JPH03154636A - Deodorization catalyst - Google Patents

Deodorization catalyst

Info

Publication number
JPH03154636A
JPH03154636A JP1292278A JP29227889A JPH03154636A JP H03154636 A JPH03154636 A JP H03154636A JP 1292278 A JP1292278 A JP 1292278A JP 29227889 A JP29227889 A JP 29227889A JP H03154636 A JPH03154636 A JP H03154636A
Authority
JP
Japan
Prior art keywords
manganese
silver
catalyst
oxide
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1292278A
Other languages
Japanese (ja)
Other versions
JP2971081B2 (en
Inventor
Noriko Watanabe
紀子 渡辺
Hisao Yamashita
寿生 山下
Akira Kato
明 加藤
Yoshio Matsuo
松尾 宣雄
Hiroshi Akama
弘 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP1292278A priority Critical patent/JP2971081B2/en
Priority to GB9024566A priority patent/GB2238486B/en
Priority to FR9013985A priority patent/FR2654364B1/en
Priority to KR1019900018229A priority patent/KR0154982B1/en
Publication of JPH03154636A publication Critical patent/JPH03154636A/en
Priority to KR1019980013982A priority patent/KR0156094B1/en
Application granted granted Critical
Publication of JP2971081B2 publication Critical patent/JP2971081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2007Removing cooking fumes from oven cavities
    • F24C15/2014Removing cooking fumes from oven cavities with means for oxidation of cooking fumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K17/00Other equipment, e.g. separate apparatus for deodorising, disinfecting or cleaning devices without flushing for toilet bowls, seats or covers; Holders for toilet brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8606Removing sulfur compounds only one sulfur compound other than sulfur oxides or hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To remove malodorous gases and harmful gases sufficiently even if the gases to be treated are relatively in low temperature by carrying and having manganese oxide and a composite oxide of silver and manganese as active components in an inorganic oxide support. CONSTITUTION:A deodorization catalyst is carried on a porous support of an inorganic oxide having at least 1m<2>/g specific surface area and contains manganese oxide and a composite oxide of silver and manganese such as AgMn2 O4 AgMnO2, AgMnO4, AgMnO, Ag2MnO, Ag2Mn8O16 as active components. The atomic ratio of Ag and Mn in the active components ranges (1:99)-(80:20)=Ag:Mn. The catalyst further contains Ag and/or silver oxide as an active component. Ceramics of a honeycomb structure, a flat substrate, or a met or a metal structure is coated with those active components. In this way, the catalyst has high removal efficiency of malodorous gases and harmful gases and sufficient deodorization function even if the gas to be treated is relatively in low temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な活性成分を有する脱臭触媒に係わり、
特に、オーブン、グリル、電子レンジ等の調理器で、調
理時に発生する煙、悪臭成分を含むガス等の有害ガス、
悪臭ガスを、接触燃焼で除去するための脱臭触媒に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a deodorizing catalyst having a novel active ingredient,
In particular, harmful gases such as smoke and gas containing malodorous substances generated during cooking with cooking devices such as ovens, grills, and microwave ovens,
The present invention relates to a deodorizing catalyst for removing malodorous gases through catalytic combustion.

〔従来の技術〕[Conventional technology]

工場等から排出される有害ガス、悪臭ガスによる大気汚
染、河川の汚染、交通機関による騒音等の生活環境に関
する苦情や問題は、数十年前から、たえることなくおこ
っている。特に近年、住宅の過密化、快適な居住空間を
求めるといったライフスタイルの変化に伴い、家庭内に
おける、臭いと音の問題がクローズアップされてきた。
Complaints and problems related to the living environment, such as air pollution caused by harmful and foul-smelling gases emitted from factories, river pollution, and noise from transportation, have been occurring continuously for several decades. Particularly in recent years, with changes in lifestyles such as overcrowding of houses and the desire for more comfortable living spaces, the problem of odors and sounds in the home has come into focus.

臭いの発生源として考えられるのは、主に、食品9食品
の調理時に生成される煙や悪臭ガス、生ゴミ、トイレ等
である。この中で、調理時に発生する煙や悪臭ガスを除
去する方法は、換気扇による局所排気で対応してきた。
Possible sources of odor are mainly smoke generated during cooking of foods, malodorous gases, garbage, toilets, etc. Among these, the method of removing smoke and foul-smelling gases generated during cooking has been to use local exhaust ventilation using ventilation fans.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の方法では調理器から室内に放出され
た煙、悪臭ガスは、室外に完全に排気されず、室内に残
存、付着し、生活する人に不快感を与えた。また、調理
器から放出された煙、悪臭力スは、室外に排出されただ
けで、新たに排出された場所で同様な苦情が発生する。
However, in the above-mentioned conventional method, the smoke and foul-smelling gas released into the room from the cooker are not completely exhausted to the outside, and remain and adhere to the room, causing discomfort to the people living there. In addition, even if the smoke and foul odor emitted from the cooker are simply discharged outside, similar complaints will occur in new locations.

