JPH03152355A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03152355A
JPH03152355A JP29320489A JP29320489A JPH03152355A JP H03152355 A JPH03152355 A JP H03152355A JP 29320489 A JP29320489 A JP 29320489A JP 29320489 A JP29320489 A JP 29320489A JP H03152355 A JPH03152355 A JP H03152355A
Authority
JP
Japan
Prior art keywords
flow rate
refrigerant
room
unit
rate control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29320489A
Other languages
Japanese (ja)
Other versions
JP2508311B2 (en
Inventor
Tomohiko Kasai
智彦 河西
Setsu Nakamura
中村 節
Shuichi Tani
秀一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29320489A priority Critical patent/JP2508311B2/en
Publication of JPH03152355A publication Critical patent/JPH03152355A/en
Application granted granted Critical
Publication of JP2508311B2 publication Critical patent/JP2508311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To selectively room cool or heat at each indoor unit and to simultaneously room cool at one indoor unit and heat at the other indoor unit by providing first and second branch units and check valves, and providing second and third flow rate controllers. CONSTITUTION:In the case of concurrent room cooling and heating with main room cooler, high pressure gas refrigerant is introduced from a first connection tube 6, a first branch unit 10 into indoor units to room heat to conduct room heating, then the refrigerant is fed from a second branch unit 11 partly to an indoor unit to be room cooled to conduct room cooling, and fed from the unit 10 to a second connection tube 7. In the case of only room heating, the refrigerant is fed from a heat source unit A to each indoor unit through the tube 6 and the unit 10 to room heat, and returned from the unit 11 to a heat source unit through the tube 7. Second and third flow rate controllers 13, 15 are so controlled that the detection pressure difference between pressure detectors falls within a predetermined range. Thus, one indoor unit room cools and the other indoor unit simultaneously room heats.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は熱源機1台に対して複数台の室内機を接続す
る多室形ヒートポンプ式空気調和装置に関するものであ
り、特に各室内機毎に冷暖房を選択的に、かつ1方の室
内機では冷房、他方の室内機では暖房を同時に行うこと
ができる空気調和装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit, and in particular, The present invention relates to an air conditioner that can perform heating and cooling selectively, and can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

〔従来の技術〕[Conventional technology]

従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転を行うヒートポン
プ式空気調和装置が一般的であり、各室内機は全部冷房
かまたは全部暖房を行うように形成されていた。
Conventionally, heat pump air conditioners have been common in which multiple indoor units are connected to one heat source unit using two pipes, a gas pipe and a liquid pipe, and each indoor unit performs cooling and heating operation. or all were designed to provide heating.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多室形ヒートポンプ式空気調和装置は上記のよう
に構成され、全部の室内機がEl房又は冷房の一方の運
転しか行わないため、冷房が必要な場所で暖房が行われ
たり、逆に暖房が必要な場所で冷房が行われるような問
題があった。特に、大規模なビルに据え付けた場合、イ
ンテリア部とペリメータ部、又は一般事務室とコンピュ
ータ等のOA化された部屋とでは空調の負荷が著しく異
なるため、大きな問題となっていた。
Conventional multi-room heat pump air conditioners are configured as described above, and all the indoor units operate only in either the El air conditioner or the air conditioner mode, so that heating is performed in areas that require cooling, or vice versa. There was a problem where cooling was performed in places that needed heating. In particular, when installed in a large building, the air conditioning load is significantly different between the interior area and the perimeter area, or between a general office and a computer room, which is a big problem.

この発明は上記のような課題を解決するために成された
ものであり、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、かつ一方の室内機
では冷房、他方の室内機では暖房が同時に行うことがで
き、大規模なビルに据え付けた場合、インテリア部とペ
リメータ部、または一般事務室とコンピュータルーム等
のOA化された部屋のように空調負荷が著しく異なって
も、それぞれに対応できる多室形ヒートポンプ式空気調
和装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it connects multiple indoor units to one heat source unit, and selectively performs air conditioning and heating for each indoor unit, and only one of the indoor units. The indoor unit can perform cooling and the other indoor unit can perform heating at the same time, and when installed in a large building, it can be used in the interior and perimeter areas, or in OA rooms such as general offices and computer rooms. The purpose of the present invention is to obtain a multi-chamber heat pump type air conditioner that can cope with significantly different air conditioning loads.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る空気調和装置は、各室内機の一方を第1
及び第2の接続配管に切換可能に接続する弁装置を有す
る第1の分岐部と、各室内機の他方を第2の接続配管に
接続する第2の分岐部と、第2の分岐部と第2の接続配
管との間に設けられた第2の流量制御部と、一端が第2
の分岐部に接続され、他端が第3の流量制御部と第1及
び第2の接続配管へのみそれぞれ流通を許可する第1及
び第2の逆止弁を介して第1及び第2の接続配管に接続
されたバイパス配管と、第1の接続配管に設けられ、そ
の圧力を検出する第1の圧力検出部と、第2及び第3の
流量制御部の間の管路に設けられ、その圧力を検出する
第2の圧力検出部と、暖房のみの運転において各圧力検
出部の検出圧力差が所定の範囲内となるよう第2及び第
3の流量制御部を制御する流量制御部制御手段を設けた
ものである。
In the air conditioner according to the present invention, one of the indoor units is connected to the first
and a first branching part having a valve device switchably connected to the second connecting pipe, a second branching part connecting the other of each indoor unit to the second connecting pipe, and a second branching part. A second flow control section provided between the second connection pipe and one end connected to the second connection pipe.
The first and second flow rates are connected to the branch part of the first and second check valves, the other end of which allows flow only to the third flow rate control part and the first and second connection pipes, respectively. Provided in a pipeline between a bypass pipe connected to the connection pipe, a first pressure detection unit provided in the first connection pipe to detect the pressure, and second and third flow rate control units, A second pressure detection section that detects the pressure, and a flow rate control section control that controls the second and third flow rate control sections so that the detected pressure difference of each pressure detection section is within a predetermined range during heating only operation. This means that a means has been established.

