JP2004002176A - Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same - Google Patents

Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same Download PDF

Info

Publication number
JP2004002176A
JP2004002176A JP2003109671A JP2003109671A JP2004002176A JP 2004002176 A JP2004002176 A JP 2004002176A JP 2003109671 A JP2003109671 A JP 2003109671A JP 2003109671 A JP2003109671 A JP 2003109671A JP 2004002176 A JP2004002176 A JP 2004002176A
Authority
JP
Japan
Prior art keywords
glass fiber
photocatalyst
porous
fiber cloth
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003109671A
Other languages
Japanese (ja)
Inventor
Takeaki Kitamura
北村 武昭
Juichi Ino
猪野 寿一
Ryuji Masuda
増田 竜司
Hidetoshi Fukuchi
福地 英俊
Hiroshi Tougeda
垰田 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Muki Co Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd, Nippon Sheet Glass Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2003109671A priority Critical patent/JP2004002176A/en
Publication of JP2004002176A publication Critical patent/JP2004002176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst supporting glass fiber textile provided with a strength durable against pressure loss which is necessary and indispensable as an air filter and capable of rapidly adsorbing the large quantity of a harmful gas such as formaldehyde to decompose and remove it and to provide a method of forming a porous layer on the surface of the glass fiber textile and an air filter apparatus using the photocatalyst supporting glass fiber textile. <P>SOLUTION: The photocatalyst supporting glass fiber textile is formed by supporting a photocatalyst on the surface of the porous glass fiber textile having 100-400 m<SP>2</SP>/g specific surface area. The porous glass fiber textile is obtained preferably by acid-treating the glass fiber textile to form the porous layer on the surface of the fiber. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、光触媒担持ガラス繊維布、その製造方法およびクリーンルームまたは居住空間などの空気清浄に利用されるエアフィルター装置に関する。
【0002】
【従来の技術】
現在、半導体または電子部品などの精密機器の製造工場などではクリーンルームが、また食品、薬品または化学工場などでは少なくともエアフィルター装置が必要不可欠となっている。あるいは、近年では一般住宅または病院などの公共施設において高気密・高断熱化が進み、その弊害として、建築部材から放出されるホルムアルデヒドなどの揮発性有機化合物または半揮発性有機化合物(以下、これらをまとめて「VOCなど」と称する)によるシックハウス症候群の問題、または匂いガスの残留の問題が生じており、これらの問題を解決するために、一般的な居住空間にもエアフィルター装置の導入が進んでいる。
【0003】
これまでVOCなどまたは匂いガスを除去する種々の方法が開発され、それらを応用したエアフィルター装置が種々存在する。たとえば、特許文献1、特許文献2、特許文献3または特許文献4には、ガラス繊維またはその織布の表面に酸化チタンなどの光触媒をゾルゲル法などにより固着させたフィルターが記載されている。
【0004】
また、特許文献5には、分相法(酸処理を含む)またはゾルゲル法を用いて形成した多孔質ガラス膜の表面および内部に光触媒を固着させたフィルターが記載されている。同様に特許文献6には、形成方法が不明である表面および内部が多孔質のガラス膜に、光触媒を固着させたフィルターが記載されている。
【0005】
さらに、特許文献7には、エアフィルターではないが、γ−アルミナ、シリカゲルまたはガラスなどを1,000℃程度に加熱して分相させた後、アルカリまたは酸で処理してその表面を多孔質化させ、さらにその表面に光触媒を固着させた壁材が記載されている。
【0006】
【特許文献1】
特開平12−176246号公報
【特許文献2】
特開2000−199173公報
【特許文献3】
特開平6−320010号公報
【特許文献4】
特開平8−309122号公報
【特許文献5】
特開2000−317315公報
【特許文献6】
特開2001−239168公報
【特許文献7】
特開2002−45650公報
【0007】
【発明が解決しようとする課題】
ところが、前記特許文献2に記載のエアフィルター装置では、表面が平滑な通常のガラス繊維またはその織布に光触媒を固着させただけであったため、VOCなどと接触できる光触媒の面積が小さく、その分解除去能力が限られていた。
【0008】
また、特許文献5および特許文献6に記載のフィルターでは、多孔質ガラスの膜を形成することから、その膜を支持する何らかの基材が必要不可欠であり、製造部材数が増え、その製造工程が複雑になる問題があった。さらに、均一で外部表面積の大きな多孔質ガラスの膜を形成することは極めて困難であるため、これらのフィルターは、実験室レベルでは好ましい結果が得られても、工業的な大規模のエアフィルター装置には利用できなかった。
【0009】
あるいは、特許文献7に記載の壁材では、光触媒を担持する基材としてγ−アルミナが主に検討されており、たとえばガラス繊維にγ−アルミナと同じ加熱処理を行った場合、ガラス繊維が熔融したり、あるいはその表面に形成される多孔質層の平均細孔径が大きくなりすぎて、上記同様に光触媒による分解除去能力が不足したりする問題があった。また、壁材では動的な気流に対して強度が不足するため、これをエアフィルターとして利用することはできなかった。
【0010】
この発明は、以上のような問題点に着目してなされたものである。その目的とするところは、エアフィルターとして必要不可欠な圧力損失に耐えうる強度を備え、かつ、VOCなどおよび匂いガスをすばやく多量に吸着でき、かつ、その吸着物を効率的に分解除去できる光触媒担持ガラス繊維布を提供することにある。さらには、そのガラス繊維布を構成するガラス繊維の少なくとも表面を簡便確実に多孔質化する方法、ならびにそのガラス繊維布を用いたエアフィルター装置を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明は100〜400m/gの比表面積を有する多孔質ガラス繊維布の表面に光触媒を担持してなる光触媒担持ガラス繊維布である。
【0012】
本発明者らは、エアフィルターに関するVOCなどの吸着能力および分解除去能力について鋭意研究した結果、圧力損失に耐えうる強度を確保するため多孔質ガラス繊維布例えば多孔質ガラス繊維織布を基材としてこれに光触媒を担持させて利用する場合、光触媒担持前の多孔質ガラス繊維織布の比表面積が100〜400m/gのときにVOCなどおよび匂いガスが最も効率的に除去されることを見出した。細孔はガラス繊維布を構成するガラス繊維の表面層にのみ存在していてもよいが、ガラス繊維の中心層に至るまで伸びていてもよい。この比表面積の値は、光触媒を担持させる前の多孔質ガラス繊維布についての窒素吸着BET法による測定に基づくものである。比表面積が大きいほど、毛管現象により物理吸着または化学吸着の容量が大きくなる。しかし、比表面積が400m/gを超えると、ガラス繊維布の強度が不足して、その取扱いが困難になる。一方、100m/g未満の場合は、VOCなどおよび匂いガスと接触する光触媒の面積が小さすぎて、その分解除去に時間を要するようになる。さらに好ましい範囲は、200〜400m/gである。ちなみに、比表面積が300m/gの場合、そのガラス繊維布1g当りで、直径1.0nmのガス分子を3.0×10個細孔内に単分子吸着できる。
【0013】
また、ガラス繊維布に形成される多孔質層の平均細孔径(光触媒担持前))をもって、VOCなどが効率的に除去される好適範囲を表すことができる。すなわち、その好適範囲は1.0〜30nmである。この平均細孔径は、窒素吸着Inkley法による測定値である。平均細孔径が30nmを超える場合は、VOCなどの分子と比べて細孔径が大きすぎるため、それらの吸着が非効率的になる。一方、1.0nm未満であると、光触媒が細孔内にうまく入り込めず、ガラス繊維布の単位表面積当りの光触媒担持量が不足し、VOCなどの分解除去が非効率的になる。さらに好ましい範囲は1.0〜20nmである。
【0014】
本発明における多孔質ガラス繊維布としては多孔質ガラス繊維の織布または多孔質ガラス繊維の不織布が用いられる。以下、多孔質ガラス繊維の織布を用いる場合について説明する。