そこで、本発明は、有害ガスや悪臭ガス、特に食品の調
理時に発生するガス中に含まれる煙や悪臭を、除去する
ことができる脱臭触媒を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a deodorizing catalyst that can remove harmful gases and malodorous gases, particularly smoke and malodors contained in gases generated during food cooking.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、無機酸化物担
体に担持され、活性成分として酸化マンガン、及び銀と
マンガンの複合酸化物を含有していることを特徴とする
脱臭触媒としたものである。
In order to achieve the above object, the present invention provides a deodorizing catalyst that is supported on an inorganic oxide carrier and contains manganese oxide and a composite oxide of silver and manganese as active ingredients. be.

上記脱臭触媒において、活性成分は酸化マンガン、及び
銀とマンガンの複合酸化物以外に、銀及び/又は酸化銀
を含有することができる。
In the above deodorizing catalyst, the active component can contain silver and/or silver oxide in addition to manganese oxide and a composite oxide of silver and manganese.

銀とマンガンの複合酸化物としては、AgMn2AgM
n204A、 AgMn0n、 AgMn0  、 A
gJnOl AgJneO+sから選ばれた1以上のも
のである。また、触媒の活性成分中の銀とマンガンの原
子比はAg:Mn1:99〜80:20、好ましくは、
5:95〜35:65の範囲である。
As a composite oxide of silver and manganese, AgMn2AgM
n204A, AgMn0n, AgMn0, A
One or more selected from gJnOl AgJneO+s. Further, the atomic ratio of silver and manganese in the active component of the catalyst is Ag:Mn 1:99 to 80:20, preferably,
The range is from 5:95 to 35:65.

上記脱臭触媒において、無機酸化物担体としては、T−
アルミナ、Tie、、ゼオライト等に代表される比表面
積1 m”7g以上の多孔質担体が好適に使用できる。
In the above deodorizing catalyst, the inorganic oxide carrier is T-
Porous carriers having a specific surface area of 1 m'' and 7 g or more, such as alumina, Tie, zeolite, etc., can be suitably used.

なぜならば、担体の比表面積が小、さいと担持した脱臭
触媒が凝集してしまうからである。比表面積の上限値は
1000 m2/gとすることが望ましい。特に好適な
範囲は50〜1000 m2/g テアル。
This is because if the specific surface area of the carrier is small or small, the supported deodorizing catalyst will aggregate. The upper limit of the specific surface area is preferably 1000 m2/g. A particularly preferred range is 50 to 1000 m2/g theal.

また、上記脱臭触媒は、セラミックス或は金属の構造体
上にコートして脱臭触媒構造体としても使用でき、これ
らの構造体としてはハニカム形状、板状基材、金網等が
用いられる。
Further, the deodorizing catalyst described above can also be used as a deodorizing catalyst structure by coating it on a ceramic or metal structure, and these structures include honeycomb shapes, plate-like substrates, wire meshes, and the like.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明の触媒は、硝酸銀と硝酸マンガン等の水溶性マン
ガン塩の混合水溶液に、アンモニア。
The catalyst of the present invention is prepared by adding ammonia to a mixed aqueous solution of water-soluble manganese salts such as silver nitrate and manganese nitrate.

炭酸アルカリ、水酸化アルカリ等の中和剤の水溶液を加
えて生成した共沈物を乾燥後、加熱酸化することにより
得られる。この時、中和剤とともに過マンガン酸カリ等
の酸化剤を加え、沈殿生成時にマンガンを酸化してもよ
い。または、上記の方法で銀とマンガンの沈殿物を別々
に生成させた後、それらを混練して、乾燥後、加熱酸化
してもよい。シュウ酸銀、炭酸銀、硝酸銀等の銀塩や酸
化銀と、酢酸マンガン、シュウ酸マンガン、硝酸マンガ
ン等のマンガン塩や酸化マンガンを湿式あるいは乾式で
混合、混練し、熱分解する方法でも得られる。
It is obtained by adding an aqueous solution of a neutralizing agent such as an alkali carbonate or an alkali hydroxide, drying the coprecipitate, and then heating and oxidizing it. At this time, an oxidizing agent such as potassium permanganate may be added together with a neutralizing agent to oxidize manganese during precipitation. Alternatively, silver and manganese precipitates may be generated separately by the above method, then kneaded, dried, and then heated and oxidized. It can also be obtained by mixing and kneading silver salts or silver oxide such as silver oxalate, silver carbonate, or silver nitrate with manganese salts or manganese oxide such as manganese acetate, manganese oxalate, or manganese nitrate in a wet or dry process, and then thermally decomposing the mixture. .

これらの触媒は、最終的には200℃以上900℃以下
、好ましくは300〜600tで空気の存在下で加熱処
理して得られる。
These catalysts are finally obtained by heat treatment at 200° C. or higher and 900° C. or lower, preferably 300 to 600 tons, in the presence of air.

