JP2006346645A - Metal filter and its manufacturing method - Google Patents

Metal filter and its manufacturing method Download PDF

Info

Publication number
JP2006346645A
JP2006346645A JP2005178937A JP2005178937A JP2006346645A JP 2006346645 A JP2006346645 A JP 2006346645A JP 2005178937 A JP2005178937 A JP 2005178937A JP 2005178937 A JP2005178937 A JP 2005178937A JP 2006346645 A JP2006346645 A JP 2006346645A
Authority
JP
Japan
Prior art keywords
fine particles
metal
low
oxidation catalyst
temperature oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005178937A
Other languages
Japanese (ja)
Inventor
Isao Hashida
勲 橋田
Hiroshi Nakajima
中島  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AZUMI FILTER PAPER
Azumi Filter Paper Co Ltd
Original Assignee
AZUMI FILTER PAPER
Azumi Filter Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZUMI FILTER PAPER, Azumi Filter Paper Co Ltd filed Critical AZUMI FILTER PAPER
Priority to JP2005178937A priority Critical patent/JP2006346645A/en
Publication of JP2006346645A publication Critical patent/JP2006346645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-temperature oxidation catalyst capable of removing carbon monoxide at low temperatures such as room temperature for long periods, and further, maintain firmly the catalyst inside a ventilation flue while suppressing a pressure loss by increasing an opening rate to prevent a dust generation. <P>SOLUTION: A great number of ventilation flues (3) are defined in a thickness direction of a metal substrate (2). A catalyst layer (5) which keeps the low-temperature oxidation catalyst fixed to a substrate wall surface (4) with a binding component is formed inside the ventilation flue (3). The low-temperature oxidation catalyst comprises fine particles of titanium oxide, the surface of which is supported by an oxide of a transition metal such as nickel and a small gold particle as a coprecipitate. The low-temperature oxidation catalyst and the binding component are heated to 250°C or more when being fixed to the substrate wall surface (4). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は金属製フィルタに関し、さらに詳しくは、室温のような低温で一酸化炭素を効率よく長期に亘って除去できる低温酸化触媒を備え、開口率を大きくして圧力損失を抑制しながら、しかも触媒を通風路の内面に確りと保持して粉落ちの発生を防止した、金属製フィルタとその製造方法に関する。   The present invention relates to a metal filter. More specifically, the present invention includes a low-temperature oxidation catalyst that can efficiently remove carbon monoxide at low temperatures such as room temperature over a long period of time, while increasing the aperture ratio and suppressing pressure loss. The present invention relates to a metal filter that securely holds a catalyst on the inner surface of a ventilation passage to prevent the occurrence of powder falling and a method for manufacturing the same.

近年は健康に対する意識の向上と快適な居住環境が志向されており、たばこの喫煙時や暖房器具などから発生する一酸化炭素の除去が要望されている。一酸化炭素を除去する方法の一つとしては、触媒を用いて一酸化炭素を二酸化炭素に変換させる方法がある。   In recent years, awareness of health and a comfortable living environment have been aimed at, and there is a demand for removal of carbon monoxide generated from cigarette smoking and heating appliances. One method for removing carbon monoxide is to convert carbon monoxide to carbon dioxide using a catalyst.

上記の酸化触媒は、例えば空気清浄機などの装置に組み込まれるフィルタに担持され、室内等の空気がこのフィルタを通過することにより、上記の居住環境に排出される一酸化炭素が除去される。このフィルタは、室温のような低温で一酸化炭素を良好に酸化できることや、空気中の水分や塵埃・ガスによる性能劣化が少ない等の優れた触媒性能が要求されるだけでなく、触媒微粒子の脱落に起因する微粉末の発生がないことや、フィルタとして圧力損失が小さく通風性能に優れるという、基材の通気性能等が要求される。   The oxidation catalyst is carried on a filter incorporated in an apparatus such as an air purifier, for example, and air in the room or the like passes through the filter to remove carbon monoxide discharged to the living environment. This filter not only requires excellent catalytic performance such as being able to oxidize carbon monoxide satisfactorily at low temperatures such as room temperature, and low performance deterioration due to moisture, dust and gas in the air. There is a demand for the air permeability of the base material such that there is no generation of fine powder due to falling off, and the filter has a low pressure loss and excellent ventilation performance.

従来、室温のような低温で一酸化炭素を除去できる触媒として、酸化チタンや酸化ニッケルなどの金属酸化物の表面に、金などの貴金属微粒子を担持させたものが提案されている(特許文献1参照)。しかしこの触媒について性能を測定したところ、室温のような低温での触媒作用は十分に高くなく、居住環境において一酸化炭素を効率よく除去することが容易でなかった。   Conventionally, as a catalyst capable of removing carbon monoxide at a low temperature such as room temperature, a catalyst in which noble metal fine particles such as gold are supported on the surface of a metal oxide such as titanium oxide or nickel oxide has been proposed (Patent Document 1). reference). However, when the performance of this catalyst was measured, the catalytic action at a low temperature such as room temperature was not sufficiently high, and it was not easy to efficiently remove carbon monoxide in the living environment.

また上記の低温酸化触媒は、従来、多孔質の基材へ含浸や塗布により担持されており、例えば上記の触媒を多孔質吸着剤に担持させ、この多孔質吸着剤の微粒子を不織布に含浸させたのちこの不織布をハニカム状等に加工したもの(特許文献2参照)や、セラミックハニカムに低温酸化触媒を含浸させたもの(特許文献3参照)などが知られている。   The above-mentioned low-temperature oxidation catalyst is conventionally supported on a porous substrate by impregnation or coating. For example, the above-mentioned catalyst is supported on a porous adsorbent, and the nonwoven fabric is impregnated with fine particles of the porous adsorbent. Thereafter, a nonwoven fabric processed into a honeycomb shape or the like (see Patent Document 2), a ceramic honeycomb impregnated with a low-temperature oxidation catalyst (see Patent Document 3), and the like are known.

しかしながら上記の不織布などを基材とするものは、低温酸化触媒を担持した微粒子が基材の繊維間に保持されているため、基材が振動を受けるとこの微粒子が離脱し、いわゆる粉落ち現象を生じる。このため、触媒性能が早期に低下するだけでなく、この離脱した粉末が居住環境を汚損する虞や、これを防止するためフィルタの下流側に粉末除去装置が必要となり安価に実施できない等の問題もある。
上記の微粒子を粘結剤で不織布に固定することも考えられるが、この粘結剤により不織布の通気性が低下する虞があり、また、安定剤、界面活性剤、有機高分子などが触媒微粒子を隠蔽し、被毒するために触媒作用を阻害する問題がある。この粘結剤に含まれる阻害成分から触媒を保護するため、触媒微粒子にアルカリ金属を含有させることが提案されている(上記の特許文献2参照)が、この方法では触媒活性を十分に高く維持することはできない。
However, those using the above nonwoven fabric as the base material, the fine particles carrying the low-temperature oxidation catalyst are held between the fibers of the base material. Produce. For this reason, not only the catalyst performance deteriorates early, but also the problem that the detached powder may contaminate the living environment, and a powder removing device is required downstream of the filter to prevent this, and it cannot be implemented at low cost. There is also.
It is conceivable to fix the above fine particles to the nonwoven fabric with a binder, but this binder may reduce the breathability of the nonwoven fabric, and stabilizers, surfactants, organic polymers, etc. are catalyst fine particles. There is a problem of hindering the catalytic action to conceal and poison. In order to protect the catalyst from the inhibitory components contained in the binder, it has been proposed that the catalyst fine particles contain an alkali metal (see Patent Document 2 above), but in this method, the catalyst activity is maintained sufficiently high. I can't do it.

一方、上記のセラミックハニカムを用いる場合、ハニカムを構成する壁内に触媒機能を発揮する貴金属イオンを含浸させ、還元または焼成して酸化触媒を担持するが、触媒機能はハニカム内の空気の流通状態に大きく左右される。セラミックハニカムはセラミックス微粒子を粘結剤で成型し、焼成して製造されるが、ハニカムの透孔の区画する壁の肉厚を薄くすると焼成時にくずれたり破損し易い。このため、肉厚を薄くして開口率を高めることが容易ではなく、圧力損失が大きくなる。また、焼成は1000℃以上の高温で長時間保持しなくてはならず、高価となり、且つ奥行きの薄いハニカムは製造はできない。さらに、脆いために取り扱いに注意が必要であり、空気清浄機などへの組み込みが容易でない問題がある。   On the other hand, when the above ceramic honeycomb is used, the walls constituting the honeycomb are impregnated with noble metal ions exhibiting a catalytic function and reduced or fired to carry the oxidation catalyst. The catalytic function is the air flow state in the honeycomb. Depends greatly on A ceramic honeycomb is manufactured by molding ceramic fine particles with a binder and firing the ceramic honeycomb. However, if the thickness of the wall defining the pores of the honeycomb is reduced, the ceramic honeycomb is easily broken or damaged during firing. For this reason, it is not easy to reduce the wall thickness and increase the aperture ratio, and the pressure loss increases. In addition, the firing must be held at a high temperature of 1000 ° C. or higher for a long time, which is expensive and a honeycomb having a thin depth cannot be manufactured. Furthermore, since it is fragile, handling is necessary, and there is a problem that it is not easy to incorporate into an air purifier or the like.