【0015】
ガラス繊維織布の外部表面積は、0.20〜0.70m/gが好ましく、さらには0.35〜0.63m/gが好適である。ここで、外部表面積とは、ガラス繊維は少なくとも表面に多孔質層を備えるものであるが、その多孔質層が存在せずガラス繊維の表面が平滑であると仮定した場合におけるガラス繊維織布の単位重量当りの表面積をいう。具体的には、つぎの式により求められる。
【0016】
外部表面積=(番手当りのガラス繊維の外周全面積/番手重量)/(酸処理後の比重/酸処理前の比重)
【0017】
ここで、「番手当りのガラス繊維の外周全面積」および「番手重量」は、ガラス繊維の規格から計算により求められる。一方、「酸処理後の比重」および「酸処理前の比重」については、つぎのアルキメデス法で測定する。ガラス繊維織布を白金(Pt)細線で天秤に吊るし、その重量を測る。つぎに、天秤に吊るした状態で純水を入れたビーカ中にガラス繊維織布を沈め、その減少重量(「空気中の重量」−「水中の重量」)を測定する。そして、つぎの式より、ガラス繊維織布の比重を求める。
【0018】
比重=((ガラス繊維織布の重量/純水中での減少重量)×純水の密度)+空気の密度×(1−(ガラス繊維織布の重量/純水の重量))
【0019】
したがって、この外部表面積は、ガラス繊維の平均径と反比例する。外部表面積が0.70m/gを超える場合は、ガラス繊維が細すぎるため、ガラス繊維自体の製造コストが格段に高くなり、さらに後述の酸処理によってその強度が著しく低下する。一方、0.20m/g未満であると、ガラス繊維が太くなりすぎるため、その強度は十分であってもVOCなどの分解除去能力が不足し易く、それを補うためガラス繊維織布を幾層も重ねて厚くすれば、エアフィルター装置の単位時間当りのガス流量が小さくなりすぎるという問題が生じる。外部表面積が0.20〜0.70m/gのガラス繊維は、その平均径がおよそ5〜9μmである。なお、繊維径の異なる2種類以上のガラス繊維を混合してもよい。
【0020】
ガラス繊維としては、組成中に酸可溶成分を有するものが用いられる。そして少なくとも表面に多孔質層を形成し易く、かつ、安価に入手できるEガラス組成からなるものが好ましい。このEガラス組成の一般的な組成成分含有率を表1に示す。
【0021】
【表1】
━━━━━━━━━━━━━━━
成分      重量%
───────────────
SiO     52〜56
Al    12〜18
CaO     16〜25
MgO      0〜6
      5〜13
O      0〜3
TiO     0〜0.4
Fe   0.05〜0.5
       0〜0.5
━━━━━━━━━━━━━━━
ただしROはNaOおよびKOの
いずれか一方または両方の合計を示す。
【0022】
参考までに、市販されている5種類のEガラス組成からなるガラス繊維の組成成分含有率を表2に示す。
【0023】
【表2】

Figure 2004002176
ただしROはNaOおよびKOの
いずれか一方または両方の合計を示す。
【0024】
ガラス繊維は、酸溶液中に浸漬するなどの酸処理を施された場合、その中の酸可溶性成分例えばB、CaO、RO等が表面から徐々に溶出して、その表面に多孔質層が形成される。多孔質層が形成された後に織機を用いて織布に加工すると、ガラス繊維の滑りが悪いため、糸切れが頻発する。そのため、前記酸処理は、ガラス繊維を織布に加工した後に施されることが好ましい。
【0025】
このガラス繊維の織り方は、朱子織、綾織または模紗織などが好ましく、平織は好ましくない。平織は、朱子織、綾織または模紗織と比較して外部表面積が小さいため、VOCなどおよび匂いガスの吸着が非効率的になるからである。また、ガラス繊維織布の目付けは100〜1,000g/mが好ましく、その厚さは0.1〜1.0mmが好適である。織り方が朱子織、綾織または模紗織であっても、その目付けが100g/m未満で、かつ、厚さが0.1mm未満では、外部表面積が十分に確保できない。一方、その目付けが1,000g/mを超え、かつ、厚さが1.0mmを超えると、エアフィルターとしての加工および取扱いが困難になる。たとえば、一般的な家庭用エアフィルターの場合、ガス流量が10m/分、圧力損失が100Pa以下、除去率が95%であることが要求される。この要件を充たすためには、5〜9μmのEガラス組成からなるガラス繊維を模紗織にした外部表面積600mのエアフィルターであれば、その目付けは343g/mである必要がある。
【0026】
酸処理は、その方法をとくに限定されるものではないが、たとえばガラス繊維織布を塩酸などの酸水溶液に所定時間浸漬し、必要に応じて昇温あるいは攪拌した後、水洗いを行い、乾燥させる一連の処理が挙げられる。ここで、用いる酸水溶液の濃度、昇温温度および浸漬時間などの諸条件は、酸の種類、必要とする酸処理の程度(酸処理後のガラス繊維の比表面積)などによって適宜決定される。たとえば、平均径9μmのEガラス組成からなるガラス繊維を朱子織にしたガラス繊維織布に対して酸処理を施す場合は、30〜70℃に維持した1.5〜6.0規定の酸水溶液中に、前記ガラス繊維織布を6〜24時間程度浸漬することにより、その比表面積を100〜400m/gにまで確実に高めることができる。1.5規定未満の酸水溶液を用いた場合は、所望の多孔質形状を形成するまでに長時間を要したり、多孔質化できない場合もある。一方、6.0規定を超える酸水溶液を用いると、酸による腐蝕が急激なため、多孔質形状を時間によって調整することが困難になる。また、温度についても同様のことが言え、30℃未満の場合は、所望の多孔質形状を形成するまでに長時間を要し、一方70℃を超えると、多孔質形状の時間による調整が困難になる。
【0027】
ガラス繊維織布には、紡糸のときに塗布した集束剤または織布に加工する際に塗布した滑剤などを除去する目的で、酸処理の前に加熱処理を施す方が好ましい。しかし、この加熱処理は、不要な付着物を除去するためのものであり、特許文献7に記載のようなγ−アルミナを分相させ、アルカリまたは酸に対して溶解し易い成分を表面層に移動させるものであってはならない。この発明では、γ−アルミナではなく、上記表1に記載の多成分系のガラス繊維を使用するため、分相が生じた場合には、ガラス繊維の多孔質層における平均細孔径が大きくなりすぎて、上記好適範囲に収まらなくなるばかりか、ガラス繊維の強度が著しく劣化する問題が生じる。ガラス繊維を分相させることなく、不要な付着物を除去するためには、加熱温度を600℃以下に抑えることが好ましい。
【0028】
以上は、本発明における多孔質ガラス繊維布として多孔質ガラス繊維の織布を用いる場合について説明したが、多孔質ガラス繊維の不織布も同様に用いることができる。また多孔質ガラス繊維は上記の酸処理によるものの他に、例えばゾルゲル法で製造した多孔質シリカ繊維を使用することができる。
【0029】
ガラス繊維の不織布は主としていわゆるガラス短繊維を用いて抄造法、乾式積層法等によって製造される。ガラス短繊維は、その形状をとくに限定されるものではないが、平均径0.3〜20μm、平均長さ1〜50mmが好ましい。短繊維の平均径が0.3μm未満の場合は、製造コストが著しく高くなり、また多孔質層を形成した場合、強度が著しく低下し、その取り扱いが困難となる。一方、平均径が20μmを超えると、短繊維が剛直で絡まり難くなり、加えて短繊維の比表面積が小さく光触媒の付着率が低くなり、光触媒活性が低く抑えられてしまう。また、平均長さが1mm未満の場合は、短繊維同士の絡みが弱くなり不織布の引張強度が低下する。一方、平均長さが50mmを超えると、その繊維の開繊性が低下し、不織布に均一に分散させることが難しくなり、結果として均一なガラス繊維不織布を作製することが困難になる。ガラス繊維不織布の目付けは5g/m〜1,500g/mが好ましく、その厚さは0.03〜5.0mmが好適である。
【0030】
酸処理されたガラス繊維布は、表面が固体酸の活性なシリカ(酸化ケイ素)質であり、かつ、その比表面積が極めて大きいので、極性ガスを多量に吸着することができる。このガラス繊維布に光触媒を固着させることにより、VOCなどおよび匂いガスを高効率で分解除去することができる。多孔質ガラス繊維布に対する光触媒の付着量は0.1〜40重量%であることが好ましく、0.5〜20重量%であることがより好ましい。
【0031】
光触媒としては、その種類をとくに限定されるものではなく、公知の酸化チタンまたは酸化亜鉛などを利用することができる。また、ガラス繊維布の多孔質層に光触媒を固着させる方法は、とくに限定されるものではなく、公知の手段をそのまま利用することができる。たとえば、CVD法などの化学蒸着法、スパッタリング法などの物理蒸着法、ゾルゲル法によるコーティング、あるいは光触媒の超微粒子を付着させた後に加熱して固着させる方法などが挙げられる。これらの中でも、汎用の生産装置が利用でき、かつ、材料の入手が容易なつぎの方法が好ましい。一つは、チタニア(酸化チタン)ゾルをゾルゲル法を用いてコーティングする方法、もう一つは、平均径10nm以下のチタニアの超微粒子を分散させた溶液中にガラス繊維布を浸漬し、その後加熱して固着させる方法である。このゾルゲル法によるチタニアゾルのコーティングでは、ガラス繊維布をチタニアゾル溶液中に浸漬した後に、乾燥させ、焼成することから、ガラス繊維と酸化チタンとの間にSi−O−Ti結合が形成され、それにより酸化チタンのガラス繊維に対する付着力が極めて強くなる。チタニアゾルの前駆体としては、チタンアルコキシド、チタン塩化物、チタン硫化物またはチタン酢酸塩などが挙げられ、アルコール類を相溶性溶媒とする場合は、チタンアルコキシドが好ましく、水を相溶性溶媒とする場合は、チタン塩化物、チタン硫化物またはチタン酢酸塩が好ましい。しかし、前記前駆体と有機物とが相溶する場合は、どの組み合わせを選択してもかまわない。
【0032】
光触媒として酸化チタンを利用する場合は、アナターゼ型の酸化チタンが好ましい。アナターゼ型は、ルチル型またはブルッカイト型と比べて、光触媒としての反応性が高いからである。ただし、アナターゼ型の酸化チタンは、加熱により収縮するため、上記の方法において加熱焼成する場合は、その温度および時間には十分留意する必要がある。
【0033】
また、ガラス繊維布の多孔質層には、白金、ロジウム、ルテニウム、金、銀もしくは銅などの貴金属またはそれらの硝酸塩、硫酸塩もしくは酢酸塩(以下、これらをまとめて「貴金属類」と称する)を光触媒と共に並存させることが好ましい。貴金属類を光触媒と並存させることにより、光触媒の反応性をさらに高めることができる。ガラス繊維布の多孔質層に貴金属類を固着させる方法は、とくに限定されるものではなく、また光触媒の固着処理とその前後を問わない。この貴金属類を固着させる方法としては、たとえば貴金属類の金属イオン水をガラス繊維布に吹き付ける方法、同金属イオン水にガラス繊維布を浸漬した後に光を照射する方法、あるいは同金属イオン水にガラス繊維布を浸漬した状態で光を照射する方法が挙げられる。前記光照射により、光還元めっき機構が作用し、貴金属類はガラス繊維布の多孔質層に強固に付着することができる。