本発明の触媒は、活性成分として銀、マンガン元素の他
に鉄、コバルト、ニッケル、銅等の遷移金属、白金、パ
ラジウム等の貴金属を含むことも可能である。
The catalyst of the present invention can also contain transition metals such as iron, cobalt, nickel, and copper, and noble metals such as platinum and palladium in addition to silver and manganese elements as active components.

このようにして製造した活性成分を粉末X線回折により
分析した。その結果を第2図に示す。
The active ingredient thus prepared was analyzed by powder X-ray diffraction. The results are shown in FIG.

回折ピークは全体的にブロードである。活性成分として
含まれる銅元素から予想される金属のAg、酸化物のA
g2Oに特有のピークは、この回折パターン中には認め
られない。一方、活性成分として含まれるマンガン元素
は、酸化マンガンMn20.のかたちで同定された。ま
た、非常にブロードであるが、銀とマンガンの複合酸化
物であるAgMn204のピークも認められた。以上の
ように、Ag、 Ag2Oのピークが認められないこと
から、銀元素は、単独の酸化物あるいは金属の状態で存
在しているのではなく、マンガンと複合酸化物を形成し
、酸化マンガン中に分散していると考えられる。
The diffraction peaks are generally broad. Metallic Ag and oxide A expected from the copper element contained as an active ingredient
No peaks specific to g2O are observed in this diffraction pattern. On the other hand, the manganese element contained as an active ingredient is manganese oxide Mn20. It was identified in the form of Furthermore, a very broad peak of AgMn204, which is a composite oxide of silver and manganese, was also observed. As mentioned above, since the peaks of Ag and Ag2O are not observed, the silver element does not exist in the state of a single oxide or metal, but forms a composite oxide with manganese, and is present in the manganese oxide. It is thought that it is distributed in

活性成分の銀とマンガンの組成比によっては(銀含有量
が多い場合)、脱臭触媒のX線回折パターン中に、Ag
あるいはAg2Oに特有のピークを含む場合もある。し
かし、この場合のAg。
Depending on the composition ratio of active ingredients silver and manganese (when the silver content is high), Ag may appear in the X-ray diffraction pattern of the deodorizing catalyst.
Alternatively, it may contain a peak specific to Ag2O. However, in this case Ag.

Ag2Oのピーク強度は、触媒中に含有されている銀総
量から予想されるものよりも非常に小さい。
The peak intensity of Ag2O is much lower than expected from the total amount of silver contained in the catalyst.

従って、このことからも、銀はマンガンとの複合酸化物
を形成していると言える。
Therefore, from this fact as well, it can be said that silver forms a composite oxide with manganese.

本発明の、銀とマンガンを主成分とする酸化物から成る
触媒は、この触媒単独で使用する他にアルミナ、チタニ
ア、ゼオライト等の多孔質担体、コージェライト等のセ
ラミックス担体。
The catalyst of the present invention, which is composed of an oxide containing silver and manganese as main components, can be used alone or in a porous carrier such as alumina, titania, or zeolite, or a ceramic carrier such as cordierite.

SUS等の金属担体上に担持して使用しても触媒性能を
十分発揮する。また上記の担体に担持した後、さらにこ
れを、セラミックス、金属等の担体上に、コーティング
等の方法で担持してもかまわない。
Even when used on a metal carrier such as SUS, it exhibits sufficient catalytic performance. Further, after being supported on the above-mentioned carrier, it may be further supported on a carrier such as ceramics or metal by a method such as coating.

これらの触媒の製造法は、前述した方法で得られた銀と
マンガンを含む沈殿物あるいはそれを熱処理後の酸化物
あるいは銀、マンガンの塩類を、セラミック担体あるい
はその前駆体ゾルと混合、混練した後加熱処理するか、
セラミックあるいは金属担体上に塗布した後加熱処理す
るなどである。また、水溶性の銀塩、マンガン塩の混合
水溶液をセラミック担体、金属担体に含浸あるいは塗布
した後、乾燥、加熱処理して、銀とマンガンを主成分と
する触媒を析出させてもよい。
The method for producing these catalysts involves mixing and kneading the precipitate containing silver and manganese obtained by the method described above, or the oxide or salts of silver and manganese after heat treatment, with a ceramic carrier or its precursor sol. Post-heat treatment or
For example, it is coated on a ceramic or metal carrier and then subjected to heat treatment. Alternatively, a ceramic carrier or a metal carrier may be impregnated or coated with a mixed aqueous solution of water-soluble silver salts and manganese salts, and then dried and heat-treated to precipitate a catalyst containing silver and manganese as main components.

上記の方法で製造される触媒の形状は、粉末を成形した
ペレット状、ハニカム状、シート状。
The shapes of the catalysts produced by the above method are pellets formed from powder, honeycomb shapes, and sheet shapes.

板状、三次元発泡体等が適用される。Plates, three-dimensional foams, etc. are applicable.

