷載板再經由導熱膠2貼附於散熱鰭片1之背板。 Referring to the first figure, the semiconductor element 6 is fixed on the metal circuit 4 by using the solder layer 5, and the metal circuit 4 is fixed on the ceramic carrier 3 by the method of improving the adhesion between the ceramic carrier board and the thick film circuit of the present invention. The ceramic carrier board is attached to the back plate of the heat dissipation fin 1 via the thermal conductive adhesive 2.

請參閱第二圖,利用施加40kgf/cm2以下並垂直於陶瓷載板3方向之壓力,同時配合高溫爐設定至金屬銅-陶瓷之共晶溫度,進行固相擴散接合程序,完成金屬銅-陶瓷共晶層7的生成,進而提升陶瓷載板3與厚膜電路4附著力。 Please refer to the second figure, using a pressure of 40kgf/cm 2 or less and perpendicular to the direction of the ceramic carrier plate 3, while setting it to the eutectic temperature of the metal copper-ceramic with a high-temperature furnace, and performing the solid phase diffusion bonding process to complete the metal copper- The formation of the ceramic eutectic layer 7 further improves the adhesion between the ceramic carrier 3 and the thick film circuit 4.

請參閱第二圖,此方法適用陶瓷載板包含有:氮化鋁(AlN)、氧化鋁(Al2O3)、氮化矽(Si3N4)、碳化矽(SiC)或氮氧化矽(SiON)。 Please refer to the second figure. This method is applicable to ceramic carrier boards including: aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC) or silicon oxynitride (SiON).

請參閱第三圖,本發明一種提升陶瓷載板與厚膜電路附著力之方法流程圖。如圖所示,本發明一種提升陶瓷載板與厚膜電路附著力之方法,步驟包括:(A)提供一陶瓷材料之陶瓷載板3本體;(B)清潔該陶瓷載板3,並且經由拋光及研磨程序,使之平整光滑;(C)將金屬銅或金屬銅氧化物經由網版印刷技術,將電路圖案印刷至該陶瓷載板3表面,使具有電路圖案的金屬電路4緊密貼合於該陶瓷載板3表面;(D)將該 陶瓷載板3置入烘箱,以低於105℃進行烘乾;(E)將該陶瓷載板3置入一氣氛環境之高溫爐中,同時加以40kgf/cm2以下並垂直載板方向之壓力;(F)設定高溫爐溫度在金屬銅與陶瓷載板3之共晶溫度±10℃以內,使得該陶瓷載板3與金屬電路4之間產生金屬銅-陶瓷共晶層7;(G)降溫後,所得到的陶瓷載板3即可利用金屬銅-陶瓷共晶層7提高與金屬電路4的附著力。而所得到的金屬銅-陶瓷共晶層之厚度可為2~20μm。 Please refer to the third figure, a flow chart of a method for improving the adhesion between a ceramic carrier board and a thick film circuit of the present invention. As shown in the figure, the present invention provides a method for improving the adhesion between a ceramic carrier board and a thick film circuit. The steps include: (A) providing a body of ceramic carrier board 3 of ceramic material; (B) cleaning the ceramic carrier board 3, and passing Polishing and grinding procedures to make it flat and smooth; (C) Print the circuit pattern on the surface of the ceramic carrier board 3 through the screen printing technology of metal copper or metal copper oxide, so that the metal circuit 4 with the circuit pattern is closely attached On the surface of the ceramic carrier board 3; (D) Put the ceramic carrier board 3 into an oven and dry it at a temperature below 105°C; (E) Put the ceramic carrier board 3 into a high-temperature furnace in an atmospheric environment while Add a pressure below 40kgf/cm 2 and perpendicular to the direction of the carrier board; (F) Set the temperature of the high-temperature furnace to within ±10°C of the eutectic temperature of the metal copper and ceramic carrier board 3 so that the ceramic carrier board 3 and the metal circuit 4 The metal copper-ceramic eutectic layer 7 is generated; (G) After the temperature is lowered, the obtained ceramic carrier board 3 can utilize the metal copper-ceramic eutectic layer 7 to improve the adhesion to the metal circuit 4. The thickness of the obtained metallic copper-ceramic eutectic layer can be 2-20 μm.