【0034】
また、ガラス繊維布に対するガスの吸着効果を高めるために、光触媒で分解されないような無機で吸着性能を持つ材料、例えばアパタイトを光触媒と組み合わせることができる。ここでアパタイトとは、リン酸三カルシウム、リン酸八カルシウムのようなリン酸カルシウム(狭義のアパタイト)、水酸アパタイト、炭酸アパタイトおよびフッ化アパタイトのいずれか1種またはこれら2種以上の混合物を指す。
【0035】
アパタイトは酸処理されたガラス繊維布に光触媒を固着させた上に、形成されてもよく、酸処理されたガラス繊維布上にアパタイトを形成した後、光触媒を固着させてもよい。また、アパタイトと光触媒を混合して固着させたり、複合化させてもよい。
【0036】
多孔質ガラス繊維布に対するアパタイトの付着量は0.1〜40重量%であることが好ましい。0.1重量%未満であると吸着効果が現れず、一方40重量%を超えるとガラス布を酸処理した効果が薄れたり、光触媒の上に形成する場合は光触媒活性が低下したりする。さらに好ましくは0.5〜20重量%である。
【0037】
アパタイトを形成する方法は特に限定されるものではなく、pH等を調整した疑似体液中に基材である多孔質ガラス繊維布または光触媒坦持多孔質ガラス繊維布を浸漬する一般的な方法が利用できる。 例えばNa、K、Cl、Ca、P、Mg等のイオンを含有しかつpH7〜8の疑似体液中に25℃〜60℃で10〜30日程度、より好ましくは30℃〜40℃の疑似体液中に20分〜1時間程度浸漬することにより、水酸化カルシウムとリン酸イオンとの反応で生成するアパタイト(リン酸カルシウム)を多孔質ガラス繊維の表面層上に析出させることができる。
【0038】
また、光触媒作用を有する金属酸化物がアパタイト結晶構造中にイオン交換によって金属修飾アパタイトを形成したり、金属酸化物の所定量の金属イオンをあらかじめアパタイトの構成イオンに添加しておいて、両者の共存下において共沈法によって金属修飾アパタイトを形成してもよい。
【0039】
リン酸カルシウムは多孔質でありしかも菌やカビなどの生体構成成分である蛋白質や糖質などとの親和性(生体親和性)が大きいため、菌やカビなどの微生物を効率的に吸着できる。したがって、光触媒を固着したガラス繊維布と組み合わせることで菌やカビなどの微生物を迅速且つ連続的に酸化還元分解することができる。また、菌やカビなどの生命活動にて産生され菌体外に放出される悪臭物質の発生も防止することができる。
【0040】
本発明におけるガラス繊維布は、酸処理前に全く加熱されないかまたは加熱されても300℃以下であれば、その平均細孔径が比較的小さいため、分子量30〜120程度のアルデヒド類、アルコール類、ケトン類、キシレン、トルエン、ベンゼン、スチレンまたはフェノールなどのVOC、あるいはアンモニア、一酸化窒素、二酸化窒素、硫化水素または二酸化硫黄などの匂いガスの分解除去に適する。一方、酸処理前に300〜600℃で加熱した場合には、平均細孔径が少し大きくなるため、分子量120〜300程度のリン酸トリブチル(TBP)、フタル酸ジオクチル(DOP)、フタル酸ジブチル(DBP)またはフタル酸ジエチル(DEP)など半揮発性有機化合物の分解除去に適するようになる。
【0041】
この光触媒を多孔質層に備える光触媒担持ガラス繊維布は、水または空気中の汚濁物質を分解するための手段、例えばクリーンルームまたは居住空間などの空気清浄に利用されるエアフィルター装置、内装壁材等に用いられる。
【0042】
【発明の実施の形態】
以下、実施例により、この発明をさらに具体的に説明する。なお、下記の実施例に限定するものではない。
(実施例1)
上記表2のNo(i)のEガラス組成からなるガラス繊維(平均繊維径9μm)を模紗織した織布(目付け363g/m、厚さ0.43mm)に加熱処理を施すことなく、45℃で3.0規定の塩酸水溶液中に24時間浸漬し、その後十分に水洗いし乾燥させて、その表面に多孔質層を形成した。この多孔質層を備えるガラス繊維織布について、窒素吸着BET法により「比表面積」を、窒素吸着Inkley法により「平均細孔径」を測定し、ならびにガラス繊維の規格および酸処理の前後における比重測定値から「外部表面積」を算出した。これらの測定値および計算値を表3に示す。
【0043】
つぎに、チタンイソプロプロキシド760gと有機物樹脂400gとをエチルアルコール840gに溶解させた溶液中に、上記多孔質ガラス繊維織布を浸漬し、その多孔質層に酸化チタンの前駆体を斑なく均一に付着させた。この織布を、60℃で1時間乾燥させ、その後毎分1℃のペースで350℃まで昇温し、そのまま12時間焼成した。この加熱処理で有機物樹脂は完全に除去され、またチタンイソプロキシドはアナターゼ型を主体とする酸化チタンに変化し、多孔質層の表面および細孔内に強固に固着した。酸化チタンの付着量は多孔質ガラス繊維布に対して3.0重量%であった。
【0044】
このようにして製造した光触媒担持ガラス繊維織布について、つぎの方法により、VOCなどの分解除去能力を測定した。
【0045】
〔密閉系による分解除去試験〕
上記の光触媒担持ガラス繊維織布を10×10cmに切り出し、これを浄化用ファンと注入ガスを拡散する拡散ファンとを備える容積約54Lの密閉型容器中に配置した。この密閉型容器中にホルムアルデヒドガスを注入し、拡散ファンにDC10Vを一定に印加して十分に拡散させた後に、その初期濃度を測定した。その後、直ちにブラックライトを点灯させ、この織布の表面において0.7mW/cmの紫外線を照射しつつ浄化用ファンにもDC10Vを印加し、30分経過した後にホルムアルデヒドガス濃度を測定した。この初期濃度と30分経過時の濃度とから、ホルムアルデヒドガスの除去率を算出した。この除去率は、つぎの算出式に基づく。
【0046】
除去率(%)=100×((初期濃度)−(30分後の濃度))/(初期濃度)
【0047】
この初期濃度が5、20および40ppmの場合における各除去率を表4に示す。
【0048】
(実施例2)
ガラス繊維織布を400℃で6時間加熱処理(分相生じず)した後に酸処理した以外は実施例1と同様にして、多孔質層を形成し、また酸化チタンを固着させた(酸化チタン付着量3.0重量%)。この織布の比表面積などを表3に、その分解除去能力を表4にそれぞれ示す。
【0049】
(比較例1)
ガラス繊維織布を700℃で加熱処理し分相させた後に酸処理した以外は実施例1と同様にして、多孔質層を形成し、また酸化チタンを固着させた(酸化チタン付着量3.5重量%)。この織布の比表面積などを表3に、その分解除去能力を表4にそれぞれ示す。
【0050】
(比較例2)
ガラス繊維織布に酸処理を施さず多孔質層を形成しなかった以外は実施例1と同様にして、ガラス繊維織布の表面に酸化チタンを固着させた(酸化チタン付着量2.8重量%)。この織布の比表面積などを表3に、その分解除去能力を表4にそれぞれ示す。
【0051】
(比較例3)
厚さ0.5mmの酸化ケイ素97%からなるガラス板を700℃で加熱処理し分相させた後、酸処理を施して、その表面を多孔質化させた。この多孔質ガラス膜(比表面積35m/g 平均細孔径65.9nm)をイソプロピルチタネート溶液に浸漬し、つづいて0.1規定の塩酸水溶液中に3時間浸漬して加水分解させた後、120℃で1時間乾燥させた。この操作を3回繰り返したものを、550℃にて15時間焼成し、多孔質ガラス膜中に酸化チタンを分散含有させた(酸化チタン含有量3.0重量%)。この多孔質ガラス膜の比表面積などを表3に、その分解除去能力を表4にそれぞれ示す。なお、この多孔質ガラス膜は、特許文献5の実施例に準じて作製したものである。
【0052】
(実施例3)
実施例1と同様にして作製した多孔質層を備えるガラス繊維織布を、平均径7nm(石原テクノ社製)のチタニア超微粒子ゾル溶液(STS−02)50gをpH1の塩酸水溶液950gに加え十分に溶解させた溶液中に浸漬した。その後、150℃で乾燥させ、さらに450℃で20分焼成し、酸化チタンをガラス繊維織布に固着させた(酸化チタン付着量2.5重量%)。この織布の比表面積などを表3に、そしてその分解除去能力を表4にそれぞれ示す。
【0053】
(比較例4)
比較例1で作製したガラス繊維織布に、実施例3と同様の手段により酸化チタンを固着させた(酸化チタン付着量3.5重量%)。この織布の比表面積などを表3に、そしてその分解除去能力を表4にそれぞれ示す。
【0054】
【表3】
Figure 2004002176
【0055】
表3より、ガラス繊維織布を加熱処理しないで酸処理した実施例1,3および加熱処理するが分相させない実施例2では100m/g以上の比表面積および1.0〜30nmの平均細孔径が得られる。これに対して、ガラス繊維織布を高温で加熱処理して分相させた後酸処理を行った比較例1,4およびガラス膜を加熱処理して分相させた後酸処理を行った比較例3では、得られる比表面積は100m/g未満であり平均細孔径は30nmよりも大きくなることが判る。
【0056】
【表4】
Figure 2004002176
【0057】
表4より、実施例1〜3の光触媒担持ガラス繊維織布では5ppmのホルムアルデヒドガス25mlを0.1〜1.0秒程度で84%以上除去できることが判る。
【0058】
【発明の効果】
この発明の光触媒担持ガラス繊維布は、加熱処理および酸処理などを施されても、ガラス繊維本来の強度を大きく損なうことがないので、エアフィルター装置に利用された場合でも、その圧力損失に十分に耐えられる。また、ガラス繊維の表面に形成される多孔質層は、比表面積が比較的大きく、かつ、細孔径が適当な大きさで、かつ、外部表面積も比較的大きいという特徴があるので、この多孔質層に光触媒を固着させれば、VOCなどおよび匂いガスをすばやく多量に吸着し、さらに分解除去することができる。また、このガラス繊維布は、ガラス繊維を織り込んだ後に加熱処理および酸処理を施すので、取扱い性に優れ、エアフィルター装置に容易に組み込むことができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photocatalyst-supporting glass fiber cloth, a method for producing the same, and an air filter device used for purifying air in a clean room or a living space.