〔作用〕[Effect]

本発明の触媒は、銀とマンガンを主成分とする触媒から
成りその触媒が銀とマンガンの複合酸化物と、酸化マン
ガンの両方を含むことを特徴とする。酸化マンガンは触
媒の熱処理温度によりMna03. Mn5L 、 M
nLまたはこれらの混合物の形態をとる。触媒中のマン
ガンの一部は銀と複合酸化物を形成する。複合酸化物の
形態も、熱処理温度により、AgMn20+ 、 Ag
MnO2,AgMn01゜AgMnO、Ag1Mn0.
^gzMne口、、のいずれかまたはこれらの混合物の
形態をとる。特に、AgMn01口、。
The catalyst of the present invention is characterized in that it is composed of a catalyst containing silver and manganese as main components, and that the catalyst contains both a composite oxide of silver and manganese and manganese oxide. Manganese oxide has Mna03.0 depending on the heat treatment temperature of the catalyst. Mn5L, M
nL or a mixture thereof. A part of the manganese in the catalyst forms a composite oxide with silver. The form of the composite oxide also varies depending on the heat treatment temperature, such as AgMn20+, Ag
MnO2, AgMn01°AgMnO, Ag1Mn0.
It takes the form of either ^gzMne口, , or a mixture thereof. In particular, AgMn01 mouth.

AgMn02が好ましい。AgMn02 is preferred.

複合酸化物となることで、銀の酸化状態が保たれること
、銀が高分散されて凝集が抑制されること、さらに複合
酸化物が酸化マンガンと混合されることで銀が高分散さ
れることにより、触媒は高活性を示す。触媒中のマンガ
ンがすべて複合酸化物を形成すると、触媒は高活性を示
さない。なぜなら、複合酸化物として結晶成長が進んで
、結果的にそれは銀の凝集へとつながるからである。酸
化マンガンと混合されることで、複合酸化物の結晶成長
もおさえられる。
By forming a composite oxide, the oxidation state of silver is maintained, silver is highly dispersed and agglomeration is suppressed, and when the composite oxide is mixed with manganese oxide, silver is highly dispersed. As a result, the catalyst exhibits high activity. If all the manganese in the catalyst forms a composite oxide, the catalyst will not exhibit high activity. This is because crystal growth progresses as a composite oxide, which eventually leads to agglomeration of silver. By mixing it with manganese oxide, crystal growth of the composite oxide can also be suppressed.

触媒中の銀はすべて複合酸化物とならずに、銀または酸
化銀の形態で存在してもかまわない。
All of the silver in the catalyst may not be in the form of a composite oxide, but may exist in the form of silver or silver oxide.

なぜなら、それらは酸化マンガン中に混合されているこ
とで、それらが単独で存在するよりも熱的に安定で高活
性となるからである。
This is because when mixed in manganese oxide, they become more thermally stable and highly active than when they exist alone.

このように、本発明の触媒は、酸化物中に銀とマンガン
の複合酸化物と酸化マンガンの両方を含むことで、銀が
高分散され、特にオーブン。
As described above, the catalyst of the present invention contains both a composite oxide of silver and manganese and manganese oxide in the oxide, so that silver is highly dispersed and is particularly suitable for ovens.

グリル、電子レンジで食品を調理する時に発生する多種
多様の成分を含む悪臭ガスを脱臭するのに有効である。
It is effective in deodorizing foul-smelling gas containing a wide variety of components that is generated when cooking food on a grill or in a microwave oven.

すなわち、本発明の触媒は、オーブン、グリル、レンジ
等の内部で、調理時に発生する悪臭成分を含むガスが接
触する所、すなわちガスの排気通路やその人口、出口等
、食品の調理に支障のない場所に設置されることで、そ
の性能を有効に発揮する。
In other words, the catalyst of the present invention can be used in places inside ovens, grills, ranges, etc. that come into contact with gases containing malodorous components generated during cooking, such as gas exhaust passages, their openings, and outlets that may interfere with food cooking. By being installed in a location where there is no

本発明の触媒は、室温以上好ましくは100℃以上の反
応温度で有効に作用する。調理温度によって発生する悪
臭を含むガス温度がこの温度にみたない場合は、ヒータ
等を設置することで触媒が有効に作用する温度域を保つ
ことが必要である。
The catalyst of the present invention acts effectively at a reaction temperature of room temperature or higher, preferably 100°C or higher. If the temperature of the gas containing the odor generated due to the cooking temperature does not reach this temperature, it is necessary to install a heater or the like to maintain the temperature range in which the catalyst works effectively.

〔実施例〕〔Example〕

以下、本発明を実施例で具体的に説明するが、本発明は
これらの実施例に限定されない。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 硝酸銀29.3g、硝酸マンガン穴水和物97.6gを
蒸留水に溶解し、400 ccの混合水溶液とした。こ
の混合水溶液に、比表面積150 m’/gで100セ
ル/1nch2のT−アルミナハニカムを2分間浸せき
した後、120℃で乾燥してから、空気雰囲気、500
℃で1時間加熱処理した。
Example 1 29.3 g of silver nitrate and 97.6 g of manganese nitrate hole hydrate were dissolved in distilled water to prepare 400 cc of a mixed aqueous solution. A T-alumina honeycomb with a specific surface area of 150 m'/g and 100 cells/1 nch2 was immersed in this mixed aqueous solution for 2 minutes, dried at 120°C, and then heated in an air atmosphere at 500°C.
Heat treatment was performed at ℃ for 1 hour.