〔作 用〕[For production]

この発明においては、暖房主体の冷暖房同時運転の場合
、高圧ガス冷媒を第1の接続配管、第1の分岐部から暖
房しようとしている各室内機に導入して暖房を行い、そ
の後冷媒は第2の分岐部がら一部は冷房しようとしてい
る室内機に流入して冷房を行い、第1の分岐部から第2
の接続配管に流入する。一方、残りの冷媒は第2の流量
制御部を通って冷房室内機を通った冷媒と合流し、第2
の接続配管に流入して熱源機に戻る。
In this invention, in the case of simultaneous cooling and heating operation mainly consisting of heating, high-pressure gas refrigerant is introduced from the first connection pipe and the first branch to each indoor unit to be heated, and then the refrigerant is transferred to the second A part of the branch part flows into the indoor unit that is trying to cool the room and performs cooling, and from the first branch part to the second
into the connecting piping. On the other hand, the remaining refrigerant passes through the second flow rate control section and joins with the refrigerant that has passed through the cooling indoor unit.
It flows into the connecting piping and returns to the heat source equipment.

又、冷房主体の場合には、高圧ガスを熱源機で任意量熱
交換し二相状態として第2の接続配管からガス状の冷媒
を第1の分岐部を介して暖房しようとする室内機に導入
して暖房を行い、冷媒は第1の流量制御部で少し減圧さ
れ、第2の分岐部に流入する。一方、残りの液状冷媒は
第2の流量制御部を通って第2の分岐部で暖房室内機を
通った冷媒と合流し、冷房しようとする各室内機に流入
して冷房を行い、第1の分岐部から第1の接続配管を通
って圧縮機に戻る。
In addition, in the case of mainly cooling, high-pressure gas is exchanged with a heat source device in an arbitrary amount to form a two-phase state, and a gaseous refrigerant is supplied from the second connecting pipe to the indoor unit that is to be heated via the first branch. The refrigerant is introduced to perform heating, and the pressure of the refrigerant is slightly reduced in the first flow rate control section, and the refrigerant flows into the second branch section. On the other hand, the remaining liquid refrigerant passes through the second flow rate control section, joins with the refrigerant that has passed through the heating indoor unit at the second branch, and flows into each indoor unit to be cooled to perform cooling. It returns to the compressor from the branch part through the first connection pipe.

又、暖房運転のみの場合、冷媒は熱源機から第1の接続
配管、第1の分岐部を通って各室内機に流入し、暖房し
て第2の分岐部から第2の接続配管を通って熱源機へ戻
る。又、各圧力検出部の検出圧力差が所定範囲内になる
ように第2及び第3の流量制御部を制御する。
In addition, in the case of only heating operation, the refrigerant flows from the heat source device through the first connecting pipe and the first branch to each indoor unit, heats it, and then flows from the second branch to the second connecting pipe. and return to the heat source machine. Further, the second and third flow rate control units are controlled so that the detected pressure difference of each pressure detection unit is within a predetermined range.

又、冷房のみの場合、冷媒は熱源機から第2の接続配管
、第2の分岐部を通って各室内機に導入され、冷房して
第1の分岐部から第1の接続配管を通って熱源機に戻る
In addition, in the case of cooling only, the refrigerant is introduced from the heat source device through the second connection pipe and the second branch to each indoor unit, cooled, and then passed from the first branch to the first connection pipe. Return to the heat source machine.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。第1
図はこの発明の第1の実施例による空気調和装置の冷媒
系を中心とする全体構成図を示し、第2図はその冷房又
は暖房のみの運転状態図を示す、又、第3図は暖房主体
(暖房運転容量が冷房運転容量より大きい場合)の冷暖
房同時運転時の状態図、第4図は冷房主体(冷房運転容
量が暖房運転容量より大きい場合)の冷暖房同時運転時
の状態を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows an overall configuration diagram centered on the refrigerant system of an air conditioner according to the first embodiment of the present invention, FIG. 2 shows an operating state diagram of only cooling or heating, and FIG. Fig. 4 is a diagram showing the state during simultaneous heating and cooling operation of the cooling main unit (when the heating operating capacity is larger than the cooling operating capacity). It is.