[0002]
[Prior art]
At present, a clean room is indispensable in a factory for manufacturing precision equipment such as semiconductors or electronic components, and at least an air filter device is indispensable in a food, drug or chemical factory. Alternatively, in recent years, high airtightness and high heat insulation have been promoted in public facilities such as general houses or hospitals, and as a harmful effect, volatile organic compounds such as formaldehyde or semi-volatile organic compounds (hereinafter referred to as formaldehyde) released from building components. The problem of sick house syndrome or the problem of odor gas remaining due to "VOC or the like" has arisen. In order to solve these problems, introduction of air filter devices into general living space has been advanced. In.
[0003]
Until now, various methods for removing VOCs and the like or odor gas have been developed, and there are various air filter devices using these methods. For example, Patent Literature 1, Patent Literature 2, Patent Literature 3, or Patent Literature 4 describes a filter in which a photocatalyst such as titanium oxide is fixed to the surface of glass fiber or its woven fabric by a sol-gel method or the like.
[0004]
Patent Document 5 describes a filter in which a photocatalyst is fixed on the surface and inside of a porous glass film formed by a phase separation method (including an acid treatment) or a sol-gel method. Similarly, Patent Literature 6 describes a filter in which a photocatalyst is fixed to a glass film having a porous surface and inside whose formation method is unknown.
[0005]
Further, Patent Document 7 discloses that although not an air filter, γ-alumina, silica gel, glass, or the like is heated to about 1,000 ° C. to separate phases, and then treated with an alkali or an acid to make the surface porous. A wall material in which a photocatalyst is fixed on the surface of the wall material is described.
[0006]
[Patent Document 1]
JP-A-12-176246
[Patent Document 2]
JP 2000-199173 A
[Patent Document 3]
JP-A-6-320010
[Patent Document 4]
JP-A-8-309122
[Patent Document 5]
JP 2000-317315 A
[Patent Document 6]
JP 2001-239168 A
[Patent Document 7]
JP 2002-45650 A
[0007]
[Problems to be solved by the invention]
However, in the air filter device described in Patent Literature 2, since the photocatalyst is merely fixed to a normal glass fiber or a woven fabric having a smooth surface, the area of the photocatalyst that can be brought into contact with VOC or the like is small, and the air catalyst is decomposed. The removal ability was limited.
[0008]
Further, in the filters described in Patent Documents 5 and 6, since a porous glass film is formed, some base material supporting the film is indispensable, the number of manufacturing members increases, and the manufacturing process is increased. There was a problem that became complicated. Further, since it is extremely difficult to form a uniform porous glass film having a large external surface area, these filters can be used in industrial large-scale air filter devices even if favorable results are obtained at the laboratory level. Was not available.
[0009]
Alternatively, in the wall material described in Patent Document 7, γ-alumina is mainly studied as a base material for supporting a photocatalyst. For example, when the same heat treatment as γ-alumina is performed on glass fiber, the glass fiber is melted. Or the average pore diameter of the porous layer formed on the surface becomes too large, and the ability to decompose and remove by the photocatalyst becomes insufficient as described above. Further, since the wall material has insufficient strength against a dynamic airflow, it cannot be used as an air filter.
[0010]
The present invention has been made in view of the above problems. The aim is to provide a photocatalyst that has the strength to withstand the pressure loss that is indispensable as an air filter, and can adsorb a large amount of VOCs and odor gases quickly and efficiently decompose and remove the adsorbed substances. It is to provide a glass fiber cloth. Another object of the present invention is to provide a method for easily and surely making at least the surface of glass fibers constituting the glass fiber cloth porous, and an air filter device using the glass fiber cloth.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a 2 The photocatalyst-supporting glass fiber cloth is obtained by supporting a photocatalyst on the surface of a porous glass fiber cloth having a specific surface area of / g.
[0012]
The present inventors have conducted intensive studies on the adsorbing capacity and decomposing / removing capacity of VOCs and the like for an air filter. When a photocatalyst is supported and used, the specific surface area of the porous glass fiber woven fabric before the photocatalyst is supported is 100 to 400 m. 2 / G was found to remove VOCs and odor gases most efficiently. The pores may be present only in the surface layer of the glass fiber constituting the glass fiber cloth, or may extend to the central layer of the glass fiber. The value of the specific surface area is based on the measurement by the nitrogen adsorption BET method for the porous glass fiber cloth before supporting the photocatalyst. The larger the specific surface area, the larger the capacity of physical adsorption or chemical adsorption due to capillary action. However, the specific surface area is 400m 2 / G, the strength of the glass fiber cloth is insufficient, and the handling thereof becomes difficult. On the other hand, 100m 2 If it is less than / g, the area of the photocatalyst in contact with VOC and the like and the odor gas is too small, and it takes time to decompose and remove the photocatalyst. A more preferred range is 200 to 400 m 2 / G. By the way, the specific surface area is 300m 2 / G, gas molecules having a diameter of 1.0 nm per 3.0 g of the glass fiber cloth are 3.0 × 10 8 Single molecules can be adsorbed in individual pores.
[0013]
The average pore diameter (before carrying the photocatalyst) of the porous layer formed on the glass fiber cloth can indicate a suitable range in which VOCs and the like can be efficiently removed. That is, the preferable range is 1.0 to 30 nm. The average pore diameter is a value measured by the nitrogen adsorption Inkley method. If the average pore size exceeds 30 nm, the pore size is too large compared to molecules such as VOC, and their adsorption becomes inefficient. On the other hand, if it is less than 1.0 nm, the photocatalyst cannot enter the pores well, the amount of the photocatalyst carried per unit surface area of the glass fiber cloth becomes insufficient, and the decomposition and removal of VOC and the like become inefficient. A more preferred range is 1.0 to 20 nm.
[0014]
As the porous glass fiber cloth in the present invention, a woven cloth of porous glass fibers or a nonwoven cloth of porous glass fibers is used. Hereinafter, a case where a woven fabric of porous glass fibers is used will be described.
[0015]
The external surface area of the glass fiber woven fabric is 0.20 to 0.70 m 2 / G is preferred, and more preferably 0.35 to 0.63 m 2 / G is preferred. Here, the external surface area means that the glass fiber is provided with a porous layer at least on the surface, but the glass fiber woven fabric in a case where it is assumed that the porous layer does not exist and the surface of the glass fiber is smooth. Surface area per unit weight. Specifically, it is obtained by the following equation.
[0016]
External surface area = (total area of glass fiber per count / count count weight) / (specific gravity after acid treatment / specific gravity before acid treatment)
[0017]
Here, “the total area of the outer periphery of the glass fiber per count” and “count weight” are obtained by calculation from the standard of the glass fiber. On the other hand, "specific gravity after acid treatment" and "specific gravity before acid treatment" are measured by the following Archimedes method. A glass fiber woven fabric is hung on a balance with a fine platinum (Pt) wire, and its weight is measured. Next, the glass fiber woven fabric is immersed in a beaker filled with pure water while being suspended on a balance, and the reduced weight (“weight in air” − “weight in water”) is measured. Then, the specific gravity of the glass fiber woven fabric is obtained from the following equation.