特開平11−114419号公報Japanese Patent Laid-Open No. 11-114419 特開2003−88759号公報JP 2003-88759 A 特開2000−345175号公報JP 2000-345175 A

本発明の技術的課題は上記の問題点を解消し、室温のような低温で一酸化炭素を効率よく長期に亘って除去できる低温酸化触媒を備え、開口率を大きくして圧力損失を抑制しながら、しかも触媒を通風路の内面に確りと保持して粉落ちの発生を防止した、金属製フィルタとその製造方法を提供することにある。   The technical problem of the present invention is to solve the above-mentioned problems, and includes a low-temperature oxidation catalyst that can efficiently remove carbon monoxide over a long period of time at a low temperature such as room temperature, and suppresses pressure loss by increasing the aperture ratio. However, another object of the present invention is to provide a metal filter and a method for manufacturing the same that are securely held on the inner surface of the air passage to prevent the occurrence of powder falling.

本発明は上記の課題を解決するため、例えば本発明の実施の形態を示す図1から図3に基づいて説明すると、次のように構成したものである。
即ち本発明1は金属製フィルタに関し、金属製基材(2)の厚さ方向に多数の通風路(3)を透設した金属製フィルタであって、低温酸化触媒を粘結成分で基材壁面(4)へ固定した触媒層(5)が、上記の通風路(3)の内面に形成してあることを特徴とする。
In order to solve the above-described problems, the present invention is configured as follows, for example, based on FIGS. 1 to 3 showing an embodiment of the present invention.
That is, the present invention relates to a metal filter, which is a metal filter in which a large number of ventilation paths (3) are provided in the thickness direction of the metal substrate (2), and the low-temperature oxidation catalyst is a base material with a caking component. A catalyst layer (5) fixed to the wall surface (4) is formed on the inner surface of the ventilation path (3).

また、本発明2は金属製フィルタの製造方法に関し、低温酸化触媒の微粒子と粘結剤とを混合して塗布液を調製し、厚さ方向に透設された多数の通風路(3)を備える金属製基材(2)の、各通風路(3)の内面に上記の塗布液を塗布したのち、250℃以上に加熱処理して上記の低温酸化触媒を粘結成分で基材壁面(4)へ固定することを特徴とする。   The present invention 2 also relates to a method for producing a metal filter, wherein a coating liquid is prepared by mixing fine particles of a low-temperature oxidation catalyst and a binder, and a large number of ventilation paths (3) provided in the thickness direction are provided. After applying the above-mentioned coating liquid to the inner surface of each ventilation path (3) of the metal substrate (2) provided, the substrate wall surface ( It is fixed to 4).

また本発明3は金属製フィルタの製造方法に関し、貴金属水酸化物の微細粒子と遷移金属水酸化物の微細粒子とを酸化物微粒子の表面に担持させた前駆体微粒子を調製し、上記の前駆体微粒子と粘結剤とを混合して塗布液を調製し、厚さ方向に透設された多数の通風路(3)を備える金属製基材(2)の、各通風路(3)の内面に上記の塗布液を塗布したのち、250℃以上に加熱処理して上記の前駆体微粒子を、酸化物微粒子の表面に貴金属微細粒子と遷移金属の酸化物微細粒子とが担持された低温酸化触媒にするとともに、この低温酸化触媒を粘結成分で基材壁面(4)へ固定することを特徴とする。   The present invention 3 also relates to a method for producing a metal filter, comprising preparing precursor fine particles in which fine particles of noble metal hydroxide and fine particles of transition metal hydroxide are supported on the surface of oxide fine particles, The body fine particles and the binder are mixed to prepare a coating liquid, and each of the ventilation paths (3) of the metal substrate (2) having a large number of ventilation paths (3) provided in the thickness direction is provided. After applying the above coating solution on the inner surface, heat treatment is performed at 250 ° C. or higher, and the above precursor fine particles are oxidized at a low temperature by supporting noble metal fine particles and transition metal oxide fine particles on the surface of the oxide fine particles. While making it a catalyst, this low-temperature oxidation catalyst is fixed to a base-material wall surface (4) with a caking component.

上記の低温酸化触媒と粘結成分は、上記の壁面へ固定する際に250℃以上に、好ましくは300℃以上に加熱される。上記の粘結成分はゾルやゲル、エマルションなどの形態の粘結剤として用いられるが、この粘結剤に含まれる安定化剤や界面活性剤など、触媒作用を阻害する有機成分は、上記の加熱により分解される。
なお、この加熱温度は、金属製基材に悪影響を与えない範囲で設定され、例えばこの金属製基材の形成に接着剤が用いられている場合は、その接着剤の分解温度よりも低温に、例えば500℃以下に設定される。
The low-temperature oxidation catalyst and the caking component are heated to 250 ° C. or higher, preferably 300 ° C. or higher when being fixed to the wall surface. The above caking components are used as caking agents in the form of sols, gels, emulsions, etc. The organic components that inhibit the catalytic action, such as stabilizers and surfactants contained in this caking agent, Decomposes on heating.
The heating temperature is set within a range that does not adversely affect the metal substrate. For example, when an adhesive is used to form the metal substrate, the heating temperature is lower than the decomposition temperature of the adhesive. For example, it is set to 500 ° C. or lower.

上記の金属製基材に塗布される塗布液は、予め焼成した低温酸化触媒を微粉化し、これと粘結剤とを混合して調製してもよいが、焼成後の低温酸化触媒を微粉化するのは容易でない。このため、上記の本発明3のように、貴金属水酸化物の微細粒子と遷移金属水酸化物の微細粒子とを酸化物微粒子の表面に担持させた前駆体微粒子を調製し、この前駆体微粒子を焼成する前に粘結剤と混合して塗布液を調製し、この塗布液を通風路の内面に塗布して加熱処理すると好ましい。この場合はこの加熱処理により前駆体が焼成されて低温酸化触媒になるとともに、粘結剤に含まれる触媒作用阻害成分が分解される。   The coating solution to be applied to the metal base material may be prepared by pulverizing a pre-fired low-temperature oxidation catalyst and mixing it with a binder. It is not easy to do. Therefore, as in the above-described Invention 3, precursor fine particles in which noble metal hydroxide fine particles and transition metal hydroxide fine particles are supported on the surface of the oxide fine particles are prepared, and the precursor fine particles are prepared. It is preferable to prepare a coating solution by mixing with a binder before baking, apply the coating solution to the inner surface of the air passage, and heat-treat. In this case, the precursor is fired by this heat treatment to become a low-temperature oxidation catalyst, and the catalytic action inhibiting component contained in the binder is decomposed.

上記の粘結成分は、低温酸化触媒を金属製基材の表面に固定できるものであればよく、特定の材質に限定されない。例えばアルミナ等の金属酸化物やシリカ、フッ素系高分子などが用いられる。特にフッ素系高分子の場合は、上記の加熱時に軟化するので、一層良好に低温酸化触媒を基材表面に確りと固定することができ、好ましい。   The caking component is not limited to a specific material as long as it can fix the low-temperature oxidation catalyst to the surface of the metal substrate. For example, a metal oxide such as alumina, silica, or a fluorine-based polymer is used. In particular, in the case of a fluorine-based polymer, since it softens during the heating, the low-temperature oxidation catalyst can be more reliably fixed to the substrate surface, which is preferable.

上記の低温酸化触媒は、低温で一酸化炭素を二酸化炭素に酸化するものであればよく、特定の成分等に限定されないが、貴金属微細粒子と遷移金属の酸化物微細粒子とを共沈させて表面に担持した酸化物微粒子を用いると、三者の相乗的作用により、室温のような外部からの加熱のない低温状態で、長期に亘って一酸化炭素を二酸化炭素へ効率よく酸化し除去することができ、好ましい。   The low-temperature oxidation catalyst is not particularly limited as long as it oxidizes carbon monoxide to carbon dioxide at a low temperature, but coprecipitates precious metal fine particles and transition metal oxide fine particles. By using oxide fine particles supported on the surface, carbon monoxide is efficiently oxidized and removed to carbon dioxide over a long period of time in a low-temperature state without external heating such as room temperature due to the synergistic action of the three. Can be preferred.