第1図において、Aは熱源機、B−Dは同一構成の室内
機、Eは熱源機Aと室内機B−Dを中継する中継機であ
る。熱源機Aにおいて、1は冷媒を圧縮する圧縮機、2
は冷媒流通方向を切換える四方弁、3は空気と冷媒の熱
交換を行う熱源機側熱交換器、4は蓄圧するアキュムレ
ータであり、これらは冷媒管路により接続されている。
In FIG. 1, A is a heat source device, B-D is an indoor unit with the same configuration, and E is a relay device that relays between the heat source device A and the indoor units B-D. In the heat source machine A, 1 is a compressor that compresses refrigerant, 2
3 is a four-way valve that switches the refrigerant flow direction; 3 is a heat exchanger on the heat source side that exchanges heat between air and refrigerant; 4 is an accumulator that accumulates pressure; these are connected by a refrigerant pipe.

5は各室内機B−Dに設けられた室内側熱交換器、6は
四方弁2と中継機Eを接続する第1の接続配管、6b〜
6dは各室内機E−Dの熱交換器5と中継機Eとを接続
する接続配管、7は熱交換器3と中継機Eを接続する第
2の接続配管、7b〜7dは室内機B−Dの熱交換器5
と第1の流量制御部9を介して接続されると共に中継機
Eとも接続された接続配管であり、流量制御部9は熱交
換器5に近接して設けられその出口側の冷房時はスーパ
ーヒート量、暖房時はサブクール量により制御される。
5 is an indoor heat exchanger provided in each indoor unit B-D, 6 is a first connection pipe connecting the four-way valve 2 and the relay machine E, and 6b to
6d is a connection pipe that connects the heat exchanger 5 of each indoor unit E-D and the repeater E, 7 is a second connection pipe that connects the heat exchanger 3 and the repeater E, and 7b to 7d are the indoor units B. -D heat exchanger 5
This is a connection pipe that is connected via the first flow rate control unit 9 and also to the repeater E, and the flow rate control unit 9 is provided close to the heat exchanger 5, and when cooling the outlet side, the super The amount of heat is controlled by the amount of subcooling during heating.

又、8は接続配管6b〜6dと接続配管6または接続配
管7側とを切換可能に接続する三方切換弁であり、この
各三方切換弁8を含む接続配管部分で第1の分岐部10
を形成する。11は接続配管7b〜7dを接続配管7側
と接続する第2の分岐部、12は接続配管7の途中に設
けられた気液分離部で、その気層部は三方切換弁8の第
108aに接続され、その液層部は分岐部ll側と接続
される。13は気液分離部12と分岐部11との間に設
けられた第2の流量制御部(ここでは電気式膨張弁)、
14は分岐部11と接続配管6゜7とを結ぶバイパス配
管、15はバイパス配管14の途中に設けられた第3の
流量制御部(ここでは電気式膨張弁)、16a〜16d
は分岐部11において配管間に設けられた熱交換部、1
718はバイパス配管14と接続配管6.7との間に設
けられた逆止弁であり、バイパス配管14から接続配管
6.7方向への冷媒流通のみを許容する。25は接続配
管6に設けられた第1の圧力検出部、26は流量制御部
13.15の間の管路に設けられた圧力検出部である。
Further, 8 is a three-way switching valve that switchably connects the connecting pipes 6b to 6d and the connecting pipe 6 or the connecting pipe 7 side, and the connecting pipe portion including each of the three-way switching valves 8 is connected to the first branch part 10.
form. Reference numeral 11 denotes a second branch part that connects the connecting pipes 7b to 7d with the connecting pipe 7 side, 12 represents a gas-liquid separation part provided in the middle of the connecting pipe 7, and the gas layer part is connected to the 108a of the three-way switching valve 8. The liquid layer portion is connected to the branch portion ll side. 13 is a second flow control unit (here, an electric expansion valve) provided between the gas-liquid separation unit 12 and the branching unit 11;
14 is a bypass pipe connecting the branch part 11 and the connecting pipe 6°7, 15 is a third flow control part (here, an electric expansion valve) provided in the middle of the bypass pipe 14, and 16a to 16d.
1 is a heat exchange section provided between the pipes in the branch section 11;
A check valve 718 is provided between the bypass pipe 14 and the connecting pipe 6.7, and allows the refrigerant to flow only in the direction from the bypass pipe 14 to the connecting pipe 6.7. 25 is a first pressure detection section provided in the connecting pipe 6, and 26 is a pressure detection section provided in the pipe line between the flow rate control sections 13 and 15.