[0018]
Specific gravity = ((weight of woven glass fiber fabric / weight reduced in pure water) × density of pure water) + density of air × (1− (weight of woven glass fiber fabric / weight of pure water))
[0019]
Therefore, this external surface area is inversely proportional to the average diameter of the glass fibers. External surface area is 0.70m 2 If the amount exceeds / g, the glass fiber is too thin, so that the production cost of the glass fiber itself is significantly increased, and the strength is significantly reduced by the acid treatment described below. On the other hand, 0.20m 2 If it is less than / g, the glass fiber becomes too thick, and even if its strength is sufficient, its ability to decompose and remove VOCs and the like is liable to be insufficient. For example, there is a problem that the gas flow rate per unit time of the air filter device becomes too small. External surface area is 0.20 to 0.70m 2 / G of glass fiber has an average diameter of about 5 to 9 μm. Note that two or more types of glass fibers having different fiber diameters may be mixed.
[0020]
A glass fiber having an acid-soluble component in the composition is used. It is preferable to use an E glass composition which can easily form a porous layer on at least the surface and which can be obtained at low cost. Table 1 shows the general composition component content of the E glass composition.
[0021]
[Table 1]
━━━━━━━━━━━━━━━
Ingredient weight%
───────────────
SiO 2 52-56
Al 2 O 3 12-18
CaO 16-25
MgO 0-6
B 2 O 3 5-13
R 2 O 0-3
TiO 2 0-0.4
Fe 2 O 3 0.05-0.5
F 2 0-0.5
━━━━━━━━━━━━━━━
Where R 2 O is Na 2 O and K 2 O's
Shows the sum of either one or both.
[0022]
For reference, Table 2 shows the compositional component content of glass fibers composed of five commercially available E glass compositions.
[0023]
[Table 2]
Figure 2004002176
Where R 2 O is Na 2 O and K 2 O's
Shows the sum of either one or both.
[0024]
When the glass fiber is subjected to an acid treatment such as immersion in an acid solution, an acid-soluble component such as B 2 O 3 , CaO, R 2 O and the like gradually elute from the surface to form a porous layer on the surface. When the fabric is processed into a woven fabric using a loom after the porous layer is formed, thread breakage occurs frequently due to poor slippage of the glass fiber. Therefore, the acid treatment is preferably performed after processing the glass fiber into a woven fabric.
[0025]
The weave of this glass fiber is preferably satin weave, twill weave or mosaic weave, and plain weave is not preferred. This is because plain weave has a smaller external surface area than satin weave, twill weave or mosaic weave, so that adsorption of VOCs and odor gases becomes inefficient. Also, the basis weight of the glass fiber woven fabric is 100 to 1,000 g / m. 2 It is preferable that the thickness is 0.1 to 1.0 mm. Even if the weave is satin, twill or mosaic, the basis weight is 100 g / m 2 If the thickness is less than 0.1 mm and the thickness is less than 0.1 mm, a sufficient external surface area cannot be secured. On the other hand, the basis weight is 1,000 g / m 2 If the thickness exceeds 1.0 mm and the thickness exceeds 1.0 mm, processing and handling as an air filter becomes difficult. For example, in the case of a general household air filter, the gas flow rate is 10 m. 3 / Min, a pressure loss of 100 Pa or less, and a removal rate of 95%. In order to satisfy this requirement, an external surface area of 600 m in which a glass fiber composed of an E glass composition of 5 to 9 μm is woven in a sashimi pattern. 2 Is 343 g / m 2 Need to be
[0026]
The acid treatment is not particularly limited, but, for example, a glass fiber woven fabric is immersed in an aqueous acid solution such as hydrochloric acid for a predetermined time, heated or stirred as necessary, washed with water, and dried. There is a series of processing. Here, various conditions such as the concentration of the acid aqueous solution to be used, the heating temperature, and the immersion time are appropriately determined depending on the type of the acid, the required degree of the acid treatment (specific surface area of the glass fiber after the acid treatment), and the like. For example, when an acid treatment is applied to a glass fiber woven cloth made of a satin-woven glass fiber made of an E glass composition having an average diameter of 9 μm, an acid aqueous solution of 1.5 to 6.0 N maintained at 30 to 70 ° C. The glass fiber woven fabric is immersed therein for about 6 to 24 hours to have a specific surface area of 100 to 400 m. 2 / G can be reliably increased. When an acid aqueous solution of less than 1.5N is used, it may take a long time to form a desired porous shape, or it may not be possible to make the porous material porous. On the other hand, when an acid aqueous solution exceeding 6.0 normal is used, the corrosion by the acid is rapid, and it becomes difficult to adjust the porous shape with time. The same can be said for the temperature. When the temperature is lower than 30 ° C., it takes a long time to form a desired porous shape. On the other hand, when the temperature exceeds 70 ° C., it is difficult to adjust the porous shape by time. become.
[0027]
The glass fiber woven fabric is preferably subjected to a heat treatment before the acid treatment for the purpose of removing a sizing agent applied at the time of spinning or a lubricant applied at the time of processing into a woven fabric. However, this heat treatment is for removing unnecessary deposits, phase-separates γ-alumina as described in Patent Document 7, and adds a component easily soluble in alkali or acid to the surface layer. It must not be moved. In the present invention, instead of γ-alumina, a multi-component glass fiber described in Table 1 above is used. Therefore, when phase separation occurs, the average pore diameter in the porous layer of the glass fiber becomes too large. Thus, not only does it fall outside the above-mentioned preferred range, but also the problem that the strength of the glass fiber is significantly deteriorated occurs. In order to remove unnecessary deposits without phase separation of the glass fiber, the heating temperature is preferably suppressed to 600 ° C. or lower.
[0028]
The case where a woven fabric of porous glass fibers is used as the porous glass fiber fabric in the present invention has been described above, but a nonwoven fabric of porous glass fibers can also be used. As the porous glass fiber, for example, a porous silica fiber produced by a sol-gel method can be used in addition to the above-mentioned acid treatment.
[0029]
Glass fiber non-woven fabrics are mainly produced by so-called short glass fibers by a papermaking method, a dry lamination method, or the like. The shape of the short glass fiber is not particularly limited, but an average diameter of 0.3 to 20 μm and an average length of 1 to 50 mm are preferable. When the average diameter of the short fibers is less than 0.3 μm, the production cost becomes remarkably high, and when the porous layer is formed, the strength is remarkably reduced and the handling becomes difficult. On the other hand, when the average diameter exceeds 20 μm, the short fibers are rigid and difficult to be entangled, and in addition, the specific surface area of the short fibers is small, the adhesion rate of the photocatalyst is low, and the photocatalytic activity is suppressed low. If the average length is less than 1 mm, the entanglement between short fibers is weakened, and the tensile strength of the nonwoven fabric is reduced. On the other hand, when the average length exceeds 50 mm, the fiber opening properties of the fibers are reduced, and it is difficult to uniformly disperse the fibers in the nonwoven fabric. As a result, it is difficult to produce a uniform glass fiber nonwoven fabric. The basis weight of the glass fiber non-woven fabric is 5 g / m 2 ~ 1,500 g / m 2 Is preferable, and the thickness thereof is preferably 0.03 to 5.0 mm.
[0030]
The acid-treated glass fiber cloth has an active silica (silicon oxide) surface with a solid acid and a very large specific surface area, so that it can adsorb a large amount of polar gas. By fixing the photocatalyst to this glass fiber cloth, VOCs and odor gases can be decomposed and removed with high efficiency. The amount of the photocatalyst attached to the porous glass fiber cloth is preferably 0.1 to 40% by weight, and more preferably 0.5 to 20% by weight.
[0031]
The type of the photocatalyst is not particularly limited, and known titanium oxide or zinc oxide can be used. The method for fixing the photocatalyst to the porous layer of the glass fiber cloth is not particularly limited, and any known means can be used as it is. For example, a chemical vapor deposition method such as a CVD method, a physical vapor deposition method such as a sputtering method, a coating by a sol-gel method, or a method in which ultrafine particles of a photocatalyst are adhered and then heated and fixed. Among these, the following method in which a general-purpose production apparatus can be used and materials can be easily obtained is preferable. One is a method of coating a titania (titanium oxide) sol using a sol-gel method. The other is a method in which a glass fiber cloth is immersed in a solution in which ultrafine particles of titania having an average diameter of 10 nm or less are dispersed, and then heated. It is a method of fixing by sticking. In the coating of the titania sol by the sol-gel method, a glass fiber cloth is immersed in a titania sol solution, then dried and fired, so that a Si-O-Ti bond is formed between the glass fiber and the titanium oxide. The adhesion of titanium oxide to glass fibers becomes extremely strong. Examples of the titania sol precursor include titanium alkoxide, titanium chloride, titanium sulfide, and titanium acetate.When alcohols are used as the compatible solvent, titanium alkoxides are preferable, and when water is used as the compatible solvent. Is preferably titanium chloride, titanium sulfide or titanium acetate. However, when the precursor and the organic substance are compatible, any combination may be selected.
[0032]
When using titanium oxide as a photocatalyst, anatase-type titanium oxide is preferable. This is because anatase type has higher reactivity as a photocatalyst than rutile type or brookite type. However, since the anatase-type titanium oxide shrinks by heating, it is necessary to pay sufficient attention to the temperature and time when firing by heating in the above method.
[0033]
In addition, the porous layer of the glass fiber cloth includes a noble metal such as platinum, rhodium, ruthenium, gold, silver or copper, or a nitrate, sulfate or acetate thereof (hereinafter, these are collectively referred to as "noble metals"). Is preferably present together with the photocatalyst. By making the noble metals coexist with the photocatalyst, the reactivity of the photocatalyst can be further increased. The method for fixing the noble metals to the porous layer of the glass fiber cloth is not particularly limited, and it does not matter whether the photocatalyst is fixed before or after the fixing process. Examples of a method of fixing the noble metal include spraying metal ion water of the noble metal onto the glass fiber cloth, immersing the glass fiber cloth in the metal ion water, and irradiating the glass with the glass, or applying the glass ion to the metal ion water. A method of irradiating light in a state where the fiber cloth is immersed may be used. The light irradiation causes a photoreduction plating mechanism to act, whereby the noble metals can be firmly attached to the porous layer of the glass fiber cloth.
[0034]
In addition, in order to enhance the gas adsorption effect on the glass fiber cloth, an inorganic material that does not decompose by the photocatalyst and has an adsorption performance, for example, apatite can be combined with the photocatalyst. Here, apatite refers to any one of calcium phosphate (apatite in a narrow sense) such as tricalcium phosphate and octacalcium phosphate, hydroxyapatite, carbonate apatite, and fluorapatite, or a mixture of two or more of these.
[0035]
The apatite may be formed after fixing the photocatalyst to the acid-treated glass fiber cloth, or the apatite may be formed after forming the apatite on the acid-treated glass fiber cloth. Further, apatite and a photocatalyst may be mixed and fixed or composited.
[0036]
The amount of apatite attached to the porous glass fiber cloth is preferably 0.1 to 40% by weight. If the amount is less than 0.1% by weight, no adsorption effect will be exhibited, while if it exceeds 40% by weight, the effect of acid treatment of the glass cloth will be weakened, or if formed on a photocatalyst, the photocatalytic activity will be reduced. More preferably, it is 0.5 to 20% by weight.
[0037]
The method for forming apatite is not particularly limited, and a general method of immersing a porous glass fiber cloth or a photocatalyst-supporting porous glass fiber cloth in a simulated body fluid with adjusted pH or the like is used. it can. For example, a simulated body fluid containing ions of Na, K, Cl, Ca, P, Mg and the like and having a pH of 7 to 8 at 25 to 60 ° C. for about 10 to 30 days, more preferably 30 to 40 ° C. By immersing in the glass for about 20 minutes to 1 hour, apatite (calcium phosphate) generated by the reaction between calcium hydroxide and phosphate ions can be deposited on the surface layer of the porous glass fiber.
[0038]
Further, the metal oxide having a photocatalytic action forms a metal-modified apatite by ion exchange in the apatite crystal structure, or a predetermined amount of metal ions of the metal oxide is added in advance to the constituent ions of the apatite, and In the coexistence, a metal-modified apatite may be formed by a coprecipitation method.
[0039]
Calcium phosphate is porous and has a large affinity (biocompatibility) with proteins and carbohydrates, which are biological constituents such as bacteria and fungi, so that it can efficiently adsorb microorganisms such as bacteria and fungi. Therefore, by combining with a glass fiber cloth to which a photocatalyst is fixed, microorganisms such as bacteria and mold can be rapidly and continuously redox-decomposed. Further, it is also possible to prevent the generation of malodorous substances produced by life activities such as bacteria and mold and released outside the cells.
[0040]
The glass fiber cloth in the present invention is not heated at all before the acid treatment, or if it is heated to 300 ° C. or less, since its average pore diameter is relatively small, aldehydes and alcohols having a molecular weight of about 30 to 120, It is suitable for decomposing and removing VOCs such as ketones, xylene, toluene, benzene, styrene or phenol, or odor gases such as ammonia, nitric oxide, nitrogen dioxide, hydrogen sulfide or sulfur dioxide. On the other hand, when heated at 300 to 600 ° C. before the acid treatment, the average pore diameter slightly increases, so that tributyl phosphate (TBP), dioctyl phthalate (DOP), dibutyl phthalate (DBP) having a molecular weight of about 120 to 300 is used. It is suitable for decomposing and removing semi-volatile organic compounds such as DBP) or diethyl phthalate (DEP).
[0041]
The photocatalyst-supporting glass fiber cloth provided with the photocatalyst in the porous layer is a means for decomposing pollutants in water or air, for example, an air filter device used for purifying air in a clean room or a living space, an interior wall material, and the like. Used for
[0042]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to examples. Note that the present invention is not limited to the following embodiments.
(Example 1)
A woven fabric (basis weight: 363 g / m) in which glass fibers (average fiber diameter: 9 μm) composed of the E glass composition of No (i) in Table 2 above are woven in a pattern. 2 (Thickness: 0.43 mm) without heat treatment, immersed in a 3.0 N hydrochloric acid aqueous solution at 45 ° C. for 24 hours, and then sufficiently washed with water and dried to form a porous layer on the surface. . For the glass fiber woven fabric having the porous layer, the "specific surface area" was measured by the nitrogen adsorption BET method, the "average pore diameter" was measured by the nitrogen adsorption Inkley method, and the specific gravity of the glass fiber was measured before and after the acid treatment. "External surface area" was calculated from the value. Table 3 shows these measured values and calculated values.
[0043]
Next, the porous glass fiber woven fabric was immersed in a solution in which 760 g of titanium isoproproxide and 400 g of an organic resin were dissolved in 840 g of ethyl alcohol, and the precursor of titanium oxide was uniformly applied to the porous layer without unevenness. Was attached. The woven fabric was dried at 60 ° C. for 1 hour, then heated to 350 ° C. at a rate of 1 ° C. per minute, and baked for 12 hours. The organic resin was completely removed by this heat treatment, and titanium isoproxide was changed to titanium oxide mainly composed of anatase type, and was firmly fixed on the surface and in the pores of the porous layer. The adhesion amount of titanium oxide was 3.0% by weight based on the porous glass fiber cloth.
[0044]
The photocatalyst-supporting glass fiber woven fabric thus manufactured was measured for its ability to decompose and remove VOC and the like by the following method.
[0045]
[Decomposition and removal test using a closed system]
The photocatalyst-supporting glass fiber woven fabric was cut into a size of 10 × 10 cm, and placed in a closed container having a capacity of about 54 L and provided with a purifying fan and a diffusion fan for diffusing an injection gas. A formaldehyde gas was injected into the closed container, and DC 10 V was applied to the diffusion fan at a constant rate to sufficiently diffuse the mixture, and then the initial concentration was measured. Then, the black light was immediately turned on, and the surface of the woven fabric was 0.7 mW / cm. 2 10 V DC was also applied to the purification fan while irradiating the ultraviolet rays, and after 30 minutes, the formaldehyde gas concentration was measured. The formaldehyde gas removal rate was calculated from the initial concentration and the concentration after 30 minutes. This removal rate is based on the following formula.
[0046]
Removal rate (%) = 100 × ((initial density) − (density after 30 minutes)) / (initial density)
[0047]
Table 4 shows the respective removal rates when the initial concentration was 5, 20, and 40 ppm.
[0048]
(Example 2)
A porous layer was formed and titanium oxide was fixed (titanium oxide) in the same manner as in Example 1 except that the glass fiber woven fabric was subjected to a heat treatment (no phase separation) at 400 ° C. for 6 hours and then an acid treatment. Adhesion amount 3.0% by weight). Table 3 shows the specific surface area of this woven fabric and Table 4 shows its decomposition removal ability.
[0049]
(Comparative Example 1)
A porous layer was formed and titanium oxide was fixed in the same manner as in Example 1 except that the glass fiber woven fabric was subjected to a heat treatment at 700 ° C. to separate phases, followed by an acid treatment. 5% by weight). Table 3 shows the specific surface area of this woven fabric and Table 4 shows its decomposition removal ability.
[0050]
(Comparative Example 2)
Titanium oxide was fixed to the surface of the glass fiber woven fabric in the same manner as in Example 1 except that the glass fiber woven fabric was not subjected to the acid treatment and the porous layer was not formed. %). Table 3 shows the specific surface area of this woven fabric and Table 4 shows its decomposition removal ability.
[0051]
(Comparative Example 3)
A glass plate having a thickness of 97% made of 97% silicon oxide was heated at 700 ° C. to separate phases, and then subjected to an acid treatment to make the surface porous. This porous glass membrane (specific surface area 35 m 2 / G average pore diameter of 65.9 nm) was immersed in an isopropyl titanate solution, then immersed in a 0.1 N hydrochloric acid aqueous solution for 3 hours to hydrolyze, and then dried at 120 ° C for 1 hour. This operation was repeated three times, and the resultant was baked at 550 ° C. for 15 hours to make titanium oxide dispersed and contained in the porous glass film (titanium oxide content: 3.0% by weight). Table 3 shows the specific surface area of the porous glass film, and Table 4 shows its decomposition removal ability. In addition, this porous glass film was produced according to the example of Patent Document 5.