この操作を2回おこなって完成触媒とした。この触媒の
Ag:Mn  (原子比)=30ニア0である。
This operation was repeated twice to obtain a completed catalyst. The Ag:Mn (atomic ratio) of this catalyst was 30 near 0.

実施例2 硝酸銀8.90g、硝酸マンガン穴水和物134.4g
を用いる以外は、実施例1と全く同様にして触媒を調製
した。この触媒のAg:Mn =10 : 90である
Example 2 Silver nitrate 8.90g, manganese nitrate hole hydrate 134.4g
A catalyst was prepared in exactly the same manner as in Example 1, except for using. The Ag:Mn ratio of this catalyst was 10:90.

実施例3 硝酸銀5.31g、硝酸マンガン六水和物80.4g 
Example 3 Silver nitrate 5.31g, manganese nitrate hexahydrate 80.4g
.

比表面積250 m2/gのT−アルミナ粉末100g
、蒸留水40ccを約1時間混練した。このスラリーを
120℃で乾燥後500℃で2時間焼成した。
100g of T-alumina powder with a specific surface area of 250 m2/g
, and 40 cc of distilled water were kneaded for about 1 hour. This slurry was dried at 120°C and then fired at 500°C for 2 hours.

この酸化物を200 mesh以下に分級し、バインダ
ーと蒸留水を加えてスラリーとした。100セル/1n
ch2のコージェライトハニカムにこのスラリーをコー
ティングした後、120℃で乾燥し、500℃で2時間
焼成した。
This oxide was classified into 200 mesh or less, and a binder and distilled water were added to form a slurry. 100 cells/1n
After coating a ch2 cordierite honeycomb with this slurry, it was dried at 120°C and fired at 500°C for 2 hours.

比較例1 硝酸銀79.41 g用い、硝酸マンガン六水和物を使
用しないこと以外は、実施例1と全く同様にして、銀触
媒を調製した。
Comparative Example 1 A silver catalyst was prepared in exactly the same manner as in Example 1, except that 79.41 g of silver nitrate was used and manganese nitrate hexahydrate was not used.

比較例2 硝酸銀を使用しないこと、硝酸マンガン穴水和物183
.27 gを用いること以外は実施例2と全く同様にし
て酸化マンガン触媒を調製した。
Comparative Example 2 Not using silver nitrate, manganese nitrate hole hydrate 183
.. A manganese oxide catalyst was prepared in exactly the same manner as in Example 2 except that 27 g was used.

比較例3 硝酸銀48.2gをlIlの蒸留水に溶解した溶液にア
ンモニア水を滴下し生成したゾルをろ過、乾燥後500
℃で2時間焼成し銀触媒粉をえた。
Comparative Example 3 Aqueous ammonia was added dropwise to a solution of 48.2 g of silver nitrate dissolved in lIl of distilled water, the resulting sol was filtered, and after drying
It was calcined at ℃ for 2 hours to obtain silver catalyst powder.

また、硝酸マンガン穴水和物75.6gを11の蒸留水
に溶解した溶液にアンモニア水を滴下し生成したゾルを
ろ過、乾燥後500℃で2時間焼成し酸化マンガンを得
た。銀触媒と酸化マンガンと比表面積250 m’/g
のT−アルミナ粉末を重量比3ニア:90で混合して、
湿式混練した。
Further, aqueous ammonia was added dropwise to a solution of 75.6 g of manganese nitrate pore hydrate dissolved in distilled water in step 11, and the resulting sol was filtered, dried, and then calcined at 500° C. for 2 hours to obtain manganese oxide. Silver catalyst, manganese oxide and specific surface area 250 m'/g
T-alumina powder was mixed at a weight ratio of 3:90,
Wet kneading.

これを乾燥後、プレス成形し、40〜138meshに
分級し触媒とした。この触媒のX線回折からは、T−ア
ルミナ、 Ag、 MnzLのピークが3忍められた。
After drying, this was press-molded and classified into 40 to 138 mesh to obtain a catalyst. The X-ray diffraction of this catalyst revealed three peaks for T-alumina, Ag, and MnzL.

以上、実施例1.実施例2.実施例3.比較例1.比較
例2.比較例3の触媒について、Sv:aooooh−
’、反応ガス:アセトアルデヒド60ppm、)リメチ
ルアミン60 PPM 、空気ベースの条件で、反応温
度100,200゜300℃における除去率を測定した
。その結果を第1図に示す。
Above is the example 1. Example 2. Example 3. Comparative example 1. Comparative example 2. Regarding the catalyst of Comparative Example 3, Sv:aoooooh-
Removal rates were measured at reaction temperatures of 100, 200° C. and 300° C. under the following conditions: reaction gas: 60 ppm acetaldehyde, 60 ppm alimethylamine, and air-based conditions. The results are shown in FIG.