次に、上記構成の動作について説明する。第2図は冷房
又は暖房のみの運転状態を示し、まず冷房運転状態につ
いて説明する。即ち、実線矢印で示すように圧縮機1よ
り吐出された高温高圧の冷媒ガスは四方弁2を通り、熱
交換器3で熱交換して凝縮液化された後、接続配管7、
気液分離部12及び流量制御部13を通り、さらに分岐
部11、接続配管7b〜7dを通って各室内機B〜Dに
流入する。各室内機B−Dに流入した冷媒は各熱交換器
5の出口側のスーパーヒート量により制御される流量制
御部9により低圧まで減圧された後、熱交換器5により
室内空気と熱交換され、蒸発してガス化され室内を冷房
する。ガス化された冷媒は接続配管6b〜6d、三方切
換弁8、分岐部10、接続配管6、四方弁2及びアキエ
ムレータ4を経て圧縮機1に吸入される。このとき、三
方切換弁8の第108aは閉路、第208b、第308
cは開路している。
Next, the operation of the above configuration will be explained. FIG. 2 shows the operating state of only cooling or heating, and first the cooling operating state will be explained. That is, as shown by the solid arrow, the high temperature and high pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, undergoes heat exchange in the heat exchanger 3, and is condensed and liquefied.
It passes through the gas-liquid separation part 12 and the flow rate control part 13, and further passes through the branch part 11 and the connection pipes 7b to 7d, and flows into each of the indoor units B to D. The refrigerant that has flowed into each indoor unit B-D is reduced in pressure to a low pressure by a flow rate control section 9 that is controlled by the amount of superheat on the outlet side of each heat exchanger 5, and then heat exchanged with indoor air by the heat exchanger 5. , evaporates into gas and cools the room. The gasified refrigerant is sucked into the compressor 1 through the connecting pipes 6b to 6d, the three-way switching valve 8, the branch part 10, the connecting pipe 6, the four-way valve 2, and the axemulator 4. At this time, the 108a of the three-way switching valve 8 is closed, the 208b, and the 308th
c is open circuit.

又、上記冷房サイクルにおいて、流量制御部13を通過
した冷媒の一部がバイパス配管14へ入り、流量制御部
15で低圧まで減圧されると共に熱交換部16a〜16
dにおいて接続配管7b〜7d側及び分岐部11の合流
部側と熱交換を行い、これにより蒸発した冷媒は逆止弁
17を介して接続配管6に入り、四方弁2、アキュムレ
ータ4を介して圧縮機1に吸入される。このとき、接続
配管6が低圧、接続配管7が高圧のため、逆止弁17は
必然的に開通する。一方、熱交換部16’a〜16dで
冷却されてサブクールを充分に付けられた冷媒は接続配
管7b〜7dを通って室内機B−Dに流入することにな
る。なお、この際、接続配管7b〜7dは液冷媒で満た
されている。
Further, in the cooling cycle, a part of the refrigerant that has passed through the flow rate control section 13 enters the bypass pipe 14, is reduced in pressure to a low pressure by the flow rate control section 15, and is also transferred to the heat exchange sections 16a to 16.
At d, heat exchange is performed with the connection pipes 7b to 7d and the confluence side of the branch part 11, and the evaporated refrigerant enters the connection pipe 6 via the check valve 17, and passes through the four-way valve 2 and the accumulator 4. It is sucked into the compressor 1. At this time, since the connecting pipe 6 is under low pressure and the connecting pipe 7 is under high pressure, the check valve 17 is inevitably opened. On the other hand, the refrigerant cooled in the heat exchange parts 16'a to 16d and sufficiently subcooled flows into the indoor units BD through the connection pipes 7b to 7d. Note that, at this time, the connection pipes 7b to 7d are filled with liquid refrigerant.

次に、第2図を用いて暖房運転のみの場合について説明
する。即ち、点線矢印に示すように圧縮機1より吐出さ
れた高温高圧冷媒ガスは、四方弁2、接続配管6、分岐
部10、三方切換弁8、接続配管6b〜6dを通って各
室内機B−Dに流入し、室内空気と熱交換して凝縮液化
し、室内を暖房する。液化した冷媒は熱交換器5出口の
サブクール量により制御されてほぼ全開状態の流量制御
部9を通り、接続配管7b〜7dを介して分岐部11に
流入して合流し、流量制御部13を通る。
Next, the case of only heating operation will be described using FIG. 2. That is, as shown by the dotted line arrow, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, the connecting pipe 6, the branch part 10, the three-way switching valve 8, and the connecting pipes 6b to 6d to each indoor unit B. -D, it exchanges heat with indoor air, condenses into liquid, and heats the room. The liquefied refrigerant is controlled by the sub-cooling amount at the outlet of the heat exchanger 5, passes through the flow rate control unit 9 which is in an almost fully open state, flows into the branch unit 11 via the connecting pipes 7b to 7d, joins the flow rate control unit 13, and flows through the flow rate control unit 13. Pass.

流量制御部9で減圧後も冷媒は液状態を保ち、第2及び
第3の流量制御部13.15で減圧後初めて冷媒が二相
状態となるように各流量制御部13゜15を制御する。
The flow rate control units 13 and 15 are controlled so that the refrigerant remains in a liquid state even after pressure reduction in the flow rate control unit 9, and the refrigerant enters a two-phase state for the first time after pressure reduction in the second and third flow rate control units 13.15. .