[0052]
(Example 3)
A glass fiber woven fabric provided with a porous layer prepared in the same manner as in Example 1 was added to 950 g of a hydrochloric acid aqueous solution having a pH of 1 by adding 50 g of a titania ultrafine particle sol solution (STS-02) having an average diameter of 7 nm (manufactured by Ishihara Techno Co.). Immersed in a solution dissolved in Then, it was dried at 150 ° C., and baked at 450 ° C. for 20 minutes to fix the titanium oxide to the glass fiber woven fabric (titanium oxide adhesion amount 2.5% by weight). Table 3 shows the specific surface area of this woven fabric, and Table 4 shows its decomposability.
[0053]
(Comparative Example 4)
Titanium oxide was fixed to the glass fiber woven fabric produced in Comparative Example 1 by the same means as in Example 3 (3.5% by weight of titanium oxide attached). Table 3 shows the specific surface area of the woven fabric and Table 4 shows its decomposition removal ability.
[0054]
[Table 3]
Figure 2004002176
[0055]
As shown in Table 3, in Examples 1 and 3 in which the glass fiber woven fabric was subjected to the acid treatment without the heat treatment, and in Example 2 in which the heat treatment was performed but the phase was not separated, 100 m was obtained. 2 / G or more and an average pore diameter of 1.0 to 30 nm. On the other hand, Comparative Examples 1 and 4 in which a glass fiber woven fabric was subjected to a heat treatment at a high temperature to separate phases and then subjected to an acid treatment, and a comparison in which a glass film was subjected to a heat treatment and subjected to a post-acid treatment after being subjected to a phase separation. In Example 3, the specific surface area obtained is 100 m 2 / G and the average pore diameter is larger than 30 nm.
[0056]
[Table 4]
Figure 2004002176
[0057]
Table 4 shows that 25 ml of 5 ppm formaldehyde gas can be removed by 84% or more in about 0.1 to 1.0 seconds in the photocatalyst-supporting glass fiber woven fabrics of Examples 1 to 3.
[0058]
【The invention's effect】
The photocatalyst-supporting glass fiber cloth of the present invention does not significantly impair the original strength of the glass fiber even when subjected to heat treatment and acid treatment, so that even when used in an air filter device, the pressure loss is sufficient. Can withstand. In addition, the porous layer formed on the surface of the glass fiber is characterized by a relatively large specific surface area, an appropriate pore size, and a relatively large external surface area. If a photocatalyst is fixed to the layer, VOCs and odor gases can be quickly and largely adsorbed and further decomposed and removed. In addition, since the glass fiber cloth is subjected to heat treatment and acid treatment after weaving the glass fiber, it is excellent in handleability and can be easily incorporated into an air filter device.

Claims (9)

100〜400m/gの比表面積を有する多孔質ガラス繊維布の表面に光触媒を担持してなる光触媒担持ガラス繊維布。A photocatalyst-supporting glass fiber cloth comprising a porous glass fiber cloth having a specific surface area of 100 to 400 m 2 / g, on which a photocatalyst is supported. 前記多孔質ガラス繊維が1.0〜30nmの平均細孔径を有する請求項1に記載の光触媒担持ガラス繊維布。The photocatalyst-supporting glass fiber cloth according to claim 1, wherein the porous glass fiber has an average pore diameter of 1.0 to 30 nm. 0.20〜0.70m/gの外部表面積を有する請求項1または2に記載の光触媒担持ガラス繊維布。Photocatalyst carrying glass fiber fabric according to claim 1 or 2 having an external surface area of 0.20~0.70m 2 / g. 前記光触媒は多孔質ガラス繊維布に対して0.1〜40重量%坦持されている請求項1〜3のいずれか1項に記載の光触媒担持ガラス繊維布。The photocatalyst-supporting glass fiber cloth according to any one of claims 1 to 3, wherein the photocatalyst is supported in an amount of 0.1 to 40% by weight based on the porous glass fiber cloth. アパタイトが多孔質ガラス繊維布に対して0.1〜40重量%付着している請求項4に記載の光触媒担持ガラス繊維布。The photocatalyst-supporting glass fiber cloth according to claim 4, wherein the apatite is attached in an amount of 0.1 to 40% by weight based on the porous glass fiber cloth. 前記多孔質ガラス繊維布は、5〜9μmの平均径およびEガラス組成から由来する組成を有する多孔質ガラス繊維からなり、そして朱子織、綾織または模紗織された織布である請求項1〜5のいずれか1項に記載の光触媒担持ガラス繊維布。The porous glass fiber cloth is made of porous glass fibers having an average diameter of 5 to 9 µm and a composition derived from the E glass composition, and is a woven cloth made of satin, twill or mosaic. The photocatalyst-supporting glass fiber cloth according to any one of the above. ガラス繊維を酸処理することによって多孔質ガラス繊維とする請求項1〜6のいずれか1項に記載の光触媒担持ガラス繊維布の製造方法。The method for producing a photocatalyst-supporting glass fiber cloth according to any one of claims 1 to 6, wherein the glass fiber is subjected to an acid treatment to obtain a porous glass fiber. 前記ガラス繊維は5〜9μmの平均径およびEガラス組成を有するものであり、このガラス繊維を朱子織、綾織または模紗織した織布を酸処理することによって多孔質ガラス繊維織布とする請求項7に記載のガラス繊維布の製造方法。The glass fiber has an average diameter of 5 to 9 μm and an E glass composition, and the glass fiber is subjected to an acid treatment on a satin-woven, twill-woven or mosaic-woven cloth to form a porous glass fiber woven cloth. 8. The method for producing a glass fiber cloth according to item 7. 請求項1〜6のいずれか1項に記載のガラス繊維布を用いたエアフィルター装置。An air filter device using the glass fiber cloth according to any one of claims 1 to 6.
JP2003109671A 2002-04-16 2003-04-15 Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same Pending JP2004002176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109671A JP2004002176A (en) 2002-04-16 2003-04-15 Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002113722 2002-04-16
JP2003109671A JP2004002176A (en) 2002-04-16 2003-04-15 Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same

Publications (1)

Publication Number Publication Date
JP2004002176A true JP2004002176A (en) 2004-01-08

Family

ID=30447072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109671A Pending JP2004002176A (en) 2002-04-16 2003-04-15 Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same

Country Status (1)

Country Link
JP (1) JP2004002176A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005547A1 (en) * 2003-07-11 2005-01-20 Fujitsu Limited Resin containing photocatalytic apatite
JP2005111354A (en) * 2003-10-07 2005-04-28 Meidensha Corp Photocatalyst carrier and gas treatment device
JP2006305563A (en) * 2005-03-31 2006-11-09 Nippon Muki Co Ltd Manufacturing method of gas adsorption filter medium and manufacturing method of photocatalyst gas adsorption filter medium
JP2006326537A (en) * 2005-05-27 2006-12-07 Nippon Muki Co Ltd Filter material for air filter, and air filter
JP2007007584A (en) * 2005-06-30 2007-01-18 Nippon Muki Co Ltd Air cleaning apparatus and air cleaning method
JP2007081102A (en) * 2005-09-14 2007-03-29 Dainippon Printing Co Ltd Organic electroluminescence element, and coating liquid containing photocatalyst and for organic electroluminescence element
CN100371026C (en) * 2003-03-04 2008-02-27 大金工业株式会社 Air cleaning member, air cleaning unit
JP2008518772A (en) * 2004-11-05 2008-06-05 ドナルドソン カンパニー,インコーポレイティド Filter media and structure
JP2010240053A (en) * 2009-04-02 2010-10-28 Panasonic Corp Photocatalyst deodorizer
JP2010535614A (en) * 2007-08-08 2010-11-25 サン−ゴバン クワルツ エス.ア.エス. Photocatalytic filter media
WO2012036231A1 (en) * 2010-09-15 2012-03-22 国際先端技術総合研究所株式会社 Glass with photocatalytic function
US8177875B2 (en) 2005-02-04 2012-05-15 Donaldson Company, Inc. Aerosol separator; and method
DE102011103504A1 (en) 2011-06-04 2012-12-06 Gmbu E.V., Fachsektion Dresden Photoactive textile material produced by coating a pre-treated textile material with a nanocrystalline titania sol containing a noble metal salt and a chelating agent, useful as photocatalyst to degrade organic substances in waste water
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
US8512435B2 (en) 2004-11-05 2013-08-20 Donaldson Company, Inc. Filter medium and breather filter structure
JP2014171993A (en) * 2013-03-11 2014-09-22 Hokkaido Research Organization Photocatalyst carrier, method for manufacturing the same, and organic matter decomposing method using the photocatalyst carrier
JP2014230603A (en) * 2013-05-28 2014-12-11 三菱重工業株式会社 Decomposition apparatus of tributyl phosphate (tbp) in waste oil or waste liquid
WO2016143078A1 (en) * 2015-03-10 2016-09-15 富士通株式会社 Photocatalytic filter, purification device, and purification method
CN106139742A (en) * 2016-06-28 2016-11-23 东台市华阳玻纤有限责任公司 One grows flax composite fibre filtering material
CN110776110A (en) * 2019-10-18 2020-02-11 黑龙江大学 Method for treating phenolic wastewater by integrated photocatalysis-microorganism-adsorption process
JP2020044527A (en) * 2018-09-21 2020-03-26 東芝ライテック株式会社 Photocatalyst filter, and photocatalyst apparatus