実施例1.2.3の触媒は、比較例1,2゜3の触媒に
比べて除去率が高く、特に100〜300℃の間での性
能が高い。従って調理温度が低く発生する悪臭ガス温度
が低くても、有効な脱臭性能を示す。また、ヒータ等で
悪臭ガスや触媒体を加熱し、反応温度を高く保つような
システムの場合、ヒータ昇温途中の低温例でも、ガスが
スリップすることなく、脱臭効果が発揮できる。
The catalysts of Examples 1, 2, and 3 have higher removal rates than the catalysts of Comparative Examples 1, 2, and 3, and have particularly high performance between 100 and 300°C. Therefore, even if the cooking temperature is low and the temperature of the malodorous gas generated is low, it exhibits effective deodorizing performance. In addition, in the case of a system in which the reaction temperature is kept high by heating the malodorous gas and the catalyst with a heater, the deodorizing effect can be exerted without the gas slipping even at low temperatures during heating of the heater.

実施例4 硝酸銀25.48g、硝酸マンガン穴水和物43゜06
gを21の蒸留水に溶解して混合水溶液とした。濃アン
モニア水を2倍体積の蒸留水で希釈したアンモニア水を
、攪拌しながら上記混合水溶液に滴下し、沈殿を生成し
た。この沈殿物をデカンテーションにより2回洗浄後、
吸引ろ過して、120℃で乾燥した。これを、300℃
で2時間焼成し、触媒とした。
Example 4 Silver nitrate 25.48g, manganese nitrate hole hydrate 43°06
g was dissolved in 21 distilled water to prepare a mixed aqueous solution. Ammonia water obtained by diluting concentrated ammonia water with twice the volume of distilled water was added dropwise to the above mixed aqueous solution while stirring to form a precipitate. After washing this precipitate twice by decantation,
It was filtered under suction and dried at 120°C. Heat this to 300℃
The mixture was calcined for 2 hours and used as a catalyst.

得られた触媒を粉末X線回折により分析した。The obtained catalyst was analyzed by powder X-ray diffraction.

その結果をX線回折パターンとして第2図に示す。第2
図においてはMn2Lに特有なピーク、マはAgMnJ
4に特有なピークを示す。これよりこの触媒は、酸化マ
ンガンと、銀とマンガンの複合酸化物を含むことがわか
る。
The results are shown in FIG. 2 as an X-ray diffraction pattern. Second
In the figure, the peak unique to Mn2L is shown, and the mark is AgMnJ.
4 shows a unique peak. This shows that this catalyst contains manganese oxide and a composite oxide of silver and manganese.

実施例5 硝酸マンガン六水和物のかわりに酢酸マンガン四水和物
を68.66 g使用する以外は実施例4と同様にコー
ティング用スラリーを調製した。
Example 5 A coating slurry was prepared in the same manner as in Example 4, except that 68.66 g of manganese acetate tetrahydrate was used instead of manganese nitrate hexahydrate.

これをアルミナを溶射したSUSの金網にコーティング
して、乾燥後、500℃で2時間焼成した。この金網型
触媒を22枚重ね合わせ、SV:30000h−’、反
応ガス二アセトアルデヒド50ppm、)リメチルアミ
ン50 ppm 、空気ベースの条件で反応温度250
℃における除去率を測定した。この時、アセトアルデヒ
ドは80%、トリメチルアミンは90%の除去率であっ
た。この金網型触媒は、酸化物のみから成る触媒に比べ
て、熱伝導率が高いため、反応ガスやヒータ等で触媒層
の温度がはやく上昇しシステム的にも有効である。
This was coated on a SUS wire mesh sprayed with alumina, dried, and then fired at 500° C. for 2 hours. 22 sheets of this wire mesh type catalyst were piled up, SV: 30000h-', reaction gas diacetaldehyde 50ppm, )limethylamine 50ppm, reaction temperature 250 under air-based conditions.
The removal rate at °C was measured. At this time, the removal rate was 80% for acetaldehyde and 90% for trimethylamine. This wire mesh type catalyst has higher thermal conductivity than a catalyst made only of oxides, so the temperature of the catalyst layer can be quickly raised by reaction gas, a heater, etc., and it is also effective from a system standpoint.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の触媒は、悪臭ガス・有害ガ
スの除去率が高く、処理ガスの温度が比較的低温でも有
効な脱臭性能を示す。
As described above, the catalyst of the present invention has a high removal rate of malodorous gases and harmful gases, and exhibits effective deodorizing performance even when the temperature of the treated gas is relatively low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1.2.3及び比較例1゜2.3触媒
の各反応温度における、アセトアルデヒドとトリメチル
アミン除去率を示したグラフ、第2図は、実施例4触媒
のX線回折パターンを示した回折図である。
Figure 1 is a graph showing acetaldehyde and trimethylamine removal rates at each reaction temperature for Example 1.2.3 and Comparative Example 1 and 2.3 catalysts. Figure 2 is an X-ray diffraction analysis of Example 4 catalyst. It is a diffraction diagram showing a pattern.