以上,結合傳統網印電路及共晶層製程技術,配合正向壓力高溫程序,以三明治夾層施壓方式,同時進行金屬氧化物電路之還原及共晶層之生成,穩固的將金屬電路貼合於陶瓷載板上,解決時間及成本浪費,並且同時避免低熱導係數之陶瓷的使用。另外,將傳統網版印刷陶瓷基板之電路金屬化製程加以精進,從兩步驟高溫程序,簡化為一道程序,降低時間成本,並且克服電路剝離等問題。此外,同時採用高熱傳導係數之陶瓷材料,將元件所產生的廢熱迅速傳導,降低工作溫度,提高產品壽命。 Above, combined with the traditional screen printed circuit and eutectic layer process technology, combined with the forward pressure and high temperature process, the sandwich sandwich pressure is applied to simultaneously reduce the metal oxide circuit and generate the eutectic layer, and firmly attach the metal circuit On the ceramic carrier board, it solves the waste of time and cost, and at the same time avoids the use of ceramics with low thermal conductivity. In addition, the circuit metallization process of traditional screen-printed ceramic substrates has been refined from a two-step high-temperature process to a simplified process, reducing time cost and overcoming problems such as circuit stripping. In addition, the ceramic material with high thermal conductivity is used at the same time to quickly conduct the waste heat generated by the components, reduce the working temperature and improve the product life.

本實施例中之陶瓷載板3可為鋁系陶瓷載板,以氮化鋁為例,在實施例的步驟(B)中,氮化鋁陶瓷載板3經由拋光研磨製程後,平整度TTV小於100μm,可依照不同需求進行平整度及粗糙度的調整;在實施例的步驟(C)中金屬銅或金屬銅氧化物可以為漿料或是膠料的形式,與高分子材料混合均勻,其中金屬銅或金屬銅氧化物占總重90%以上;在實施例 步驟(D)中乾燥溫度設定在105℃以下,進行金屬銅或金屬銅氧化物漿料中的高分子材料的汽化,使得陶瓷載板3與金屬銅或金屬銅氧化物完整貼合;在實施例的步驟(E)中陶瓷載板3置入一惰性氣氛環境之高溫爐中,其中氣氛可以為氮氣、含10%以下氫氣之氮氣或含30%以下氨氣之氮氣;在實施例的步驟(E)中所施加的壓力,可以採用垂直於載板方向之正向力,或是增加高溫爐內部氣壓達40kgf/cm2以下;在實施例的步驟(F)中設定高溫爐溫度在金屬銅與陶瓷載板3之共晶溫度±10℃以內,本實施例使用之陶瓷載板材料為氮化鋁陶瓷,鋁系陶瓷與金屬銅之共晶溫度為1065℃,故本實施力所設定之高溫共晶溫度在1065℃±10℃以內,即得該鋁系陶瓷載板3與金屬銅之間所產生金屬銅-陶瓷共晶層7(AlN-Al2O3-Cu)。在本實施例步驟完成後即可得到一高附著力之金屬化陶瓷載板。 The ceramic carrier board 3 in this embodiment may be an aluminum-based ceramic carrier board, taking aluminum nitride as an example. In step (B) of the embodiment, after the aluminum nitride ceramic carrier board 3 undergoes a polishing process, the flatness TTV Less than 100μm, the flatness and roughness can be adjusted according to different requirements; in the step (C) of the embodiment, the metal copper or metal copper oxide can be in the form of slurry or glue, mixed evenly with the polymer material, Among them, the metal copper or metal copper oxide accounts for more than 90% of the total weight; in the step (D) of the embodiment, the drying temperature is set below 105° C., and the polymer material in the metal copper or metal copper oxide slurry is vaporized so that The ceramic carrier board 3 is completely bonded to the metal copper or metal copper oxide; in the step (E) of the embodiment, the ceramic carrier board 3 is placed in a high-temperature furnace in an inert atmosphere environment, where the atmosphere may be nitrogen, containing 10% or less Nitrogen in hydrogen or nitrogen containing 30% or less of ammonia; the pressure applied in step (E) of the embodiment can be a positive force perpendicular to the direction of the carrier plate, or the internal pressure of the high-temperature furnace can be increased to 40kgf/cm 2 or less; in step (F) of the embodiment, the high-temperature furnace temperature is set within the eutectic temperature of the metallic copper and the ceramic carrier board 3 within ±10°C. The ceramic carrier board material used in this embodiment is aluminum nitride ceramic, aluminum series The eutectic temperature of ceramic and metallic copper is 1065℃, so the high temperature eutectic temperature set by this implementation force is within 1065℃±10℃, that is, the metallic copper produced between the aluminum-based ceramic carrier plate 3 and the metallic copper- Ceramic eutectic layer 7 (AlN-Al 2 O 3 -Cu). After the steps of this embodiment are completed, a metallized ceramic carrier board with high adhesion can be obtained.

綜上所述,本發明將金屬或金屬氧化物網印至陶瓷基板後,進行金屬氧化物高溫還原時,利用陶瓷與金屬共晶溫度下可形成堅固之共晶相介面,並配合正向力加壓,同時完成金屬化陶瓷載板製程及強化電路附著力,簡化工序,降低設備及人力成本,並且同時提高熱傳導效率,使得高功率模組或3C元件等的廢熱可以迅速降溫,延長元件壽命及提高可靠度。另外,本發明以金屬-陶瓷共晶理論為基礎,並且配合正向壓力,在金屬與陶瓷共晶溫度下(添加微量O2),產生一強而有力的共晶介面,克服熱膨脹係數差異等製程問題。 此外,此方法相較於DBC或DPC需要用到黃光微影等製程技術,可以大幅降低設備及人工成本,並且由於製程溫度較低(1065~1085℃),可採用高熱導的氮化鋁陶瓷載板材料(而LCTT及HTCC須採用氧化鋁)。 In summary, in the present invention, after metal or metal oxide is screen printed on the ceramic substrate, when the metal oxide is reduced at a high temperature, a strong eutectic phase interface can be formed at the eutectic temperature of ceramic and metal, and cooperate with the positive force Pressurization, at the same time complete the metallized ceramic carrier board process and strengthen the circuit adhesion, simplify the process, reduce equipment and labor costs, and at the same time improve the heat transfer efficiency, so that the waste heat of high-power modules or 3C components can quickly cool down and extend the life of the component And improve reliability. In addition, the present invention is based on the metal-ceramic eutectic theory, and with the forward pressure, at the eutectic temperature of the metal and ceramic (adding a small amount of O 2 ), it produces a strong and powerful eutectic interface to overcome the difference in thermal expansion coefficient, etc. Process issues. In addition, compared with DBC or DPC, this method requires the use of yellow light lithography and other process technologies, which can greatly reduce equipment and labor costs, and because the process temperature is low (1065~1085℃), high thermal conductivity aluminum nitride ceramics can be used. Board material (and alumina for LCTT and HTCC).

上述之實施例僅為例示性說明本創作之特點及功效,非用以限制本創作之實質技術內容的範圍。任何熟悉此技藝之人士均可在不違背創作之精神及範疇下,對上述實施例進行修飾與變化。因此,本創作之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are only illustrative of the characteristics and effects of this creation, and are not intended to limit the scope of the substantive technical content of this creation. Anyone who is familiar with this skill can modify and change the above embodiments without violating the spirit and scope of creation. Therefore, the scope of protection of the rights of this creation should be as listed below in the scope of patent application.

1‧‧‧散熱鰭片 1‧‧‧ cooling fins

2‧‧‧導熱膠 2‧‧‧thermal conductive adhesive

3‧‧‧陶瓷載板 3‧‧‧Ceramic carrier board

4‧‧‧金屬電路 4‧‧‧Metal circuit

5‧‧‧焊料層 5‧‧‧ solder layer

6‧‧‧半導體元件 6‧‧‧Semiconductor components

Claims (9)

一種提升陶瓷載板與厚膜電路附著力之方法,步驟包括:(A)提供一陶瓷材料之一陶瓷載板本體;(B)清潔該陶瓷載板,並且經由拋光及研磨程序,使之平整光滑;(C)將一金屬銅或一金屬銅氧化物經由網版印刷技術,將一電路圖案印刷至該陶瓷載板表面,使一金屬電路緊密貼合於該陶瓷載板表面;(D)將該陶瓷載板置入烘箱,以低於105℃進行烘乾;(E)將該陶瓷載板置入一氣氛環境之高溫爐中,同時加以40kgf/cm 2以下並垂直載板方向之壓力;(F)設定一高溫爐溫度在該金屬銅與該陶瓷載板之共晶溫度±10℃以內,使得該陶瓷載板與該金屬電路之間產生一金屬銅-陶瓷共晶層;(G)降溫後,所得到的該陶瓷載板即利用該金屬銅-陶瓷共晶層提高與該金屬電路的附著力。 A method for improving the adhesion between a ceramic carrier board and a thick film circuit, the steps include: (A) providing a ceramic carrier board body of one of ceramic materials; (B) cleaning the ceramic carrier board, and smoothing it through polishing and grinding procedures Smooth; (C) print a circuit pattern on the surface of the ceramic carrier board through a screen printing technique of a metal copper or a metal copper oxide, so that a metal circuit closely adheres to the surface of the ceramic carrier board; (D) Place the ceramic carrier plate in an oven and dry it at a temperature below 105°C; (E) Place the ceramic carrier plate in a high-temperature furnace in an atmospheric environment, and simultaneously apply a pressure of 40 kgf/cm 2 or less and perpendicular to the direction of the carrier plate (F) Set a high-temperature furnace temperature within ±10°C of the eutectic temperature of the metallic copper and the ceramic carrier board, so that a metallic copper-ceramic eutectic layer is generated between the ceramic carrier board and the metal circuit; (G ) After the temperature is lowered, the obtained ceramic carrier board utilizes the metal copper-ceramic eutectic layer to improve the adhesion to the metal circuit. 如申請專利範圍第1項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,該陶瓷載板包含氮化鋁(AlN)、氧化鋁(Al 2O 3)、氮化矽(Si 3N 4)、碳化矽(SiC)或氮氧化矽(SiON)。 The method for improving the adhesion between a ceramic carrier board and a thick film circuit as described in item 1 of the patent application scope, wherein the ceramic carrier board includes aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), and silicon nitride ( Si 3 N 4 ), silicon carbide (SiC) or silicon oxynitride (SiON). 如申請專利範圍第1項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,該陶瓷載板經由拋光研磨製程後,平 整度TTV小於100μm,依照不同需求進行平整度及粗糙度的調整。 The method for improving the adhesion between the ceramic carrier board and the thick film circuit as described in item 1 of the patent application scope, wherein after the ceramic carrier board is polished and polished, the flatness TTV is less than 100 μm, and the flatness and roughness are performed according to different needs Adjustment. 3.如申請專利範圍第1項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,該金屬銅或該金屬銅氧化物為一漿料或是一膠料的形式,與一高分子材料混合均勻,其中該金屬銅或該金屬銅氧化物占總重90%以上。 3. The method for improving the adhesion between a ceramic carrier board and a thick film circuit as described in item 1 of the patent application scope, wherein the metallic copper or the metallic copper oxide is in the form of a paste or a glue, and a The polymer materials are mixed evenly, wherein the metallic copper or the metallic copper oxide accounts for more than 90% of the total weight. 如申請專利範圍第3項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,在步驟(D)中,進行該漿料或是該膠料中的該高分子材料的汽化,使得該陶瓷載板與該金屬電路完整貼合。 The method for improving the adhesion between a ceramic carrier board and a thick film circuit as described in item 3 of the patent application scope, wherein in step (D), the polymer material in the slurry or the compound is vaporized, The ceramic carrier board and the metal circuit are completely attached. 如申請專利範圍第1項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,其中該氣氛為氮氣、含10%以下氫氣之氮氣或含30%以下氨氣之氮氣。 The method for improving the adhesion between a ceramic carrier board and a thick film circuit as described in item 1 of the patent application scope, wherein the atmosphere is nitrogen, nitrogen containing 10% or less of hydrogen, or nitrogen containing 30% or less of ammonia. 如申請專利範圍第1項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,高溫爐中所施加的壓力,採用垂直於載板方向之正向力,或是增加高溫爐內部氣壓達40kgf/cm 2以下。 The method for improving the adhesion between the ceramic carrier board and the thick film circuit as described in item 1 of the patent application scope, wherein the pressure applied in the high-temperature furnace adopts a positive force perpendicular to the direction of the carrier board, or increases the inside of the high-temperature furnace The air pressure is below 40kgf/cm 2 . 如申請專利範圍第1項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,該陶瓷載板為一鋁系陶瓷載板,設定該高溫爐溫度在該金屬銅與該鋁系陶瓷載板之共晶溫度1065℃±10℃以內。 The method for improving the adhesion between a ceramic carrier board and a thick film circuit as described in item 1 of the patent scope, wherein the ceramic carrier board is an aluminum-based ceramic carrier board, and the high-temperature furnace temperature is set between the metallic copper and the aluminum-based system The eutectic temperature of the ceramic carrier board is within 1065℃±10℃. 如申請專利範圍第7項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,所得之該金屬銅-陶瓷共晶層係AlN-Al 2O 3-Cu。 The method for improving the adhesion between a ceramic carrier board and a thick film circuit as described in item 7 of the patent application scope, wherein the obtained metallic copper-ceramic eutectic layer is AlN-Al 2 O 3 -Cu. 如申請專利範圍第1項所述之提升陶瓷載板與厚膜電路附著力之方法,其中,該金屬銅-陶瓷共晶層之厚度為2~20μm。 The method for improving the adhesion between a ceramic carrier board and a thick film circuit as described in item 1 of the patent application scope, wherein the thickness of the metallic copper-ceramic eutectic layer is 2-20 μm.
TW107126801A 2018-07-31 2018-07-31 Method for improving adhesion of ceramic carrier board and thick film circuit TWI654914B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107126801A TWI654914B (en) 2018-07-31 2018-07-31 Method for improving adhesion of ceramic carrier board and thick film circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107126801A TWI654914B (en) 2018-07-31 2018-07-31 Method for improving adhesion of ceramic carrier board and thick film circuit