これにより、接続配管7b〜7dは液冷媒で満たされる
。冷房運転のみの場合にも接続配管7b〜7dは液冷媒
で満たされているが、暖房運転のみの場合に接続配管7
b〜7dが二相状態になるように流量制御部13を制御
すると、冷房運転のみの場合に接続配管7b〜7dに保
持される質量冷媒量より冷媒比重が小さい分だけ接続配
管7b〜7dでの冷媒量が少なくなり、余剰冷媒として
アキュムレータ4に貯留される液冷媒量が多くなる。と
ころが、この実施例では接続配管7b〜7dの冷媒は液
状態であるので、接続配管7b〜7dに保持される質量
冷媒量は冷房運転のみの場合と大差がない、このため、
余剰冷媒も多くなく、アキュムレータ4の小容量化が可
能となり、圧縮機1への液バツクも少なく、圧縮機1の
信転性を高めることができる。低圧まで減圧された冷媒
は気液分離部12、接続配管7を経て熱交換器3に流入
し、熱交換により蒸発しガス状態となった冷媒は四方弁
2、アキュムレータ4を介して圧縮機1に吸入される。
Thereby, the connecting pipes 7b to 7d are filled with liquid refrigerant. The connecting pipes 7b to 7d are filled with liquid refrigerant even in the case of only cooling operation, but the connecting pipes 7b to 7d are filled with liquid refrigerant in case of only heating operation.
When the flow rate control unit 13 is controlled so that the refrigerant b to 7d are in a two-phase state, the refrigerant specific gravity is smaller than the mass refrigerant amount held in the connection piping 7b to 7d in the case of cooling operation only. The amount of refrigerant decreases, and the amount of liquid refrigerant stored in the accumulator 4 as surplus refrigerant increases. However, in this embodiment, since the refrigerant in the connecting pipes 7b to 7d is in a liquid state, the mass amount of refrigerant held in the connecting pipes 7b to 7d is not much different from that in the case of only cooling operation.
There is not much surplus refrigerant, the capacity of the accumulator 4 can be reduced, liquid backflow to the compressor 1 is also small, and reliability of the compressor 1 can be improved. The refrigerant that has been reduced in pressure to a low pressure flows into the heat exchanger 3 via the gas-liquid separation section 12 and the connecting pipe 7, and the refrigerant that has evaporated into a gas state through heat exchange is passed through the four-way valve 2 and the accumulator 4 to the compressor 1. is inhaled.

なお、三方切換弁8の開閉は冷房運転のみの場合と同様
である。
Note that the opening and closing of the three-way switching valve 8 is the same as in the case of only cooling operation.

次に、冷暖房同時運転における暖房主体の場合について
第3図を用いて説明する。即ち、点線矢印に示すように
、圧縮機1より吐出された高温高圧冷媒ガスは四方弁2
、接続配管6を介して中継機已に送られ、分岐部10、
三方切換弁8、接続配管6b、6cを通って暖房しよう
とする各室内機B、Cに流入し、熱交換器5で室内空気
と熱交換されて凝縮液化され、室内を暖房する。この凝
縮液化した冷媒は各熱交換器5の出口のサブクール量に
より制御されたほぼ全開状態の流量制御部9を通って少
し減圧され、接続配管7b、7cを介して分岐部11に
流入する。この冷媒の一部は接続配管7dを通って冷房
しようとする室内機りに入り、熱交換器5の出口のスー
パーヒート量により制御される流量制御部9に入って減
圧された後に、熱交換器5に入って熱交換して蒸発しガ
ス状態となって室内を冷房し、三方切換弁8を介して気
液分離部12に流入する。一方、他の冷媒は流量制御部
13を通って気液分離部12に流入し、室内機りを通っ
た冷媒と合流して接続配管7に流入し、熱交換器3に流
入して熱交換して蒸発しガス状態となる。さらに、冷媒
は四方弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる。この暖房主体運転においては、室内機B、Cに接
続された三方切換弁8の第108aは閉路、第208b
及び第308Cは開路されており、室内1SIDに接続
された三方切換弁8の第208bは閉路、第108a及
び第308Cは開路されている。
Next, a case in which heating is the main component in simultaneous cooling and heating operation will be described using FIG. 3. That is, as shown by the dotted arrow, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2.
, is sent to the relay machine via the connecting pipe 6, and is sent to the branch part 10,
It flows through the three-way switching valve 8 and the connecting pipes 6b and 6c into each of the indoor units B and C to be heated, exchanges heat with indoor air in the heat exchanger 5, and is condensed and liquefied to heat the room. The condensed and liquefied refrigerant passes through the flow control section 9, which is in a substantially fully open state controlled by the subcooling amount at the outlet of each heat exchanger 5, and is slightly depressurized, and flows into the branch section 11 via the connecting pipes 7b and 7c. A part of this refrigerant enters the indoor unit to be cooled through the connecting pipe 7d, enters the flow rate control section 9 controlled by the amount of super heat at the outlet of the heat exchanger 5, and is depressurized, after which it is heat exchanged. The gas enters the vessel 5, exchanges heat, evaporates, becomes a gas, cools the room, and flows into the gas-liquid separator 12 via the three-way switching valve 8. On the other hand, other refrigerants flow into the gas-liquid separation section 12 through the flow rate control section 13, join with the refrigerant that has passed through the indoor unit, flow into the connecting pipe 7, and flow into the heat exchanger 3 for heat exchange. It evaporates and becomes a gas. Furthermore, the refrigerant is sucked into the compressor 1 through the four-way valve 2 and the accumulator 4. In this heating-based operation, the 108a of the three-way switching valve 8 connected to the indoor units B and C is closed, and the 208b
and 308C are open, 208b of the three-way switching valve 8 connected to indoor 1SID is closed, and 108a and 308C are open.

又、このサイクル時、一部の液冷媒は接続配管7b〜7
Cの合流部からバイパス配管14へ入り、流量制御部1
5で低圧まで減圧され、熱交換部16a〜16dでそれ
ぞれ熱交換を行って蒸発し、さらに逆止弁18を通って
接続配管7へ入り、熱交換器3に流入し熱交換して蒸発
しガス状態となる。この冷媒はさらに四方弁2、アキュ
ムレータ4を介して圧縮機1に吸入される。このとき、
接続配゛管6が高圧、接続配管7が低圧のため、逆止弁
18側を流通する。一方、熱交換部16a〜16cで熱
交換され冷却されてサブクールを付けられた冷媒は分岐
部11から熱交換部16dでさらにサブクールを充分付
けられ、室内機りに流入する。
Also, during this cycle, some liquid refrigerant flows through the connecting pipes 7b to 7.
It enters the bypass pipe 14 from the confluence part of C, and the flow rate control part 1
5, the pressure is reduced to low pressure in the heat exchange parts 16a to 16d, and evaporates through heat exchange, and then passes through the check valve 18, enters the connecting pipe 7, flows into the heat exchanger 3, exchanges heat, and evaporates. It becomes a gas state. This refrigerant is further sucked into the compressor 1 via the four-way valve 2 and the accumulator 4. At this time,
Since the connecting pipe 6 is at high pressure and the connecting pipe 7 is at low pressure, the water flows through the check valve 18 side. On the other hand, the refrigerant that has been heat exchanged, cooled, and subcooled in the heat exchange parts 16a to 16c is sufficiently subcooled from the branch part 11 to the heat exchange part 16d, and then flows into the indoor unit.

次に、冷暖房同時運転における冷房主体の場合について
第4図を用いて説明する。この場合、実線矢印に示すよ
うに圧縮機1より吐出された高温高圧の冷媒ガスは四方
弁2を介して熱交換器3で任意量を熱交換して二相の高
温高圧状態となり、接続配管7を介して気液分離部12
へ送られ、ガス状冷媒と液状冷媒に分離され、ガス状冷
媒は分岐部10、三方切換弁8、接続配管6dを介して
暖房しようとする室内機りに流入し、熱交換器5で室内
空気と熱交換して凝縮液化し、室内を暖房する。さらに
、冷媒は熱交換器5の出口のサブクール量により制御さ
れほぼ全開状態の流量制御部9を通り少し減圧され、接
続配管7dを介して分岐部11に流入する。一方、液状
冷媒は流量制御部13を通って分岐部11に流入し、室
内機りを暖房した冷媒と合流する0合流した冷媒は接続
配管7b、7cを通って室内機B、Cに流入し、熱交換
器5の出口のスーパーヒート量により制御される流量制
御部9により低圧まで減圧され、室内空気と熱交換し蒸
発してガス化され、室内を冷房する。ガス状態となった
冷媒は接続配管6b6c、三方切換弁8、分岐部10、
接続配管6、四方弁2、アキュムレータ4を経て圧縮機
1に吸入される。この冷房主体の冷暖房同時運転におい
ては、室内機りに接続された三方切換弁8の第108a
、第308Cは開口して第208bは閉口し、室内機B
、Cの第208b、第308Cは開口し、第108aは
閉じている。又、このサイクル時、一部の液冷媒は接続
配管7b〜7dの合流部からバイパス配管14へ入り、
流量制御部13で低圧まで減圧されて熱交換部16a−
16dで熱交換され、蒸発した冷媒は逆止弁17、接続
配管6、四方弁2、アキュムレータ4を経て圧縮機1に
吸入される。なお、接続配管6は低圧で接続配管7が高
圧のため、逆止弁17が導通ずる。
Next, a case in which air conditioning is mainly used in simultaneous heating and cooling operation will be described using FIG. 4. In this case, as shown by the solid arrow, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2 and exchanges heat with the heat exchanger 3 to form a two-phase high-temperature, high-pressure state. 7 to the gas-liquid separation section 12
The refrigerant is separated into gaseous refrigerant and liquid refrigerant, and the gaseous refrigerant flows into the indoor unit to be heated via the branch part 10, the three-way switching valve 8, and the connecting pipe 6d, and is heated by the heat exchanger 5. It exchanges heat with the air, condenses and liquefies, heating the room. Further, the refrigerant is controlled by the subcooling amount at the outlet of the heat exchanger 5, passes through the flow rate control section 9 which is in an almost fully open state, is slightly depressurized, and flows into the branch section 11 via the connecting pipe 7d. On the other hand, the liquid refrigerant flows into the branch part 11 through the flow rate control part 13 and merges with the refrigerant that heated the indoor unit.The combined refrigerant flows into the indoor units B and C through the connecting pipes 7b and 7c. The pressure is reduced to a low pressure by the flow control unit 9 controlled by the amount of superheat at the outlet of the heat exchanger 5, and the air is evaporated and gasified through heat exchange with indoor air, thereby cooling the room. The refrigerant in the gas state is transferred to the connecting pipe 6b6c, the three-way switching valve 8, the branch part 10,
The air is sucked into the compressor 1 through the connecting pipe 6, the four-way valve 2, and the accumulator 4. In this air-conditioning-based simultaneous heating and cooling operation, the 108a of the three-way switching valve 8 connected to the indoor unit
, No. 308C is open, No. 208b is closed, and indoor unit B
, C, 208b and 308C are open, and 108a is closed. Also, during this cycle, some liquid refrigerant enters the bypass pipe 14 from the confluence of the connecting pipes 7b to 7d,
The pressure is reduced to a low pressure by the flow rate control section 13 and the heat exchange section 16a-
The refrigerant that has undergone heat exchange and evaporated in step 16d is sucked into the compressor 1 through the check valve 17, the connecting pipe 6, the four-way valve 2, and the accumulator 4. Note that since the connecting pipe 6 has a low pressure and the connecting pipe 7 has a high pressure, the check valve 17 is conductive.

方、熱交換部16dで熱交換により冷却されサブクール
を付けられた冷媒は分岐部11に流入し、熱交換部16
a〜16cでさらにサブクールを付けられて冷房しよう
とする室内機B、Cへ流入する。
On the other hand, the refrigerant that has been cooled by heat exchange and subcooled in the heat exchange section 16d flows into the branch section 11 and is cooled by heat exchange in the heat exchange section 16d.
The air is further subcooled at a to 16c and flows into the indoor units B and C that are to be cooled.

次に、暖房運転のみの場合の流量制御部13゜15の制
御について説明する。第6図は流量制御部13.15の
制御B機構を示し、第7図はその動作を示すフローチャ
ートである。又、40は圧力検出部 25.26の検出
圧力差に応じて流量制御部13.15の弁開度を制御す
る流量制御部制御手段である。圧力検出部25.26の
検出圧力の差ΔP!、がある値ΔP、以下になると暖房
しようとする室内機B、Cの流量制御部9が全開となっ
ても暖房に必要な冷媒が供給されない、又、圧力差へP
oがある値688以上になると、熱交換器5を通過後の
液冷媒が充分にサブクールをとれていても流量制御部9
で減圧後には液単相とならずに、接続配管7b〜7dは
気液二相状態となってしまう。そこで、圧力差ΔP3!
がΔP、より大きく予め設定された第1の目標圧力差Δ
P1とΔP2より小さく予め設定された第2の目標圧力
差ΔP□との間となるように、即ちΔP□≦ΔP3!≦
ΔP□となるように流量制御部1315を制御すること
により、接続配管7b〜7dを液単相で満たしつつ、暖
房しようとする室内機B、Cに充分な冷媒を供給するこ
とができる。
Next, the control of the flow rate controllers 13 and 15 in the case of only heating operation will be explained. FIG. 6 shows the control B mechanism of the flow rate controller 13.15, and FIG. 7 is a flowchart showing its operation. Reference numeral 40 denotes a flow rate control unit control means for controlling the valve opening degree of the flow rate control unit 13.15 in accordance with the pressure difference detected by the pressure detection unit 25.26. Difference ΔP between the detected pressures of the pressure detectors 25 and 26! is below a certain value ΔP, the refrigerant necessary for heating will not be supplied even if the flow rate control units 9 of indoor units B and C that are attempting to heat the room are fully opened, and due to the pressure difference P
When o exceeds a certain value of 688, even if the liquid refrigerant after passing through the heat exchanger 5 has been sufficiently subcooled, the flow rate controller 9
After the pressure is reduced, the connecting pipes 7b to 7d end up in a gas-liquid two-phase state instead of being in a single-phase liquid state. Therefore, the pressure difference ΔP3!
is ΔP, and the first target pressure difference Δ is set larger in advance.
P1 and a second target pressure difference ΔP□ which is preset smaller than ΔP2, that is, ΔP□≦ΔP3! ≦
By controlling the flow rate control unit 1315 so that ΔP□, it is possible to supply sufficient refrigerant to the indoor units B and C to be heated while filling the connecting pipes 7b to 7d with a single liquid phase.