Claims (1)

【特許請求の範囲】 1、無機酸化物担体に担持され、活性成分として酸化マ
ンガン、及び銀とマンガンの複合酸化物を含有している
ことを特徴とする脱臭触媒。 2、請求項1記載において、活性成分として更に銀及び
/又は酸化銀を含有していることを特徴とする脱臭触媒
。 3、請求項1記載において、銀とマンガンの複合酸化物
は、AgMn_2O_4、AgMnO_2、AgMnO
_4、AgMnO、Ag_2MnO、Ag_2Mn_6
O_1_6から選ばれる1以上であることを特徴とする
脱臭触媒。 4、請求項1記載において、触媒の活性成分中の銀とマ
ンガンの原子比が、Ag:Mn=1:99〜80:20
の範囲にあることを特徴とする脱臭触媒。 5、請求項1記載において、無機酸化物担体が、比表面
積が1m^2/g以上の多孔質担体であることを特徴と
する脱臭触媒。 6、請求項1記載の脱臭触媒を、セラミックスあるいは
金属構造体にコートしたことを特徴とする脱臭触媒構造
体。 7、請求項6記載において、セラミックスあるいは金属
構造体が、ハニカム構造体、板状基材、金網から選ばれ
たものであることを特徴とする脱臭触媒構造体。
[Claims] 1. A deodorizing catalyst supported on an inorganic oxide carrier and containing manganese oxide and a composite oxide of silver and manganese as active ingredients. 2. The deodorizing catalyst according to claim 1, further containing silver and/or silver oxide as an active ingredient. 3. In claim 1, the composite oxide of silver and manganese is AgMn_2O_4, AgMnO_2, AgMnO
_4, AgMnO, Ag_2MnO, Ag_2Mn_6
A deodorizing catalyst characterized by being one or more selected from O_1_6. 4. In claim 1, the atomic ratio of silver and manganese in the active component of the catalyst is Ag:Mn=1:99 to 80:20.
A deodorizing catalyst characterized by being in the range of. 5. The deodorizing catalyst according to claim 1, wherein the inorganic oxide carrier is a porous carrier having a specific surface area of 1 m^2/g or more. 6. A deodorizing catalyst structure comprising a ceramic or metal structure coated with the deodorizing catalyst according to claim 1. 7. The deodorizing catalyst structure according to claim 6, wherein the ceramic or metal structure is selected from a honeycomb structure, a plate-like base material, and a wire mesh.
JP1292278A 1989-11-13 1989-11-13 Deodorizing catalyst Expired - Fee Related JP2971081B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1292278A JP2971081B2 (en) 1989-11-13 1989-11-13 Deodorizing catalyst
GB9024566A GB2238486B (en) 1989-11-13 1990-11-12 Catalyst for deodorising gas, their manufacture and use
FR9013985A FR2654364B1 (en) 1989-11-13 1990-11-12 CATALYST FOR CARRYING OUT THE OXIDATION OR DECOMPOSITION OF A GAS CONTAINING ODORIFYING CONSTITUENTS, METHOD AND APPLICATIONS USING SUCH A CATALYST.
KR1019900018229A KR0154982B1 (en) 1989-11-13 1990-11-12 Catalyst for oxidation or decomposition of gas containing odor components
KR1019980013982A KR0156094B1 (en) 1989-11-13 1998-04-20 Catalyst for oxidation or decomposition of gas containing odor components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292278A JP2971081B2 (en) 1989-11-13 1989-11-13 Deodorizing catalyst

Publications (2)

Publication Number Publication Date
JPH03154636A true JPH03154636A (en) 1991-07-02
JP2971081B2 JP2971081B2 (en) 1999-11-02

Family

ID=17779681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292278A Expired - Fee Related JP2971081B2 (en) 1989-11-13 1989-11-13 Deodorizing catalyst

Country Status (4)