Publications (2)

Publication Number Publication Date
TWI654914B TWI654914B (en) 2019-03-21
TW202008862A true TW202008862A (en) 2020-02-16

Family

ID=66590936

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107126801A TWI654914B (en) 2018-07-31 2018-07-31 Method for improving adhesion of ceramic carrier board and thick film circuit

Country Status (1)

Country Link
TW (1) TWI654914B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727504A (en) * 2022-03-16 2022-07-08 景旺电子科技(龙川)有限公司 Metal ceramic composite substrate and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727504A (en) * 2022-03-16 2022-07-08 景旺电子科技(龙川)有限公司 Metal ceramic composite substrate and manufacturing method thereof

Also Published As

Publication number Publication date
TWI654914B (en) 2019-03-21

Similar Documents

Publication Publication Date Title
Lu et al. A lead-free, low-temperature sintering die-attach technique for high-performance and high-temperature packaging
JP5488619B2 (en) Power module substrate and power module
JP6096094B2 (en) Laminated body, insulating cooling plate, power module, and manufacturing method of laminated body
TWI475638B (en) Preparation method of heterogeneous laminated co - fired ceramics with aluminum nitride electrostatic chuck
JP6703584B2 (en) A method to increase the adhesive strength between the ceramic mounting plate and the thick film circuit
JPWO2018225809A1 (en) Ceramic circuit board
TWI654914B (en) Method for improving adhesion of ceramic carrier board and thick film circuit
Wei et al. A comparison study for metalized ceramic substrate technologies: For high power module applications
JPH03120791A (en) Method for formation of via in aluminum nitride substrate
US10362684B1 (en) Method for improving adhesion between ceramic carrier and thick film circuit
JP6790945B2 (en) Manufacturing method of insulated circuit board and manufacturing method of insulated circuit board with heat sink
JP3934966B2 (en) Ceramic circuit board
JP2007248317A (en) Heating and cooling module
JP2861357B2 (en) Aluminum nitride-copper bonding method
JP4476428B2 (en) Aluminum nitride circuit board and manufacturing method thereof
JP2010258458A (en) Metal-ceramic composite heat-dissipating plate integrated with ceramic insulating substrate and method of manufacturing the same
US11776870B2 (en) Direct bonded copper substrates fabricated using silver sintering
CN216960293U (en) Thermoelectric separation copper substrate
JPS63229843A (en) Composite ceramic substrate
JP2018032731A (en) Substrate for heat sink-equipped power module, and method for manufacturing the same
JPH03157989A (en) Bonding structure of ceramic board and metal plate
JP2018142569A (en) Heat dissipation substrate
KR20210135025A (en) Adhesive transfer film and method for manufacturing power module substrate using the same
JP2000049425A (en) Ceramics circuit board, its manufacture and power module using the same
JPH09172247A (en) Ceramic circuit board and manufacture thereof