具体的には、上記の酸化物微粒子として、酸化チタン、酸化アルミニウム、シリカなどが挙げられ、上記の遷移金属として、ニッケル、銅、コバルト、鉄、マンガンなどの原子およびその化合物が挙げられ、上記の貴金属微細粒子として、白金、金、パラジウム、それらの化合物などが挙げられる。   Specifically, examples of the oxide fine particles include titanium oxide, aluminum oxide, and silica. Examples of the transition metal include atoms such as nickel, copper, cobalt, iron, and manganese, and compounds thereof. Examples of the noble metal fine particles include platinum, gold, palladium, and compounds thereof.

上記の触媒層は、充分に触媒性能を発揮できる量が基材表面に確りと固定されておればよく、具体的には厚さが2〜40μm程度に設定される。薄くし過ぎると一酸化炭素を十分に酸化することができず、過剰に厚くすると金属製基材の表面から低温酸化触媒が剥離して粉落ちを生じるからである。   The catalyst layer only needs to be firmly fixed to the substrate surface in such an amount that it can sufficiently exhibit the catalyst performance. Specifically, the thickness is set to about 2 to 40 μm. This is because if it is too thin, carbon monoxide cannot be oxidized sufficiently, and if it is excessively thick, the low-temperature oxidation catalyst is peeled off from the surface of the metal substrate to cause powder falling.

上記の金属製基材は、特定の金属材料に限定されず、アルミニウム、銅、ステンレス鋼などの金属材料を用いることができる。特に、アルミニウムを用いた場合は、軽量で取扱いが容易であり、塗布液の塗布のし易さ、触媒の耐久性、コスト等の点から優れているので好ましい。   Said metal base material is not limited to a specific metal material, Metal materials, such as aluminum, copper, and stainless steel, can be used. In particular, aluminum is preferred because it is lightweight and easy to handle, and is excellent in terms of ease of application of the coating liquid, durability of the catalyst, cost, and the like.

また、上記の金属製基材の厚さ方向に形成される多数の通風路は、特定の形状に限定されない。具体的には、開口形状が六角形や四角形、円形などのハニカムのほか、片段ボールを積層したコルゲート形などであってもよい。
この通風路の開口面積は、圧力損失と触媒付着量との関係から、円換算で内径1mm〜6mm程度が好ましく、より好ましくは、2〜4mmに設定される。
また、通風路を区画する壁の肉厚は、取り扱い時などに変形や破損しない程度の肉厚があればよいが、厚くすると圧力損失が増加するうえ、重くなって取り扱い難くなる。このため、この通風路の開口率、即ち、金属製フィルタの片面に占める通風路全体の開口面積の比率は、通常90%以上に設定され、より好ましくは98%以上に設定される。
Moreover, many ventilation paths formed in the thickness direction of said metal base material are not limited to a specific shape. Specifically, the opening shape may be a hexagonal, quadrangular or circular honeycomb, or a corrugated shape in which single-stage cardboards are stacked.
The opening area of this ventilation path is preferably set to an inner diameter of about 1 mm to 6 mm, more preferably 2 to 4 mm in terms of a circle, from the relationship between pressure loss and the amount of catalyst attached.
Moreover, the wall thickness of the wall defining the ventilation path only needs to be thick enough not to be deformed or broken during handling, but if it is thickened, pressure loss increases and it becomes heavy and difficult to handle. For this reason, the opening ratio of this ventilation path, that is, the ratio of the opening area of the entire ventilation path to one side of the metal filter is usually set to 90% or more, and more preferably set to 98% or more.

本発明は上記のように構成されるので、次の効果を奏する。   Since this invention is comprised as mentioned above, there exists the following effect.

(1)基材が金属製であるので、通気路の内面を滑らかに形成できるうえ、通気路を区画する壁の肉厚を薄くでき、開口率を大きくして圧力損失を抑制することができる。しかも上記の低温酸化触媒は粘結成分により通風路の内面へ確りと保持されるので、金属製フィルタが振動などを受けても粉落ちの発生を防止でき、居住環境を汚損する虞がない。さらに上記の通気路は圧力損失が少ないので、この通気路を空気や暖房器具からの排気等が良好に通過でき、通気路の内面に確りと保持された触媒層の低温酸化触媒により、一酸化炭素を効率よく長期に亘って除去することができる。   (1) Since the base material is made of metal, the inner surface of the air passage can be formed smoothly, the wall thickness defining the air passage can be reduced, and the aperture ratio can be increased to suppress pressure loss. . In addition, since the low-temperature oxidation catalyst is firmly held on the inner surface of the ventilation path by the caking component, it is possible to prevent the occurrence of powder falling even when the metal filter is subjected to vibration or the like, and there is no possibility of deteriorating the living environment. Furthermore, since the above air passage has little pressure loss, air and exhaust from the heating appliance can pass well through this air passage, and the catalyst layer is securely held on the inner surface of the air passage, so that the catalyst layer is oxidized. Carbon can be efficiently removed over a long period of time.

(2)上記の低温酸化触媒の微粒子と粘結剤とを混合した塗布液を、通風路の内面に塗布したのち、250℃以上に加熱処理して上記の低温酸化触媒を粘結成分で壁面へ固定した場合には、粘結剤に含まれる安定化剤や界面活性剤など、触媒作用を阻害する有機成分が上記の加熱処理により分解されるので、低温酸化触媒の触媒性能を良好に発揮することができ、一酸化炭素を効率よく長期に亘って除去することができる。   (2) After applying the coating liquid in which the fine particles of the low-temperature oxidation catalyst and the binder are mixed to the inner surface of the air passage, heat treatment is performed at 250 ° C. or higher to make the low-temperature oxidation catalyst a wall surface with a binder component. When it is fixed on the surface, organic components that inhibit the catalytic action, such as stabilizers and surfactants contained in the binder, are decomposed by the above heat treatment, so that the catalyst performance of the low-temperature oxidation catalyst is demonstrated well. And carbon monoxide can be efficiently removed over a long period of time.

(3)上記の前駆体微粒子と粘結剤とを混合した塗布液を、上記の通風路の内面に塗布したのち、250℃以上に加熱処理して上記の前駆体微粒子を、酸化物微粒子の表面に貴金属微細粒子と遷移金属の酸化物微細粒子とが担持された低温酸化触媒にするとともに、この低温酸化触媒を粘結成分で基材壁面へ固定した場合は、低温酸化触媒の製造に必要な焼成処理と、粘結剤に含まれる触媒作用阻害成分の分解処理とを一度に処理できるので、加熱効率に優れ安価に実施できる。しかもこの場合は、焼成後の低温酸化触媒を微粉化する必要がなく、微粒状の低温酸化触媒を通風路の内面へ効率よく固定することができる。   (3) After applying the coating liquid in which the precursor fine particles and the binder are mixed to the inner surface of the ventilation path, the precursor fine particles are converted into oxide fine particles by heat treatment at 250 ° C. or higher. Necessary for the production of a low-temperature oxidation catalyst when a low-temperature oxidation catalyst with precious metal fine particles and transition metal oxide fine particles supported on the surface is fixed to the substrate wall surface with a caking component. Can be processed at once, and the decomposition treatment of the catalytic action inhibiting component contained in the binder can be performed at a time, so that the heating efficiency is excellent and the cost can be reduced. In addition, in this case, it is not necessary to pulverize the low-temperature oxidation catalyst after calcination, and the fine granular low-temperature oxidation catalyst can be efficiently fixed to the inner surface of the air passage.

(4)さらにこの場合は、低温酸化触媒が、貴金属微細粒子と遷移金属の酸化物微細粒子とが表面に担持された酸化物微粒子からなるので、三者の相乗的作用により、室温のような外部からの加熱のない低温状態で、長期に亘って一酸化炭素を二酸化炭素へ効率よく酸化し除去することができる。   (4) Further, in this case, since the low-temperature oxidation catalyst is composed of oxide fine particles having noble metal fine particles and transition metal oxide fine particles supported on the surface, It is possible to efficiently oxidize and remove carbon monoxide to carbon dioxide over a long period in a low temperature state without external heating.

以下、本発明の実施の形態を図面に基づき説明する。
図1と図2は本発明の実施形態を示し、図1は金属製フィルタの概略斜視図、図2は金属製フィルタの要部を拡大した一部破断斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show an embodiment of the present invention, FIG. 1 is a schematic perspective view of a metal filter, and FIG. 2 is a partially broken perspective view in which a main part of the metal filter is enlarged.