Country Link
JP (1) JP2971081B2 (en)
KR (1) KR0154982B1 (en)
FR (1) FR2654364B1 (en)
GB (1) GB2238486B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298696A (en) * 2003-03-28 2004-10-28 Nippon Gasket Co Ltd Method for manufacturing deodorizing catalyst
CN110385127A (en) * 2018-04-16 2019-10-29 三星工程株式会社 Pass through ion-activated odor destruction ionic catalyst and preparation method thereof
CN114122364A (en) * 2021-11-29 2022-03-01 安徽科技学院 AgMn2O4@Na0.55Mn2O4Preparation method of composite nanosheet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534237A (en) * 1991-07-23 1996-07-09 Kubushiki Kaisha Riken Method of cleaning an exhaust gas and exhaust gas cleaner therefor
EP0679427A1 (en) * 1991-07-23 1995-11-02 Kabushiki Kaisha Riken Exhaust gas cleaner
US5907066A (en) * 1996-11-27 1999-05-25 Lehigh University Treating methanol-containing waste gas streams
US6028228A (en) * 1997-09-26 2000-02-22 Georgia-Pacific Corporation Production of formaldehyde from CH4 and H2 S
US6084135A (en) * 1997-12-31 2000-07-04 Lehigh University Production of formaldehyde using carbon oxides, hydrogen and H2 S
GB0318776D0 (en) 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
GB0523135D0 (en) 2005-11-14 2005-12-21 Johnson Matthey Plc Reducing coking over Ag/A1203 HC-SCR catalyst
JP2010535613A (en) * 2007-08-09 2010-11-25 ビーエーエスエフ ソシエタス・ヨーロピア Hydrocarbon-containing gas desulfurization catalyst and desulfurization method
EP2657615A1 (en) * 2012-04-27 2013-10-30 Miele & Cie. KG Cooking device and catalyst device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE494889A (en) * 1949-03-31
JPS549152B1 (en) * 1971-06-10 1979-04-21
JPS5246559B2 (en) * 1973-12-29 1977-11-25
FR2373324A1 (en) * 1976-12-10 1978-07-07 Inst Francais Du Petrole PROCESS FOR OXIDIZING SULFUR AND SULFUR COMPOUNDS
FR2445174B1 (en) * 1978-12-27 1986-09-19 Agency Ind Science Techn CATALYSTS COMPRISING SILVER OXIDE AND AT LEAST ONE OXIDE OF A SELECTED METAL AMONG COBALT AND MANGANESE FOR THE CATALYTIC HYDROGEN COMBUSTION
JPS57119819A (en) * 1981-01-17 1982-07-26 Takeda Chem Ind Ltd Treatment of gas
DE68904276T2 (en) * 1988-09-26 1993-05-27 Sakai Chemical Industry Co DEODORIZING METHOD AND DESODORIZING CATALYST.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298696A (en) * 2003-03-28 2004-10-28 Nippon Gasket Co Ltd Method for manufacturing deodorizing catalyst
CN110385127A (en) * 2018-04-16 2019-10-29 三星工程株式会社 Pass through ion-activated odor destruction ionic catalyst and preparation method thereof
CN110385127B (en) * 2018-04-16 2022-08-23 三星工程株式会社 Ion catalyst for removing malodor by ion activation and method for preparing the same
CN114122364A (en) * 2021-11-29 2022-03-01 安徽科技学院 AgMn2O4@Na0.55Mn2O4Preparation method of composite nanosheet
CN114122364B (en) * 2021-11-29 2023-04-25 安徽科技学院 AgMn (AgMn) 2 O 4 @Na 0.55 Mn 2 O 4 Preparation method of composite nano-sheet

Also Published As

Publication number Publication date
GB2238486A (en) 1991-06-05
FR2654364A1 (en) 1991-05-17
KR910009332A (en) 1991-06-28
FR2654364B1 (en) 1995-04-07
JP2971081B2 (en) 1999-11-02
GB2238486B (en) 1994-03-23
KR0154982B1 (en) 1998-11-16
GB9024566D0 (en) 1991-01-02

Similar Documents

Publication Publication Date Title
JP5097709B2 (en) Metallic mercury oxidation catalyst
JPH03154636A (en) Deodorization catalyst
JP2003126694A (en) Catalyst for cleaning exhaust gas
JP2691751B2 (en) Catalytic structure and method and apparatus for producing the same
JP2708631B2 (en) Catalysts for oxidation and decomposition of gases containing odorous components and applied products
JP3786522B2 (en) Exhaust gas purification catalyst
JPH10290933A (en) Deodorization catalyst, deodorization filter using the same and deodorizer using the same
JP2006346645A (en) Metal filter and its manufacturing method
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
JP4112933B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3470496B2 (en) Deodorization treatment method using ozone
JP2010051867A (en) Filter for cleaning exhaust gas
JP6022342B2 (en) Deodorizing filter
JPH0559114U (en) Heating cooker
JPS5821534B2 (en) catalyst body
JPH08257406A (en) Deodorizing material and deodorizing method
JPH10290921A (en) Deodorizing catalyst filter and deodorizing device using the same
JP2003305365A (en) Aqueous gas treatment catalyst and waste gas treatment method
RU2003104602A (en) CATALYST FOR CLEANING EXHAUST GASES OF ENGINES
JPH0352625A (en) Deodorizing method
JPH01304048A (en) Catalyst for purifying exhaust gas
JPH0615171A (en) Production of oxidation catalyst
JPH04122455A (en) Exhaust gas purification catalyst body
JP2009082887A (en) Catalyst for purification of exhaust gas
JP4068858B2 (en) Low concentration CO-containing exhaust gas treatment catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees