JPS63229843A - Composite ceramic substrate - Google Patents

Composite ceramic substrate

Info

Publication number
JPS63229843A
JPS63229843A JP6494087A JP6494087A JPS63229843A JP S63229843 A JPS63229843 A JP S63229843A JP 6494087 A JP6494087 A JP 6494087A JP 6494087 A JP6494087 A JP 6494087A JP S63229843 A JPS63229843 A JP S63229843A
Authority
JP
Japan
Prior art keywords
aluminum nitride
mullite
ceramic substrate
ceramics
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6494087A
Other languages
Japanese (ja)
Other versions
JP2652014B2 (en
Inventor
Hisashi Sakuramoto
桜本 久
Koichi Uno
孝一 宇野
Shusei Kuratani
倉谷 修正
Shinya Mizuno
水野 真也
Satoru Nishiyama
哲 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narumi China Corp
Original Assignee
Narumi China Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narumi China Corp filed Critical Narumi China Corp
Priority to JP62064940A priority Critical patent/JP2652014B2/en
Publication of JPS63229843A publication Critical patent/JPS63229843A/en
Application granted granted Critical
Publication of JP2652014B2 publication Critical patent/JP2652014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the composite ceramic substrate having excellent heat- radiating property and the thermal expansion coefficient which is approximate to that of an element by a method wherein, in the semiconductor device using mullite ceramic and aluminum nitride ceramic, an element fixing part is composed of aluminum nitride ceramic. CONSTITUTION:After Ni electroless plating has been performed on a mullite ceramic substrate 1 and an aluminum nitride substrate 2, the substrates 1 and 2 are connected by sintering, together with a pin 3, in N2+H2 at 850 deg.C using Ag-Cu solder, and Au is electroless-plated. Then, semiconductor element 5 is attached to the aluminum nitride ceramic substrate 2 with Au-Si eutectic solder 6. Subsequently, they are connected by performing an ultrasonic bonding method using an Au-Si eutectic solder, and a mullite cap 8 is sealed using Au-Si eutectic solder 9. According to this constitution, the composite ceramic substrate consisting of mullite ceramic and the aluminum nitride having excellent heat radiating property can be obtained at low cost.

Description

【発明の詳細な説明】 イ゛0発明の目的 産業上の利用分野 本発明は半導体素子を備えムライトセラミックスおよび
窒化アルミニウムセラミックスの複合セラミックス基板
からなる半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device including a semiconductor element and comprising a composite ceramic substrate of mullite ceramics and aluminum nitride ceramics.

従来の技術 近年、半導体素子の高密度化、高速化に件ない半導体素
子からの発熱量は増大の傾向にあり半導体装置の放熱性
の改善が望まれている。
BACKGROUND OF THE INVENTION In recent years, the amount of heat generated from semiconductor devices has tended to increase as semiconductor devices have become more dense and faster, and it has been desired to improve the heat dissipation properties of semiconductor devices.

また素子の大型化により素子と素子固定部分との熱膨張
差のため発生する熱応力に起因した素子の歪、はがれ、
破壊等が問題とされ、これ等に対する信頼性を確保する
ために熱膨張係数が素子に近いことも同時に望まれてい
る。
In addition, due to the increase in the size of the device, distortion and peeling of the device due to thermal stress generated due to the difference in thermal expansion between the device and the part where the device is fixed,
Breakage is a problem, and in order to ensure reliability against such problems, it is also desired that the coefficient of thermal expansion be close to that of the element.

従来この放熱性の改善のため素子固定部に銅タングステ
ン等の金属を用いたアルミナセラミックス−金属複合構
造の半導体装置が用いられている。
Conventionally, in order to improve heat dissipation, a semiconductor device having an alumina ceramic-metal composite structure in which a metal such as copper tungsten is used for the element fixing portion has been used.

しかし最近では更に電気絶縁性をも持つ要求が高まり、
このため電気絶縁性と高熱伝導性を併せ持つ材料として
ベリリアセラミックス、窒化アルミニウムセラミックス
等が注目されている。
However, recently there has been an increasing demand for electrical insulation properties.
For this reason, beryllia ceramics, aluminum nitride ceramics, and the like are attracting attention as materials that have both electrical insulation and high thermal conductivity.

ベリリアセラミックスはすでにアルミナセラミックスと
複合化され実用化に至っているが、熱膨張係数が素子よ
りも大きく大型素子の固定か困難であること、また原料
の有する毒性および材料がすべて輸入にたよっているこ
と等、生産上大きな障害を持っている。
Beryllia ceramics has already been combined with alumina ceramics and put into practical use, but its coefficient of thermal expansion is larger than the elements, making it difficult to fix large elements, and the toxicity of the raw materials means that all materials must be imported. This poses a major problem in production.

一方窒化アルミニウムセラミックスは、熱膨張係数が素
子に近く素子の固定についての問題はないものの、アル
ミナセラミックスとの複合化においては両者の熱1膨張
差により発生する熱応力のために直接の接合が不可能で
ある。これを緩和するために両者の間に応力緩和層を設
ける必要がありこのため工程が複雑になる上、信頼性に
も著しく欠けるものがあった〇 また窒化アルミニウムセラミックスだけで半導体装置を
製造することも可能であるが導体との同時焼成が・困難
なことや装置が高価になり過ぎる等の問題を持っている
On the other hand, aluminum nitride ceramics has a coefficient of thermal expansion close to that of the element, so there is no problem with fixing the element, but when combined with alumina ceramics, direct bonding is not possible due to the thermal stress generated by the difference in thermal expansion between the two. It is possible. In order to alleviate this, it is necessary to provide a stress relaxation layer between the two, which complicates the process and significantly reduces reliability.Also, it is difficult to manufacture semiconductor devices using only aluminum nitride ceramics. Although it is possible, there are problems such as simultaneous firing with the conductor is difficult and the equipment is too expensive.

発明が解決しようとする問題点 本発明は以上の点を考慮してなされたもので半導体装置
に於て放熱性に優れかつ素子との熱膨張係数が近い複合
セラミックス基板を安価に提供することを目的とする。
Problems to be Solved by the Invention The present invention has been made in consideration of the above points, and aims to provide at a low cost a composite ceramic substrate that has excellent heat dissipation properties and has a coefficient of thermal expansion close to that of an element in a semiconductor device. purpose.

口0発明の構成 問題点を解決するだめの手段 本発明は半導体素子を備えムライトセラミックス及び窒
化アルミニウムセラミックスを用いた半導体装置に於て
少くとも該半導体素子を固定する部分が窒化アルミニウ
ムセラミックスで構成されていることを特徴とする複合
セラミックス基板である。
The present invention provides a semiconductor device including a semiconductor element and using mullite ceramics and aluminum nitride ceramics, in which at least a portion for fixing the semiconductor element is made of aluminum nitride ceramics. This is a composite ceramic substrate characterized by:

作用 ムライトセラミックスは熱膨張係数が窒化アルミニウム
セラミックスに近く両者の接合に関してはアルミナセラ
ミックスと窒化アルミニウムセラミックスの場合と比較
して熱応力の発生が無く、従来技術を用いて容易に製造
される。また窒化アルミニウムセラミックスのみで製造
するよりも製造コストが低い。従ってムライトセラミッ
クスと窒化アルミニウムセラミックスを複合化すること
により良放熱性、低熱膨張性等の特性を持った半導体装
置  1  表 置を安価に得ることができ高出力で大型の素子用として
利用できる。
Function Mullite ceramics have a coefficient of thermal expansion close to that of aluminum nitride ceramics, and when bonding them together, no thermal stress occurs compared to the case of alumina ceramics and aluminum nitride ceramics, and they can be easily manufactured using conventional techniques. Furthermore, the manufacturing cost is lower than manufacturing using only aluminum nitride ceramics. Therefore, by combining mullite ceramics and aluminum nitride ceramics, it is possible to obtain a semiconductor device with characteristics such as good heat dissipation and low thermal expansion at a low cost, and it can be used for high-output, large-sized devices.