図1に示すように、この金属製フィルタ(1)は、アルミニウムなどの金属材料で形成したハニカム状の金属製基材(2)からなり、厚さ方向に多数の通風路(3)が透設してある。
この通風路(3)の断面形状は、例えば直径4mmの円形の面積に相当する開口を備えた六角形に形成してある。また、この通風路(3)を区画する基材壁面(4)の肉厚は、例えば0.025mm程度の厚さに形成してある。従って、この金属製フィルタ(1)の開口率は98%程度になっている。
As shown in FIG. 1, the metal filter (1) is composed of a honeycomb-shaped metal substrate (2) formed of a metal material such as aluminum, and a large number of ventilation paths (3) are permeable in the thickness direction. It is set up.
The cross-sectional shape of the ventilation path (3) is formed in a hexagonal shape having an opening corresponding to a circular area with a diameter of 4 mm, for example. Moreover, the thickness of the base-material wall surface (4) which divides this ventilation path (3) is formed in the thickness of about 0.025 mm, for example. Therefore, the aperture ratio of the metal filter (1) is about 98%.

図2に示すように、上記の通風路(3)の内面には、低温酸化触媒を粘結成分で基材壁面(4)へ固定した触媒層(5)が形成してある。この触媒層(5)の厚さは、例えば4〜20μmに形成してある。
なお、上記の低温酸化触媒と粘結成分は、上記の基材壁面(4)へ固定する際に250〜500℃、好ましくは300〜400℃で加熱してある。上記の粘結成分は、低温酸化触媒と混合して基材壁面に塗布するため、ゾルやゲル、エマルションなどの粘結剤に形成されるが、この粘結剤に含まれる界面活性剤などは上記の加熱処理により分解されるので、低温酸化触媒の触媒活性が高く維持される。
As shown in FIG. 2, the catalyst layer (5) which fixed the low-temperature oxidation catalyst to the base-material wall surface (4) with the caking component is formed in the inner surface of said ventilation path (3). The thickness of this catalyst layer (5) is, for example, 4 to 20 μm.
In addition, said low-temperature oxidation catalyst and caking component are heated at 250-500 degreeC, Preferably it is 300-400 degreeC, when fixing to said base-material wall surface (4). The above-mentioned binder component is mixed with a low-temperature oxidation catalyst and applied to the substrate wall surface, so it is formed into a binder such as a sol, gel, emulsion, etc. The surfactant contained in this binder is Since it decomposes | disassembles by said heat processing, the catalytic activity of a low-temperature oxidation catalyst is maintained highly.

上記の触媒層に含まれる低温酸化触媒は、酸化チタンや酸化アルミニウム、シリカなどの酸化物微粒子の表面に、ニッケルや鉄などの遷移金属の酸化物微細粒子と、金などの貴金属微細粒子とが、共沈物として担持してある。
上記の酸化物微粒子は中実の粒状体であり、遷移金属酸化物や貴金属の微細粒子が効率よく担持されるように、粒子径を小さくして比表面積を大きくすると好ましい。具体的には、X線粒子径が7〜20nmで、比表面積が50〜350m2/gのものが用いられる。
The low-temperature oxidation catalyst contained in the above catalyst layer has fine oxide particles of transition metal such as nickel and iron and fine noble metal particles such as gold on the surface of oxide fine particles such as titanium oxide, aluminum oxide and silica. It is supported as a coprecipitate.
The oxide fine particles are solid particles, and it is preferable to reduce the particle size and increase the specific surface area so that transition metal oxides and noble metal fine particles are efficiently supported. Specifically, those having an X-ray particle diameter of 7 to 20 nm and a specific surface area of 50 to 350 m 2 / g are used.

上記の貴金属微細粒子の粒子径は、触媒作用が有効に発揮される範囲であればよく、例えば、貴金属の原子サイズから5nm程度の範囲に設定される。ただしこの粒子径は小さいほうが好ましく、3nm以下、好ましくは2nm以下、より好ましくは1nm以下に設定される。この貴金属微細粒子の担持量は、少なすぎると触媒作用が十分に発揮されず、また担持量を多くし過ぎてもこれに対応した触媒作用の向上が見られないため、経済的でない。このため、貴金属微粒子の担持量は酸化物微粒子に対し0.1〜3重量%とするのが好ましく、0.5〜2重量%とするのがさらに好ましい。   The particle diameter of the noble metal fine particles may be in a range in which the catalytic action is effectively exhibited, and is set, for example, in a range of about 5 nm from the noble metal atomic size. However, the particle diameter is preferably small, and is set to 3 nm or less, preferably 2 nm or less, more preferably 1 nm or less. If the amount of the noble metal fine particles supported is too small, the catalytic action is not sufficiently exerted, and if the amount supported is too large, the corresponding catalytic action cannot be improved, which is not economical. For this reason, the amount of the precious metal fine particles supported is preferably 0.1 to 3% by weight, more preferably 0.5 to 2% by weight, based on the oxide fine particles.

上記の遷移金属酸化物は、酸化ニッケルや酸化鉄等を単独で用いてもよく、複数種を併用しても良い。これらの遷移金属の酸化物微細粒子の担持量は特に限定されないが、貴金属微細粒子の担持量と同等程度に設定すると、酸化チタンなどの酸化物微粒子を含む三者が相乗的に作用して良好な触媒作用を発揮できるので、好ましい。具体的には、この遷移金属の酸化物微細粒子の担持量は、上記の貴金属微細粒子の担持量に対し0.25〜5重量比に設定され、より好ましくは0.5〜3重量比に設定される。例えば酸化ニッケルと酸化鉄とを併用する場合は、鉄に対するニッケルの配合量が1/3〜3重量比に設定され、より好ましくは、0.5〜2重量比に設定される。   As the transition metal oxide, nickel oxide, iron oxide or the like may be used alone, or a plurality of types may be used in combination. The loading amount of these transition metal oxide fine particles is not particularly limited, but if set to the same level as the noble metal fine particle loading amount, the three including oxide fine particles such as titanium oxide act synergistically and are good It is preferable because it can exhibit a good catalytic action. Specifically, the supported amount of the transition metal oxide fine particles is set to 0.25 to 5% by weight, more preferably 0.5 to 3% by weight with respect to the supported amount of the noble metal fine particles. Is set. For example, when nickel oxide and iron oxide are used in combination, the blending amount of nickel with respect to iron is set to 1/3 to 3 weight ratio, more preferably 0.5 to 2 weight ratio.

また上記の粘結成分は、アルミナ等の金属酸化物やシリカ、あるいはフッ素系高分子からなり、これらを複数種混合したものであってもよい。上記のフッ素系高分子としては、例えばポリテトラフルオロエチレン(PTFE)、ポリビニリデンフロライド(PVDF)、ポリビニルフロライド(PVF)、PTFE−ヘキサフルオロプロピレン共重合体などの、重合体や共重合体が使用される。これらのフッ素系高分子は、300〜400℃で溶融するものが好ましい。   The caking component is made of a metal oxide such as alumina, silica, or a fluorine-based polymer, and may be a mixture of a plurality of these. Examples of the fluorine polymer include polymers and copolymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and PTFE-hexafluoropropylene copolymer. Is used. These fluoropolymers preferably melt at 300 to 400 ° C.

次に、上記の低温酸化触媒を含む触媒層の形成方法について説明する。なお、この実施形態では説明を簡略にするため、貴金属として金を用い、酸化物微粒子として酸化チタンの微粒子を用いるが、本発明では白金など他の貴金属を用いてもよく、酸化物微粒子はアルミナやシリカなどの微粒子であってもよい。   Next, a method for forming a catalyst layer including the low temperature oxidation catalyst will be described. In this embodiment, in order to simplify the description, gold is used as the noble metal and titanium oxide fine particles are used as the oxide fine particles. However, in the present invention, other noble metals such as platinum may be used. Or fine particles such as silica.