KR20200034396A (en) * 2018-09-21 2020-03-31 주식회사 나노코리아 Photocatalysis composite and method for preparing the same
WO2023096244A1 (en) * 2021-11-25 2023-06-01 광주과학기술원 Low dielectric glass fiber comprising microbubbles, and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258220B2 (en) * 1982-11-29 1990-12-07 Toyo Boseki
JPH0796202A (en) * 1992-05-11 1995-04-11 Masayuki Murabayashi Photocatalyst for treating harmful substance contained in liquid, and treating device therefor
JPH09301802A (en) * 1996-05-09 1997-11-25 Nitto Boseki Co Ltd Antibacterial porous glass fiber
JPH10244166A (en) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol Environment cleaning material and its production
JP2000271489A (en) * 1999-03-25 2000-10-03 Babcock Hitachi Kk Production of photocatalytic body
JP2000317315A (en) * 1999-05-11 2000-11-21 Agency Of Ind Science & Technol Phototransmittable porous film containing dispersed photocatalyst
WO2000076660A1 (en) * 1999-06-15 2000-12-21 Ppg Industries Ohio, Inc. Fiber glass carrier having increased surface area and photo-active matrices formed therefrom
JP2001239168A (en) * 2000-03-02 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for carrying photocatalyst on porous glass membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258220B2 (en) * 1982-11-29 1990-12-07 Toyo Boseki
JPH0796202A (en) * 1992-05-11 1995-04-11 Masayuki Murabayashi Photocatalyst for treating harmful substance contained in liquid, and treating device therefor
JPH09301802A (en) * 1996-05-09 1997-11-25 Nitto Boseki Co Ltd Antibacterial porous glass fiber
JPH10244166A (en) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol Environment cleaning material and its production
JP2000271489A (en) * 1999-03-25 2000-10-03 Babcock Hitachi Kk Production of photocatalytic body
JP2000317315A (en) * 1999-05-11 2000-11-21 Agency Of Ind Science & Technol Phototransmittable porous film containing dispersed photocatalyst
WO2000076660A1 (en) * 1999-06-15 2000-12-21 Ppg Industries Ohio, Inc. Fiber glass carrier having increased surface area and photo-active matrices formed therefrom
JP2001239168A (en) * 2000-03-02 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for carrying photocatalyst on porous glass membrane

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371026C (en) * 2003-03-04 2008-02-27 大金工业株式会社 Air cleaning member, air cleaning unit
US8354049B2 (en) 2003-07-11 2013-01-15 Fujitsu Limited Photocatalytic apatite-containing resin
WO2005005547A1 (en) * 2003-07-11 2005-01-20 Fujitsu Limited Resin containing photocatalytic apatite
US7750064B2 (en) 2003-07-11 2010-07-06 Fujitsu Limited Photocatalytic apatite-containing resin
JP2005111354A (en) * 2003-10-07 2005-04-28 Meidensha Corp Photocatalyst carrier and gas treatment device
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure
USRE49097E1 (en) 2004-11-05 2022-06-07 Donaldson Company, Inc. Filter medium and structure
JP2008518772A (en) * 2004-11-05 2008-06-05 ドナルドソン カンパニー,インコーポレイティド Filter media and structure
US10610813B2 (en) 2004-11-05 2020-04-07 Donaldson Company, Inc. Filter medium and breather filter structure
US9795906B2 (en) 2004-11-05 2017-10-24 Donaldson Company, Inc. Filter medium and breather filter structure
US8512435B2 (en) 2004-11-05 2013-08-20 Donaldson Company, Inc. Filter medium and breather filter structure
US11504663B2 (en) 2004-11-05 2022-11-22 Donaldson Company, Inc. Filter medium and breather filter structure
US8641796B2 (en) 2004-11-05 2014-02-04 Donaldson Company, Inc. Filter medium and breather filter structure
US8177875B2 (en) 2005-02-04 2012-05-15 Donaldson Company, Inc. Aerosol separator; and method
US8460424B2 (en) 2005-02-04 2013-06-11 Donaldson Company, Inc. Aerosol separator; and method
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
JP2006305563A (en) * 2005-03-31 2006-11-09 Nippon Muki Co Ltd Manufacturing method of gas adsorption filter medium and manufacturing method of photocatalyst gas adsorption filter medium
JP2006326537A (en) * 2005-05-27 2006-12-07 Nippon Muki Co Ltd Filter material for air filter, and air filter
JP4636954B2 (en) * 2005-06-30 2011-02-23 日本無機株式会社 Air cleaning apparatus and air cleaning method
JP2007007584A (en) * 2005-06-30 2007-01-18 Nippon Muki Co Ltd Air cleaning apparatus and air cleaning method
JP2007081102A (en) * 2005-09-14 2007-03-29 Dainippon Printing Co Ltd Organic electroluminescence element, and coating liquid containing photocatalyst and for organic electroluminescence element
US8017253B2 (en) 2005-09-14 2011-09-13 Dai Nippon Printing Co., Ltd. Organic electroluminescent element and photocatalyst containing coating solution for organic electroluminescent element
JP2010535614A (en) * 2007-08-08 2010-11-25 サン−ゴバン クワルツ エス.ア.エス. Photocatalytic filter media
JP2010240053A (en) * 2009-04-02 2010-10-28 Panasonic Corp Photocatalyst deodorizer
WO2012036231A1 (en) * 2010-09-15 2012-03-22 国際先端技術総合研究所株式会社 Glass with photocatalytic function
CN103167908A (en) * 2010-09-15 2013-06-19 国际先端技术总合研究所株式会社 Glass with photocatalytic function
DE102011103504A1 (en) 2011-06-04 2012-12-06 Gmbu E.V., Fachsektion Dresden Photoactive textile material produced by coating a pre-treated textile material with a nanocrystalline titania sol containing a noble metal salt and a chelating agent, useful as photocatalyst to degrade organic substances in waste water
JP2014171993A (en) * 2013-03-11 2014-09-22 Hokkaido Research Organization Photocatalyst carrier, method for manufacturing the same, and organic matter decomposing method using the photocatalyst carrier
JP2014230603A (en) * 2013-05-28 2014-12-11 三菱重工業株式会社 Decomposition apparatus of tributyl phosphate (tbp) in waste oil or waste liquid
JPWO2016143078A1 (en) * 2015-03-10 2017-12-21 富士通株式会社 Photocatalytic filter, purification device, and purification method
US10407319B2 (en) 2015-03-10 2019-09-10 Fujitsu Limited Photocatalytic filter, purification device, and purification method
WO2016143078A1 (en) * 2015-03-10 2016-09-15 富士通株式会社 Photocatalytic filter, purification device, and purification method
CN106139742A (en) * 2016-06-28 2016-11-23 东台市华阳玻纤有限责任公司 One grows flax composite fibre filtering material
JP2020044527A (en) * 2018-09-21 2020-03-26 東芝ライテック株式会社 Photocatalyst filter, and photocatalyst apparatus
KR20200034396A (en) * 2018-09-21 2020-03-31 주식회사 나노코리아 Photocatalysis composite and method for preparing the same
KR102162532B1 (en) 2018-09-21 2020-10-07 김보영 Photocatalysis composite and method for preparing the same
CN110776110A (en) * 2019-10-18 2020-02-11 黑龙江大学 Method for treating phenolic wastewater by integrated photocatalysis-microorganism-adsorption process
WO2023096244A1 (en) * 2021-11-25 2023-06-01 광주과학기술원 Low dielectric glass fiber comprising microbubbles, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2004002176A (en) Photocatalyst supporting glass fiber textile, manufacturing method of the same and air filter apparatus using the same
JP4800813B2 (en) Photocatalytic apatite composition, method for producing the same, and article
KR100808340B1 (en) Method and apparatus for purifying air using a photocatalyst
JPH01139139A (en) Deodorization/sterilization equipment
EP3140252A1 (en) Purified hydrogen peroxide gas generation methods and devices
JP2000327315A (en) Metal-modified apatite and its production
CN107149872B (en) Preparation method of photocatalytic gas purification sticky note
CN113439136B (en) Nanofiber surface
TW201607597A (en) Anti-microbial air filter
JP3697608B2 (en) Metal-modified apatite material and method for producing the same
JP2000070673A (en) Antibacterial deodorizing photocatalyst type filter and its production
TW202028538A (en) Electrolytic devices and methods for dry hydrogen peroxide production
JP4320393B2 (en) Photocatalyst material and method for producing the same
JP6342778B2 (en) Hole-bearing substrate-silica sol dried product composite and method for producing the same
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
TW201217291A (en) Glass with photocatalytic function
JPH08309122A (en) Filter medium, filter unit, and filtration method
JP4224598B2 (en) Metal-modified apatite and method for producing the same
RU104460U1 (en) PHOTOCATALYTIC FILTER AIR CLEANER
JP2006272038A (en) Filter medium and its manufacturing method
JP2006346645A (en) Metal filter and its manufacturing method
JP2005052713A (en) Carbon fiber supported porous titanium oxide photocatalyst and filter
JP2010058994A (en) Silicate-coated titanium oxide material for decomposing volatile organic compound
JP2000157876A (en) Photocatalyst filter and production thereof
JP4324660B2 (en) Metal-modified apatite and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080414

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004