なお第1表に窒化アルミニウムセラミ−7クス(AIN
) 、  ムライトセラミックス(ムライト)、アルミ
ナの材料特性を示す。
Table 1 shows aluminum nitride ceramic 7x (AIN
), mullite ceramics (mullite), and alumina material properties.

本発明の応用範囲としては半導体装置で回路基板型のも
のからパッケージ型の構造を持つものま゛で全での装置
に適用可能である。
The scope of application of the present invention is applicable to all types of semiconductor devices, from those having a circuit board type to those having a package type structure.

本発明は従来アルミナセラミックスを用いた部分にムラ
イトセラミックスを用い、高熱伝導性の必要とされると
ころに使用されている金属、ベリリヤセラミックス、ま
たはアルミナセラミックスの代りに窒化アルミニウムセ
ラミックスを用いたものである。これらの材料には導体
パターン、リードフレーム、IC等を接合する必要があ
るが何れも通常用いられている同時焼成技術、厚膜ペー
スト技術、薄膜技術等を適用しメタライズおよびろう付
け、半田付、又はガラスソルダー等による接合を用いる
ことができる。
The present invention uses mullite ceramics in parts where alumina ceramics were conventionally used, and uses aluminum nitride ceramics in place of metal, beryllia ceramics, or alumina ceramics, which are used in areas where high thermal conductivity is required. be. It is necessary to bond conductor patterns, lead frames, ICs, etc. to these materials, and in all cases, commonly used co-firing technology, thick film paste technology, thin film technology, etc. are applied to metallize, braze, solder, etc. Alternatively, bonding using glass solder or the like can be used.

実施例 実施例1 第1図は本発明をP、G、A (ピングリッドアレイ)
に適用した実施例の断面図である。ムライト粉末に)4
gO又はCaO等の助剤を添加したものを、有機溶剤中
に結合剤と共に分散、溶解しスラリーとしドクターブレ
ード法により厚さ0.8 mmのシートを作成した。こ
れにWペーストにより所定のパターンを印刷後、5枚を
加熱圧着して積層した。その後所定の形状に打ちぬいて
1580°Cで2時間窒素と水素の混合ガス中で同時焼
成を行ないムライトセラミックス基板lを得た。
Examples Example 1 Figure 1 shows the present invention in P, G, A (pin grid array).
FIG. 3 is a cross-sectional view of an example applied to. (to mullite powder) 4
A slurry containing an auxiliary agent such as gO or CaO was dispersed and dissolved together with a binder in an organic solvent, and a sheet with a thickness of 0.8 mm was prepared using a doctor blade method. After printing a predetermined pattern on this with W paste, five sheets were heat-pressed and laminated. Thereafter, it was punched into a predetermined shape and co-fired at 1580° C. for 2 hours in a mixed gas of nitrogen and hydrogen to obtain a mullite ceramic substrate 1.

一方窒化アルミニウム粉末に助剤を添加したものをスラ
リー化し、ドクターブレー・ド法によりシートを作成し
た。これに−ペーストを用い所定のパターンを印刷後所
定の形状に打ちぬいて1800℃で2時間窒素ガスまた
は窒素と水素の混合ガス中で焼成を行ない窒化アルミニ
ウムセラミックス基板2を得た。
On the other hand, an auxiliary agent was added to aluminum nitride powder to form a slurry, and a sheet was made using the doctor blade method. After printing a predetermined pattern on this using paste, it was punched out into a predetermined shape and fired at 1800° C. for 2 hours in nitrogen gas or a mixed gas of nitrogen and hydrogen to obtain an aluminum nitride ceramic substrate 2.

こうして得られたムライト基板1、窒化アルミニウム基
板2にNi無電解メッキを施した後、ビン3と共に窒化
アルミニウム基板2をムライト基板2にAg−Cuろう
4により850°Cで10分間、窒素と水素の混合ガス
中で焼成し接合を行ない、Auの無電解メッキを施した
。この後半導体素子5をAu−8i共晶ろう6でマウン
トした。次いでAuワイヤー7を用いて半導体素子5と
導体との接続を加熱超音波ポンディング法で行なった。
After applying Ni electroless plating to the mullite substrate 1 and aluminum nitride substrate 2 obtained in this way, the aluminum nitride substrate 2 together with the bottle 3 was applied to the mullite substrate 2 using an Ag-Cu solder 4 at 850°C for 10 minutes with nitrogen and hydrogen. The joints were bonded by firing in a mixed gas of 1, and electroless Au plating was applied. Thereafter, the semiconductor element 5 was mounted with Au-8i eutectic solder 6. Next, using the Au wire 7, the semiconductor element 5 and the conductor were connected by a heating ultrasonic bonding method.

最後にムライトキャップ8をAu−5n共晶ろう9を用
いて、封止し複合P、G、Aを形成した。また窒化アル
ミニウム基板2について先にシートを打ちぬき焼成を行
った後W 、 MoまたはMasWペーストを用いパタ
ーン印刷し、1650°Cで窒素、水素混合ガス中で焼
付し、その後NiB無電解メッキを行ないムライト基板
1との接合を行っても良好なP、G、Aが得られた。
Finally, the mullite cap 8 was sealed using Au-5n eutectic solder 9 to form composites P, G, and A. Further, for the aluminum nitride substrate 2, a sheet is first punched and fired, then a pattern is printed using W, Mo or MasW paste, baked at 1650°C in a nitrogen and hydrogen mixed gas, and then NiB electroless plating is performed. Good P, G, and A were obtained even when bonding with mullite substrate 1 was performed.

実施例 2 第2図は本発明をチップキャリヤーを搭載した回路基板
に適用した実施例の断面図である。
Embodiment 2 FIG. 2 is a sectional view of an embodiment in which the present invention is applied to a circuit board on which a chip carrier is mounted.

実施例1と同様にシート化されたムライトセラミックス
、窒化アルミニウムセラミックスを所定形状に打ちぬき
焼成して基板を得た。
In the same manner as in Example 1, sheets of mullite ceramics and aluminum nitride ceramics were punched into predetermined shapes and fired to obtain substrates.

ムライト基板1にAgPdペーストを850℃、大気中
で焼付は導体パターン10を形成した。次いで抵抗体ペ
ーストにより抵抗体11を850℃大気中で形成し更に
オーバーコートガラス12を520°C1大気中で焼付
し旧Cサブアセンブリ基板13を得た。
A conductor pattern 10 was formed by baking AgPd paste on a mullite substrate 1 at 850° C. in the atmosphere. Next, a resistor 11 was formed using a resistor paste in an atmosphere of 850°C, and an overcoat glass 12 was baked in an atmosphere of 520°C to obtain an old C subassembly board 13.

同じく半導体素子5搭載用の窒化アルミニウム基板2に
AgPdペーストで850℃、大気中で導体パターンl
Oを形成した。これに半導体素子5をAu−5i共晶ろ
う6によりマウントし更にAuワイヤー7によりポンデ
ィングを行ってチップキャリヤー14を得た。上記旧C
サブアセンブリ基板13にチップキャリヤー14を接着
後樹脂15をコートして複合旧C基板を得た。
Similarly, a conductor pattern l is formed with AgPd paste on an aluminum nitride substrate 2 for mounting a semiconductor element 5 at 850°C in the atmosphere.
O was formed. A semiconductor element 5 was mounted on this using an Au-5i eutectic solder 6, and bonding was performed using an Au wire 7 to obtain a chip carrier 14. Old C above
After adhering the chip carrier 14 to the subassembly board 13, a resin 15 was coated to obtain a composite old C board.

実施例 3 第3図は本発明をサーディツプ(CER−DIR)に適
用した実施例の断面図である。
Embodiment 3 FIG. 3 is a sectional view of an embodiment in which the present invention is applied to a cerdip (CER-DIR).

ムライト粉末に助剤を添加したものを水、結合剤と共に
スラリー化しスプレードライ法により造粒した。 これ
をプレス成形した後1580°Cで2時間焼成して更に
封止ガラス16を印刷焼付けでムライトセラミックスの
キャップ8を得た。
Mullite powder with auxiliary agents added thereto was made into a slurry with water and a binder, and granulated by a spray drying method. After press-molding this, it was fired at 1580°C for 2 hours, and a sealing glass 16 was printed and baked to obtain a cap 8 made of mullite ceramics.

また窒化アルミニウム粉末に助剤を添加したものを有機
溶剤及び結合剤と共にスラリー化しスプレードライ法に
より造粒を行ない、これをプレス成形した後1800℃
で2吟間窒素ガス中で焼成した。更に封止ガラス16を
印刷焼付けその上にリードフレーム17を加熱圧着し固
定して窒化アルミニウムベース18ヲ得た。
In addition, aluminum nitride powder with auxiliary agents is made into a slurry with an organic solvent and a binder, granulated by a spray drying method, and then press-molded at 1800°C.
It was fired in nitrogen gas for 2 minutes. Furthermore, a sealing glass 16 was printed and baked, and a lead frame 17 was heat-pressed and fixed thereon to obtain an aluminum nitride base 18.

このベース1日のキャビティ部にAuペーストを滴下し
850°C1空気中で焼成後IC素子5をAu−5i共
晶ろう6でマウントした。次いでAuワイヤー7でIC
素子5とリードフレーム17をAuワイヤーポンディン
グ7した。最後にベース18とキャンプ8を加圧封止し
て気密構造とし複合セラミックスのサーディツプを得た
Au paste was dropped into the cavity of this base and baked in air at 850 DEG C., after which the IC element 5 was mounted with Au-5i eutectic solder 6. Next, connect the IC with Au wire 7.
The element 5 and the lead frame 17 were bonded with Au wire 7. Finally, the base 18 and the camp 8 were sealed under pressure to form an airtight structure and a composite ceramic cerdip was obtained.

ハ0発明の詳細 な説明したように本発明によれば半導体装置において放
熱性に優れ大型素子の固定できる複合セラミックス基板
を安価に提供することができる。
As described in detail, according to the present invention, it is possible to provide, at low cost, a composite ceramic substrate that has excellent heat dissipation properties in semiconductor devices and is capable of fixing large-sized elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明をP、G、A (ピングリッドアレイ)
に適用した実施例の断面図である。 第2図は本発明をチップキャリヤーを搭載した回路基板
に適用した実施例の断面図である。 第3図は本発明をサーディツプ(CER−DIP)に適
用した実施例の断面図である。 1、ムライトセラミックス基板 2.窒化アルミニウム
セラミックス基板  3.ヒン 4、Ag−Cuろう5.半導体素子6.Au−5i共晶
ろう7、 Auワイヤー 8.キャップ9.Au−5n
共晶ろう10、導体パターン  11.抵抗体 12、オーバーコートガラス 13、8ICサブアツセンブリ基板 14、チップキャリヤ 15.樹脂 16.封市ガラス
17、リードフレーム18.窒化アルミニウムベース特
許出願人  鳴海製陶株式会社 第1図 第2図 第3図
Figure 1 shows the present invention as P, G, A (pin grid array).
FIG. 3 is a cross-sectional view of an example applied to. FIG. 2 is a sectional view of an embodiment in which the present invention is applied to a circuit board on which a chip carrier is mounted. FIG. 3 is a sectional view of an embodiment in which the present invention is applied to a CER-DIP. 1. Mullite ceramics substrate 2. Aluminum nitride ceramic substrate 3. Hin4, Ag-Cu wax5. Semiconductor element 6. Au-5i eutectic solder 7, Au wire 8. Cap9. Au-5n
Eutectic solder 10, conductor pattern 11. Resistor 12, overcoat glass 13, 8IC subassembly board 14, chip carrier 15. Resin 16. Sealed glass 17, lead frame 18. Aluminum nitride base patent applicant Narumi Seito Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体素子を備えムライトセラミックス及び窒化アルミ
ニウムセラミックスを用いた半導体装置に於て少くとも
該半導体素子を固定する部分が窒化アルミニウムセラミ
ックスで構成されていることを特徴とする複合セラミッ
クス基板
A composite ceramic substrate comprising a semiconductor device including a semiconductor element and using mullite ceramics and aluminum nitride ceramics, characterized in that at least a portion for fixing the semiconductor element is made of aluminum nitride ceramics.
JP62064940A 1987-03-19 1987-03-19 Composite ceramic substrate Expired - Lifetime JP2652014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62064940A JP2652014B2 (en) 1987-03-19 1987-03-19 Composite ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62064940A JP2652014B2 (en) 1987-03-19 1987-03-19 Composite ceramic substrate

Publications (2)

Publication Number Publication Date
JPS63229843A true JPS63229843A (en) 1988-09-26
JP2652014B2 JP2652014B2 (en) 1997-09-10

Family

ID=13272530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62064940A Expired - Lifetime JP2652014B2 (en) 1987-03-19 1987-03-19 Composite ceramic substrate

Country Status (1)

Country Link
JP (1) JP2652014B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138426A (en) * 1988-09-22 1992-08-11 Ngk Insulators, Ltd. Ceramic joined body
US5885853A (en) * 1990-06-22 1999-03-23 Digital Equipment Corporation Hollow chip package and method of manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617647A (en) * 1984-06-21 1986-01-14 Toshiba Corp Circuit substrate
JPS61230204A (en) * 1985-04-05 1986-10-14 株式会社日立製作所 Ceramic substrate and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617647A (en) * 1984-06-21 1986-01-14 Toshiba Corp Circuit substrate
JPS61230204A (en) * 1985-04-05 1986-10-14 株式会社日立製作所 Ceramic substrate and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138426A (en) * 1988-09-22 1992-08-11 Ngk Insulators, Ltd. Ceramic joined body
US5885853A (en) * 1990-06-22 1999-03-23 Digital Equipment Corporation Hollow chip package and method of manufacture

Also Published As

Publication number Publication date
JP2652014B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
US4827082A (en) Ceramic package
JP2602372B2 (en) Method of brazing metallized components to ceramic substrate
JPH0676790B2 (en) Igniter
JPS63229843A (en) Composite ceramic substrate
JP2517024B2 (en) Ceramic package and its manufacturing method
JP2000183253A (en) Package for housing semiconductor element
JP2516981B2 (en) Ceramic package and method of manufacturing the same
JPH05251834A (en) Composite board for wiring use
JP2000340716A (en) Wiring substrate
JPH06196585A (en) Circuit board
JPH0794624A (en) Circuit board
JP2005252121A (en) Package for storing semiconductor element and method for manufacturing the same
JPS61245555A (en) Terminal connecting structure for semiconductor
JP2003197803A (en) Semiconductor package
JPH11289037A (en) Metal plate for heat dissipation and package for electronic component using the same
JP3973727B2 (en) Ceramic circuit board
JPH06196584A (en) Metallized board module
JPS63122253A (en) Seminconductor package
JPH11297909A (en) Metallic plate for radiating heat and package for electronic parts using it
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JPS60120592A (en) Ceramic circuit board and method of producing ceramic circuit board
JPH0412682Y2 (en)
JPH0272696A (en) Ceramics circuit board
JPH0448757A (en) Package for semiconductor device
JPH0794625A (en) Multilayer circuit board and production thereof