最初に、塩化金酸と遷移金属硝酸塩の水溶液を、水酸化ナトリウムや炭酸ナトリウム等でpH6〜9に調整して水酸化物を生成させる。次いで、この水酸化物の水溶液に酸化チタンの微粒子を加え、50〜80℃で所定時間処理したのち、固体成分を水洗し、固液分離して、酸化チタンの微粒子の表面に水酸化金と遷移金属水酸化物とが共沈した前駆体微粒子を得る。なお、上記の塩化金酸と遷移金属硝酸塩の水溶液は、酸化チタンの粒子を加えたのちpH調整しても良い。   First, an aqueous solution of chloroauric acid and transition metal nitrate is adjusted to pH 6 to 9 with sodium hydroxide, sodium carbonate or the like to generate a hydroxide. Next, fine particles of titanium oxide are added to this hydroxide aqueous solution and treated at 50 to 80 ° C. for a predetermined time. The solid components are washed with water and separated into solid and liquid, and gold hydroxide and titanium oxide are deposited on the surface of the fine particles of titanium oxide. Precursor fine particles co-precipitated with the transition metal hydroxide are obtained. The aqueous solution of chloroauric acid and transition metal nitrate may be adjusted in pH after adding titanium oxide particles.

また、上記の前駆体微粒子は、上記の方法に代えて次の方法により調製することができる。
最初に、酸化チタンを水に懸濁分散させて十分水に馴染ませる。この酸化チタンの懸濁分散液に、塩化金酸と遷移金属硝酸塩の水溶液を加え、酸化チタンに金属成分を吸着させたのち、水酸化ナトリウムや炭酸ナトリウム等でpH6〜9に調整し、50〜80℃で所定時間処理したのち、固体成分を水洗し、固液分離する。
The precursor fine particles can be prepared by the following method instead of the above method.
First, the titanium oxide is suspended and dispersed in water so that it is sufficiently acclimated to water. After adding an aqueous solution of chloroauric acid and transition metal nitrate to this titanium oxide suspension dispersion, the metal component is adsorbed on titanium oxide, adjusted to pH 6-9 with sodium hydroxide, sodium carbonate, etc. After processing at 80 ° C. for a predetermined time, the solid component is washed with water and separated into solid and liquid.

次に、上記の手順で調製された前駆体微粒子を、粘結成分を配合した粘結剤と所定の比率で混合して塗布液に調製する。この粘結剤としては、アルミナなどの金属酸化物やシリカのゾル又はゲル、或いはフッ素系高分子のエマルションが用いられ、両者を共に用いてもよい。   Next, the precursor fine particles prepared by the above procedure are mixed with a binder containing a binder component at a predetermined ratio to prepare a coating solution. As the binder, a metal oxide such as alumina, a silica sol or gel, or a fluorine polymer emulsion may be used, and both may be used together.

上記のアルミナやシリカのゾル又はゲルを用いる場合、その添加量は、添加後の全固形分に対しアルミナやシリカなどの粘結成分が5〜20重量%、好ましくは10〜15重量%となるように調整される。
また上記のフッ素系高分子のエマルションを用いる場合、その添加量は、添加前の全固形分に対し5〜20重量%が添加される。
When using the above sol or gel of alumina or silica, the amount of addition is 5 to 20% by weight, preferably 10 to 15% by weight of caking components such as alumina and silica, based on the total solid content after the addition. To be adjusted.
Moreover, when using said fluoropolymer emulsion, the addition amount is 5-20 weight% with respect to the total solid before addition.

上記の塗布液に、ハニカム状に形成した金属製基材(2)を浸漬して取出し、余剰液を除去して各通風路(3)の内面に塗布液が略均一に塗布された状態にする。これを室温で乾燥したのち、250℃以上、好ましくは300℃以上で加熱して焼成する。
この焼成により、上記の前駆体微粒子は、酸化チタンの微粒子の表面に金微細粒子と遷移金属の酸化物微細粒子との共沈物が担持された低温酸化触媒となる。また、上記の粘結剤に含まれる安定化剤や界面活性剤など、触媒作用を阻害する有機成分が分解される。これにより、室温のような低温でも優れた触媒性能を発揮する低温酸化触媒が、触媒層(5)として通風路(3)の内面に確りと固定されている金属製フィルタ(1)が得られる。
The metallic substrate (2) formed in a honeycomb shape is immersed in the coating solution and removed, and the excess solution is removed so that the coating solution is applied almost uniformly on the inner surface of each ventilation passage (3). To do. After drying this at room temperature, it is fired by heating at 250 ° C. or higher, preferably 300 ° C. or higher.
By this firing, the precursor fine particles become a low-temperature oxidation catalyst in which coprecipitates of gold fine particles and transition metal oxide fine particles are supported on the surfaces of titanium oxide fine particles. In addition, organic components that inhibit the catalytic action, such as stabilizers and surfactants contained in the binder, are decomposed. As a result, a metal filter (1) in which a low-temperature oxidation catalyst that exhibits excellent catalytic performance even at a low temperature such as room temperature is firmly fixed as the catalyst layer (5) to the inner surface of the ventilation path (3) is obtained. .

なお、この実施形態では上記の前駆体微粒子を粘結剤と混合して塗布液を調製した。しかし本発明では低温酸化触媒の微粒子を予め調製しておき、これを粘結剤と混合して塗布液を調製することも可能である。この場合も、粘結剤に含まれる触媒作用阻害成分を分解するため、金属製基材へ塗布されたのち、250℃以上、好ましくは300℃以上に加熱される。   In this embodiment, the above-mentioned precursor fine particles were mixed with a binder to prepare a coating solution. However, in the present invention, it is also possible to prepare fine particles of a low-temperature oxidation catalyst in advance and mix this with a binder to prepare a coating solution. Also in this case, in order to decompose the catalytic action inhibiting component contained in the binder, it is heated to 250 ° C. or higher, preferably 300 ° C. or higher after being applied to the metal substrate.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(実施例1)
脱イオン水960mlに酸化チタン72.0gを加え、60℃で1時間撹拌して水に馴染ませたのち、塩化金酸4水和物(2.26g/100ml)144mlを添加して62℃で15分間撹拌した。次いで硝酸ニッケル6水和物(2.817g/100ml)360mlを加えて20分間撹拌し、この懸濁液に0.2N水酸化ナトリウム水溶液390mlを加えて撹拌しながら60〜62℃で2時間保持し、前駆体微粒子を調製した。得られた微粒子は薄い緑色を帯びたグレーに着色していた。
(Example 1)
After adding 72.0 g of titanium oxide to 960 ml of deionized water and stirring for 1 hour at 60 ° C. to adjust to water, 144 ml of chloroauric acid tetrahydrate (2.26 g / 100 ml) was added at 62 ° C. Stir for 15 minutes. Next, 360 ml of nickel nitrate hexahydrate (2.817 g / 100 ml) was added and stirred for 20 minutes. To this suspension was added 390 ml of a 0.2N aqueous sodium hydroxide solution and kept at 60-62 ° C. for 2 hours with stirring. Then, precursor fine particles were prepared. The resulting microparticles were colored light greenish gray.

次に、上記の撹拌を止めて反応物を静置したのち上澄み液を除去し、5000mlの脱イオン水で固形分を水洗して未反応の塩化金酸と硝酸ニッケルを除去した。水洗は、上澄み液に塩素イオンが検出されなくなるまで繰り返した。上記の水洗後、上澄み液を除去して遠心分離により固液を分離した。   Next, after the stirring was stopped and the reaction product was allowed to stand, the supernatant was removed, and the solid content was washed with 5000 ml of deionized water to remove unreacted chloroauric acid and nickel nitrate. Washing with water was repeated until no chlorine ions were detected in the supernatant. After washing with water, the supernatant was removed and the solid and liquid were separated by centrifugation.

次に、上記の前駆体微粒子の回収率を85%とし、この前駆体微粒子に、粘結成分のシリカが全固形分の15重量%となるようにシリカゾル(日産化学工業株式会社製、品名スノーテックス20)を粘結剤として加え、さらに脱イオン水を加えて、固形分濃度が23%の塗布液を調製した。
この塗布液に、アルミニウム製のハニカム状基材を2分間浸漬したのち、静かに取り出し、基材に付着した余剰液を除去して室温で乾燥した。次いでこの乾燥したハニカム状基材を120℃で20分間加熱したのち、400℃で1時間加熱処理(焼成)して、アルミニウム製フィルタを得た。
Next, the recovery rate of the precursor fine particles is set to 85%, and silica sol (manufactured by Nissan Chemical Industries, Ltd., product name Snow) is added to the precursor fine particles so that the caking component silica is 15% by weight of the total solid content. Tex 20) was added as a binder, and deionized water was further added to prepare a coating solution having a solid concentration of 23%.
An aluminum honeycomb substrate was dipped in this coating solution for 2 minutes and then gently removed to remove excess liquid adhering to the substrate and dried at room temperature. Next, the dried honeycomb substrate was heated at 120 ° C. for 20 minutes and then heat-treated (fired) at 400 ° C. for 1 hour to obtain an aluminum filter.

(実施例2)
脱イオン水1440mlに酸化チタン108.0gを加え、62℃で50分間撹拌して水に馴染ませたのち、塩化金酸4水和物(2.26g/100ml)111mlを添加して62℃で20分間撹拌した。次いで硝酸ニッケル6水和物(2.817g/100ml)270mlを加えて30分間撹拌し、この懸濁液に0.2N水酸化ナトリウム水溶液288mlを加え、撹拌しながら60〜61℃で2時間保持して前駆体微粒子を調製した。得られた微粒子は薄い緑色を帯びたグレーに着色していた。その後、上記の実施例1と同様に反応物を水洗したのち遠心分離により固液を分離した。
(Example 2)
Add 108.0 g of titanium oxide to 1440 ml of deionized water, stir for 50 minutes at 62 ° C. to adjust to water, then add 111 ml of chloroauric acid tetrahydrate (2.26 g / 100 ml) at 62 ° C. Stir for 20 minutes. Next, 270 ml of nickel nitrate hexahydrate (2.817 g / 100 ml) was added and stirred for 30 minutes. To this suspension was added 288 ml of 0.2N aqueous sodium hydroxide solution, and the mixture was kept at 60 to 61 ° C. for 2 hours with stirring. Thus, precursor fine particles were prepared. The resulting microparticles were colored light greenish gray. Thereafter, the reaction product was washed with water in the same manner as in Example 1, and then the solid and liquid were separated by centrifugation.

次に、上記の前駆体微粒子の回収率を85%とし、この前駆体微粒子に、粘結成分のシリカが全固形分の17.5重量%となるように実施例1と同じシリカゾルを粘結剤として加え、さらに脱イオン水を加えて、固形分濃度が22%の塗布液を調製した。
次いで、上記の実施例1と同様、この塗布液にアルミニウム製のハニカム状基材を2分間浸漬し、静かに取り出して室温で乾燥したのち、120℃で20分間加熱し、その後、400℃で1時間加熱処理(焼成)してアルミニウム製フィルタを得た。
Next, the recovery rate of the precursor fine particles is set to 85%, and the same silica sol as that of Example 1 is caking to the precursor fine particles so that the caking component silica becomes 17.5% by weight of the total solid content. In addition to the above, deionized water was further added to prepare a coating solution having a solid content concentration of 22%.
Next, as in Example 1 above, an aluminum honeycomb substrate was immersed in this coating solution for 2 minutes, taken out gently, dried at room temperature, heated at 120 ° C. for 20 minutes, and then at 400 ° C. An aluminum filter was obtained by heat treatment (firing) for 1 hour.

(実施例3)
脱イオン水960mlに酸化チタン72.0gを加え、60℃で1時間撹拌して水に馴染ませたのち、塩化金酸4水和物(2.26g/100ml)144mlを添加して62℃で15分間撹拌した。次いで硝酸ニッケル6水和物(2.817g/100ml)360mlを加えて20分間撹拌し、この懸濁液に0.2N水酸化ナトリウム水溶液400mlを加えて撹拌しながら60〜62℃で2時間保持し、前駆体微粒子を調製した。得られた微粒子は薄い緑色を帯びたグレーに着色していた。その後、上記の実施例1と同様に反応物を水洗したのち遠心分離により固液を分離した
Example 3
After adding 72.0 g of titanium oxide to 960 ml of deionized water and stirring for 1 hour at 60 ° C. to adjust to water, 144 ml of chloroauric acid tetrahydrate (2.26 g / 100 ml) was added at 62 ° C. Stir for 15 minutes. Next, 360 ml of nickel nitrate hexahydrate (2.817 g / 100 ml) was added and stirred for 20 minutes. To this suspension was added 400 ml of a 0.2N aqueous sodium hydroxide solution and kept at 60 to 62 ° C. for 2 hours with stirring. Then, precursor fine particles were prepared. The resulting microparticles were colored light greenish gray. Thereafter, the reaction product was washed with water in the same manner as in Example 1, and then the solid and liquid were separated by centrifugation.

次に、上記の前駆体微粒子の回収率を85%とし、この前駆体微粒子の全固形分に対して、5重量%のポリテトラフルオロエチレン(ダイキン工業株式会社製、PTFEエマルション)を粘結剤として加え、さらに脱イオン水を加えて、固形分濃度が20%の塗布液を調製した。
次いで、上記の実施例1と同様、この塗布液にアルミニウム製のハニカム状基材を2分間浸漬し、静かに取り出して室温で乾燥したのち、120℃で20分間加熱し、その後、400℃で1時間加熱処理(焼成)してアルミニウム製フィルタを得た。
Next, the recovery rate of the precursor fine particles is set to 85%, and 5% by weight of polytetrafluoroethylene (manufactured by Daikin Industries, Ltd., PTFE emulsion) is used as a binder with respect to the total solid content of the precursor fine particles. In addition, deionized water was further added to prepare a coating solution having a solid content of 20%.
Next, as in Example 1 above, an aluminum honeycomb substrate was immersed in this coating solution for 2 minutes, taken out gently, dried at room temperature, heated at 120 ° C. for 20 minutes, and then at 400 ° C. An aluminum filter was obtained by heat treatment (firing) for 1 hour.

(実施例4)
上記の実施例3と同じ手順で前駆体微粒子を調製し、この前駆体微粒子の回収率を85%とし、この前駆体微粒子の全固形分に対して10重量%の、上記の実施例3で用いたポリテトラフルオロエチレンを粘結剤として加え、さらに脱イオン水を加えて、固形分濃度が20%の塗布液を調製した。
次いで、上記の実施例1と同様、この塗布液にアルミニウム製のハニカム状基材を2分間浸漬し、静かに取り出して室温で乾燥したのち、120℃で20分間加熱し、その後、400℃で1時間加熱処理(焼成)してアルミニウム製フィルタを得た。
Example 4
Precursor fine particles were prepared in the same procedure as in Example 3 above, the recovery rate of the precursor fine particles was set to 85%, and 10% by weight based on the total solid content of the precursor fine particles in Example 3 above. The used polytetrafluoroethylene was added as a binder, and deionized water was further added to prepare a coating solution having a solid content concentration of 20%.
Next, as in Example 1 above, an aluminum honeycomb substrate was immersed in this coating solution for 2 minutes, taken out gently, dried at room temperature, heated at 120 ° C. for 20 minutes, and then at 400 ° C. An aluminum filter was obtained by heat treatment (firing) for 1 hour.

(実施例5)
脱イオン水960mlに酸化チタン72.0gを加え、60℃で45分間撹拌して水に馴染ませたのち、塩化金酸4水和物(2.26g/100ml)74mlを添加して62℃で5分間撹拌した。次いで硝酸ニッケル6水和物(2.817g/100ml)180mlを加えて30分間撹拌し、この懸濁液に0.2N水酸化ナトリウム水溶液192mlを加え、撹拌しながら60〜61℃で105分間保持して前駆体微粒子を調製した。得られた微粒子は薄い緑色を帯びたグレーに着色していた。その後、3000mlの脱イオン水で上記の実施例1と同様に反応物を水洗したのち、遠心分離により固液を分離した。
(Example 5)
Add 72.0 g of titanium oxide to 960 ml of deionized water, stir at 60 ° C. for 45 minutes to adjust to water, then add 74 ml of chloroauric acid tetrahydrate (2.26 g / 100 ml) at 62 ° C. Stir for 5 minutes. Next, 180 ml of nickel nitrate hexahydrate (2.817 g / 100 ml) was added and stirred for 30 minutes. To this suspension was added 192 ml of a 0.2N aqueous sodium hydroxide solution and held at 60 to 61 ° C. for 105 minutes with stirring. Thus, precursor fine particles were prepared. The resulting microparticles were colored light greenish gray. Thereafter, the reaction product was washed with 3000 ml of deionized water in the same manner as in Example 1, and then the solid and liquid were separated by centrifugation.

次に、上記の前駆体微粒子の回収率を85%とし、この前駆体微粒子に、粘結成分のシリカが全固形分の15重量%となるように実施例1と同じシリカゾルを粘結剤として加えたのち、さらにその全固形分に対して5重量%の、実施例3と同じポリテトラフルオロエチレンを粘結剤として加え、これに脱イオン水を加えて、固形分濃度が21%の塗布液を調製した。
次いで、上記の実施例1と同様、この塗布液にアルミニウム製のハニカム状基材を2分間浸漬し、静かに取り出して室温で乾燥したのち、120℃で20分間加熱し、その後、400℃で1時間加熱処理(焼成)してアルミニウム製フィルタを得た。
Next, the recovery rate of the precursor fine particles is set to 85%, and the same silica sol as that of Example 1 is used as a binder so that the precursor fine particles have 15% by weight of the solid component silica. After the addition, 5% by weight of the total solid content of the same polytetrafluoroethylene as in Example 3 was added as a binder, deionized water was added thereto, and the solid content concentration was 21%. A liquid was prepared.
Next, as in Example 1 above, an aluminum honeycomb substrate was immersed in this coating solution for 2 minutes, taken out gently, dried at room temperature, heated at 120 ° C. for 20 minutes, and then at 400 ° C. An aluminum filter was obtained by heat treatment (firing) for 1 hour.

(実施例6)
上記の実施例1と同じ手順で前駆体微粒子を調製し、この前駆体微粒子の回収率を85%とし、この前駆体微粒子に、粘結成分のシリカが全固形分の15重量%となるように実施例1と同じシリカゾルを粘結剤として加えたのち、さらにその全固形分に対して10重量%の、実施例3と同じポリテトラフルオロエチレンを粘結剤として加え、これに脱イオン水を加えて、固形分濃度が23%の塗布液を調製した。
次いで、上記の実施例1と同様、この塗布液にアルミニウム製のハニカム状基材を2分間浸漬し、静かに取り出して室温で乾燥したのち、120℃で20分間加熱し、その後、400℃で1時間加熱処理(焼成)してアルミニウム製フィルタを得た。
Example 6
Precursor fine particles are prepared in the same procedure as in Example 1 above, and the recovery rate of the precursor fine particles is set to 85%, and the caking component silica is 15% by weight of the total solid content in the precursor fine particles. After adding the same silica sol as in Example 1 as a binder, 10% by weight of the same polytetrafluoroethylene as in Example 3 was added as a binder to the total solid content, and deionized water was added thereto. Was added to prepare a coating solution having a solid concentration of 23%.
Next, as in Example 1 above, an aluminum honeycomb substrate was immersed in this coating solution for 2 minutes, taken out gently, dried at room temperature, heated at 120 ° C. for 20 minutes, and then at 400 ° C. An aluminum filter was obtained by heat treatment (firing) for 1 hour.

(比較例1)
上記の実施例1と同じ手順で前駆体微粒子を調製し、この前駆体微粒子の回収率を85%とし、この前駆体微粒子に脱イオン水を加えて、固形分濃度が23%の塗布液を調製した。
次いで、上記の実施例1と同様、この塗布液にアルミニウム製のハニカム状基材を2分間浸漬し、静かに取り出して室温で乾燥したのち、120℃で20分間加熱し、その後、400℃で1時間加熱処理(焼成)してアルミニウム製フィルタを得た。
(Comparative Example 1)
Precursor fine particles were prepared by the same procedure as in Example 1 above, the recovery rate of the precursor fine particles was set to 85%, deionized water was added to the precursor fine particles, and a coating solution having a solid content concentration of 23% was obtained. Prepared.
Next, as in Example 1 above, an aluminum honeycomb substrate was immersed in this coating solution for 2 minutes, taken out gently, dried at room temperature, heated at 120 ° C. for 20 minutes, and then at 400 ° C. An aluminum filter was obtained by heat treatment (firing) for 1 hour.

上記の各実施例と比較例について、それぞれハニカム状基材の重量に対する触媒担持量を測定した。また、得られた各アルミニウム製フィルタを25cmの高さから10回落下させたときの、それぞれの粒子剥離率を測定した。なお、粒子剥離率は、剥離した粒子量を元の触媒担持量で除した百分率として求めた。これらの測定結果を図3の剥離性対比表に示す。   For each of the above Examples and Comparative Examples, the amount of catalyst supported relative to the weight of the honeycomb substrate was measured. Moreover, each particle peeling rate when each obtained aluminum filter was dropped 10 times from a height of 25 cm was measured. The particle peeling rate was determined as a percentage obtained by dividing the peeled particle amount by the original catalyst carrying amount. These measurement results are shown in the peelability comparison table of FIG.

この測定結果から以下のことが明らかとなった。
(1)粘結剤を用いない比較例1の場合は粒子剥離率が高いことから、低温度酸化触媒が基材の壁面に確りと固定しておらず、フィルタが振動などを受けると微粒子が継続的に離脱し続けるので、フィルタ下流の居住環境等を粉落ちにより汚損する虞がある。これに対し、本発明の各実施例では、いずれも粒子剥離率が低く、フィルタが振動などを受けても微粒子の離脱による粉落ちの発生が防止される。
From the measurement results, the following became clear.
(1) In the case of Comparative Example 1 in which no binder is used, since the particle peeling rate is high, the low temperature oxidation catalyst is not firmly fixed to the wall surface of the base material, and when the filter is subjected to vibration or the like, the fine particles are formed. Since it keeps detaching continuously, there is a risk of polluting the living environment downstream of the filter due to powder falling. On the other hand, in each of the embodiments of the present invention, the particle peeling rate is low, and even if the filter is subjected to vibration or the like, occurrence of powder falling due to separation of fine particles is prevented.

(2)粘結剤としては、シリカゾルを単独で用いるよりも、フッ素系高分子を単独で用いた方が低温度酸化触媒が基材の壁面に確りと固定され、また、シリカゾルとフッ素系高分子との両者を用いると、一層確りと低温度酸化触媒が基材の壁面に固定される。   (2) As a binder, a low temperature oxidation catalyst is more securely fixed to the wall surface of the base material when a fluoropolymer alone is used than when a silica sol is used alone. When both molecules are used, the low temperature oxidation catalyst is more reliably fixed to the wall surface of the substrate.

なお、上記の実施形態や実施例で説明した金属製フィルタは、本発明の技術的思想を具体化するために例示したものであり、金属製基材の材質や形状、低温酸化触媒や粘着剤の成分、配合量などは、上記の実施形態や実施例のものに限定するものではなく、本発明の特許請求の範囲内において種々の変更を加え得るものである。例えば、上記の実施形態や実施例では、塗布液を浸漬により金属製基材の表面に塗布したが、吹付けなど他の手段で塗布液を塗布することも可能である。   The metal filters described in the above embodiments and examples are examples for embodying the technical idea of the present invention. The material and shape of the metal substrate, the low-temperature oxidation catalyst, and the adhesive The components, blending amounts, and the like are not limited to those of the above-described embodiments and examples, and various modifications can be made within the scope of the claims of the present invention. For example, in the above-described embodiments and examples, the coating solution is applied to the surface of the metal substrate by dipping, but the coating solution can be applied by other means such as spraying.

本発明の金属製フィルタは、室温のような低温で一酸化炭素を効率よく長期に亘って除去できる低温酸化触媒を備え、開口率を大きくして圧力損失を抑制しながら、しかも触媒を通風路の内面に確りと保持して粉落ちの発生を防止できるので、特に居住環境においてたばこの喫煙時や暖房器具などから発生する一酸化炭素の除去に好適に利用されるが、他の用途の、低温酸化触媒を備えた金属製フィルタとしても好適に利用される。   The metal filter of the present invention includes a low-temperature oxidation catalyst that can efficiently remove carbon monoxide over a long period of time at a low temperature such as room temperature, while increasing the aperture ratio and suppressing pressure loss, and also ventilating the catalyst. Since it can be securely held on the inner surface of the glass and the occurrence of powder falling can be prevented, it is suitably used for removing carbon monoxide generated from cigarette smoking and heating appliances in the living environment, but for other uses, It is also suitably used as a metal filter provided with a low temperature oxidation catalyst.

本発明の実施形態を示す、金属製フィルタの概略斜視図である。It is a schematic perspective view of a metal filter showing an embodiment of the present invention. 実施形態の、金属製フィルタの要部を拡大した一部破断斜視図である。It is the partially broken perspective view which expanded the principal part of metal filters of an embodiment. 本発明の各実施例と比較例の、粒子剥離率の測定結果対比表である。It is a measurement result comparison table | surface of each particle peeling rate of each Example and comparative example of this invention.

符号の説明Explanation of symbols

1…金属製フィルタ
2…金属製基材
3…通風路
4…基材壁面
5…触媒層
DESCRIPTION OF SYMBOLS 1 ... Metal filter 2 ... Metal base material 3 ... Ventilation path 4 ... Base material wall surface 5 ... Catalyst layer

Claims (12)

金属製基材(2)の厚さ方向に多数の通風路(3)を透設した金属製フィルタであって、低温酸化触媒を粘結成分で基材壁面(4)へ固定した触媒層(5)が、上記の通風路(3)の内面に形成してあることを特徴とする、金属製フィルタ。   A metal filter in which a large number of ventilation paths (3) are permeated in the thickness direction of the metal substrate (2), and a catalyst layer in which a low-temperature oxidation catalyst is fixed to the substrate wall surface (4) with a caking component ( 5) is formed on the inner surface of the ventilation path (3), a metal filter. 上記の低温酸化触媒と粘結成分は、上記の基材壁面(4)へ固定する際に250℃以上に加熱してある、請求項1に記載の金属製フィルタ。   2. The metal filter according to claim 1, wherein the low-temperature oxidation catalyst and the caking component are heated to 250 ° C. or higher when being fixed to the substrate wall surface (4). 上記の粘結成分が、金属酸化物とシリカとフッ素系高分子との少なくともいずれかを含む、請求項1または請求項2に記載の金属製フィルタ。   The metal filter according to claim 1 or 2, wherein the caking component includes at least one of a metal oxide, silica, and a fluorine-based polymer. 上記の低温酸化触媒が、貴金属微細粒子と遷移金属の酸化物微細粒子とを表面に担持した酸化物微粒子からなる、請求項1から3のいずれか1項に記載の金属製フィルタ。   The metal filter according to any one of claims 1 to 3, wherein the low-temperature oxidation catalyst comprises oxide fine particles having precious metal fine particles and transition metal oxide fine particles supported on a surface thereof. 上記の酸化物微粒子が、酸化チタンと酸化アルミニウムとシリカとの少なくともいずれかの微粒子を含む、請求項4に記載の金属製フィルタ。   The metal filter according to claim 4, wherein the oxide fine particles include fine particles of at least one of titanium oxide, aluminum oxide, and silica. 上記の遷移金属が、ニッケルと銅とコバルトと鉄とマンガンとそれらの化合物の少なくともいずれかを含む、請求項4または5に記載の金属製フィルタ。   The metal filter according to claim 4 or 5, wherein the transition metal includes at least one of nickel, copper, cobalt, iron, manganese, and a compound thereof. 上記の貴金属微細粒子が、白金と金とパラジウムとそれらの化合物との少なくともいずれかを含む、請求項4から6のいずれか1項に記載の金属製フィルタ。   The metal filter according to any one of claims 4 to 6, wherein the noble metal fine particles include at least one of platinum, gold, palladium, and a compound thereof. 上記の触媒層(5)の厚さが、2〜40μmである、請求項1から7のいずれか1項に記載の金属製フィルタ。   The metal filter according to any one of claims 1 to 7, wherein the catalyst layer (5) has a thickness of 2 to 40 µm. 上記の通風路(3)が、90%以上の開口率を有する、請求項1から8のいずれか1項に記載の金属製フィルタ。   The metal filter according to any one of claims 1 to 8, wherein the ventilation path (3) has an opening ratio of 90% or more. 低温酸化触媒の微粒子と粘結剤とを混合して塗布液を調製し、
厚さ方向に透設された多数の通風路(3)を備える金属製基材(2)の、各通風路(3)の内面に上記の塗布液を塗布したのち、250℃以上に加熱処理して上記の低温酸化触媒を粘結成分で基材壁面(4)へ固定することを特徴とする、金属製フィルタの製造方法。
Mix the fine particles of the low-temperature oxidation catalyst and the binder to prepare a coating solution,
After applying the above coating liquid to the inner surface of each ventilation path (3) of a metal base (2) having a large number of ventilation paths (3) provided in the thickness direction, heat treatment is performed at 250 ° C. or higher. Then, the low-temperature oxidation catalyst is fixed to the substrate wall surface (4) with a caking component.
貴金属水酸化物の微細粒子と遷移金属水酸化物の微細粒子とを酸化物微粒子の表面に担持させた前駆体微粒子を調製し、
上記の前駆体微粒子と粘結剤とを混合して塗布液を調製し、
厚さ方向に透設された多数の通風路(3)を備える金属製基材(2)の、各通風路(3)の内面に上記の塗布液を塗布したのち、250℃以上に加熱処理して上記の前駆体微粒子を、酸化物微粒子の表面に貴金属微細粒子と遷移金属の酸化物微細粒子とが担持された低温酸化触媒にするとともに、この低温酸化触媒を粘結成分で基材壁面(4)へ固定することを特徴とする、金属製フィルタの製造方法。
Prepare precursor fine particles in which fine particles of noble metal hydroxide and fine particles of transition metal hydroxide are supported on the surface of oxide fine particles,
Prepare the coating solution by mixing the precursor fine particles and the binder,
After applying the above coating liquid to the inner surface of each ventilation path (3) of a metal base (2) having a large number of ventilation paths (3) provided in the thickness direction, heat treatment is performed at 250 ° C. or higher. Then, the precursor fine particles are converted into a low-temperature oxidation catalyst in which noble metal fine particles and transition metal oxide fine particles are supported on the surface of the oxide fine particles, and the low-temperature oxidation catalyst is bonded to the substrate wall surface with a caking component. (4) It fixes to (4), The manufacturing method of a metal filter characterized by the above-mentioned.
上記の粘結剤が、金属酸化物またはシリカのゾル或いはゲルと、フッ素系高分子のエマルションとの少なくともいずれかを含有する、請求項10または請求項11に記載の金属製フィルタの製造方法。   The method for producing a metal filter according to claim 10 or 11, wherein the binder contains at least one of a metal oxide or silica sol or gel and a fluoropolymer emulsion.
JP2005178937A 2005-06-20 2005-06-20 Metal filter and its manufacturing method Pending JP2006346645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178937A JP2006346645A (en) 2005-06-20 2005-06-20 Metal filter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178937A JP2006346645A (en) 2005-06-20 2005-06-20 Metal filter and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006346645A true JP2006346645A (en) 2006-12-28

Family

ID=37643036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178937A Pending JP2006346645A (en) 2005-06-20 2005-06-20 Metal filter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006346645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172849A (en) * 2009-01-30 2010-08-12 Osaka Univ Carbon monoxide oxidation catalyst, method of manufacturing the same and carbon monoxide removal filter
JP2013208621A (en) * 2013-07-01 2013-10-10 New Cosmos Electric Corp Carbon monoxide oxidation catalyst and method for producing the same
CN106824153A (en) * 2017-03-21 2017-06-13 中原工学院 TiO2The preparation method and applications of/Ludox
JP7434711B2 (en) 2019-02-22 2024-02-21 トヨタ紡織株式会社 Air filter for fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172849A (en) * 2009-01-30 2010-08-12 Osaka Univ Carbon monoxide oxidation catalyst, method of manufacturing the same and carbon monoxide removal filter
JP2013208621A (en) * 2013-07-01 2013-10-10 New Cosmos Electric Corp Carbon monoxide oxidation catalyst and method for producing the same
CN106824153A (en) * 2017-03-21 2017-06-13 中原工学院 TiO2The preparation method and applications of/Ludox
CN106824153B (en) * 2017-03-21 2019-12-27 中原工学院 TiO2Preparation method and application of silica sol
JP7434711B2 (en) 2019-02-22 2024-02-21 トヨタ紡織株式会社 Air filter for fuel cell system

Similar Documents

Publication Publication Date Title
TWI826408B (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JP6078336B2 (en) Photocatalyst carrier and method for producing the same
JP2004002176A (en) Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same
WO2015072567A1 (en) Denitration catalyst and method for producing same
JP2006346645A (en) Metal filter and its manufacturing method
JP5612050B2 (en) Method for producing metal particle supported catalyst
JP2017170441A (en) Photocatalytic filter for degrading mixed gas efficiently and manufacturing method thereof
JP2007098197A (en) Manufacturing method of photocatalyst material
JP2010214366A (en) Carrier for toxic gas decomposition catalyst and method of producing the same
WO2011118695A1 (en) Tungsten oxide secondary structure having antimicrobial activity
JPH03154636A (en) Deodorization catalyst
JP2008104996A (en) Photocatalyst, coating liquid for forming photocatalyst and method for manufacturing photocatalyst
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JP5503155B2 (en) Carbon monoxide removal filter
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
JP2005163243A (en) Photocatalyst-carrying fibrous formed body
JP2008207161A (en) Method of manufacturing air purification material, air purification material, and apparatus and method of purifying air
JP2020062627A (en) Ammonia cleaning catalyst
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP4277226B2 (en) Catalyst for oxidizing metal mercury, catalyst for purifying exhaust gas provided with catalyst for oxidizing metal mercury, and method for producing the same
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP2001300301A (en) Gas adsorptive body and its application method
JP2008221111A (en) Photocatalytic filter and its production method
JP2005052713A (en) Carbon fiber supported porous titanium oxide photocatalyst and filter