第7図のステップ50では圧力差Δpszを計算し、ス
テップ51ではΔpsiをΔP□と比較し、ΔpSt<
ΔP□であればステップ52で流量制御部15の開度が
全開値か否かを判定し、全開値でなければステップ53
で流量制御8部15の開度を増加させ、全開値であれば
ステップ54で流量制御部13の関度を増加させ、それ
ぞれステップ50に戻る。一方、ΔP!、≧ΔP、dで
あるとステップ55に進み、ΔPAMをΔP□と比較す
る。
In step 50 of FIG. 7, the pressure difference Δpsz is calculated, and in step 51, Δpsi is compared with ΔP□, and ΔpSt<
If ΔP□, it is determined in step 52 whether the opening degree of the flow rate control unit 15 is the fully open value, and if it is not the fully open value, step 53
The degree of opening of the flow rate control section 15 is increased in step 54, and if the opening degree is the fully open value, the degree of opening of the flow rate control section 13 is increased in step 54, and the process returns to step 50. On the other hand, ΔP! , ≧ΔP, d, the process proceeds to step 55, where ΔPAM is compared with ΔP□.

ΔPo〉ΔP□であればステップ56に進み、流量制御
部13の開度が全閉値となっているか否かを判定し、全
開値でなければステップ57で流量制御部13の開度を
減少させ、全閉値であればステップ58で流量制御部1
5の開度を減少させ、それぞれステップ50に戻る。又
、ΔP!t≦ΔP’smの場合にもステップ50に戻る
。こうして、圧力差ΔF’amを一定範囲に保つことが
できる。
If ΔPo>ΔP□, the process proceeds to step 56, where it is determined whether the opening degree of the flow rate control unit 13 is a fully closed value, and if it is not the fully open value, the opening degree of the flow rate control unit 13 is decreased in step 57. If the value is fully closed, the flow rate controller 1 is turned on in step 58.
5 and return to step 50. Also, ΔP! If t≦ΔP'sm, the process also returns to step 50. In this way, the pressure difference ΔF'am can be maintained within a certain range.

なお、上記実施例においては三方切換弁8を設け、接続
配管61〕〜6dに対して接続配管6,7を切換可能に
接続しているが、第5図に示すように電磁弁30.31
を設けて切換可能としてもよい。
In the above embodiment, a three-way switching valve 8 is provided, and the connecting pipes 6, 7 are connected to the connecting pipes 61] to 6d in a switchable manner, but as shown in FIG.
It is also possible to provide a switchable switch.

又、上記各実施例では室内機を3台としたが、2台以上
であれば何台でもよい。
Further, in each of the above embodiments, the number of indoor units is three, but any number of indoor units may be used as long as it is two or more.

(発明の効果) 以上のようにこの発明によれば、第1及び第2の分岐部
及び逆止弁などを設けることにより、冷暖房を選択的に
かつ同時に行うことができる。又、暖房のみの運転にお
いて、第1の接続配管とバイパス配管との圧力差が所定
範囲内となるように第2及び第3の流量制御部を制御し
ており、暖房しようとする室内機に充分な冷媒を供給す
ることができると共に、第1の流量制御部と第2の分岐
部の間の接続配管が液冷媒で満たされ、アキエムレ−夕
に貯留される余剰冷媒量が少ないのでアキュムレータの
小容量化が可能となり、圧wM機への液バツクも少なく
圧縮機の信転性を向上することができる。
(Effects of the Invention) As described above, according to the present invention, heating and cooling can be performed selectively and simultaneously by providing the first and second branch portions, check valves, and the like. In addition, during heating-only operation, the second and third flow rate controllers are controlled so that the pressure difference between the first connection pipe and the bypass pipe is within a predetermined range, and the indoor unit that is to be heated is In addition to being able to supply sufficient refrigerant, the connecting pipe between the first flow rate control part and the second branch part is filled with liquid refrigerant, and the amount of surplus refrigerant stored in the Akiemulator is small, so the accumulator is It is possible to reduce the capacity, reduce liquid back to the pressure wm machine, and improve the reliability of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明装置の冷媒系構成図であり、第2図は
冷房又は暖房のみの運転状態図、第3図は暖房主体冷暖
房同時運転の状態図、第4図は冷房主体冷暖房同時運転
の状態図、第5図はこの発明装置の他の実施例による冷
媒系構成図、第6図及び第7図はこの発明装置の流量制
御部制御系の構成図及びフローチャートである。 A・・・熱源機、B−D・・・室内機、1・・・圧縮機
、2・・・四方弁、3・・・熱源機側熱交換器、4・・
・アキュムレータ、5・・・室内側熱交換器、6・・・
第1の接続配管、7・・・第2の接続配管、7b〜7d
・・・接続配管、8・・・三方切換弁、9・・・第1の
流量制御部、10・・・第1の分岐部、11・・・第2
の分岐部、13・・・第2の流量制御部、14・・・バ
イパス配管、15・・・第3の流量制御部、17.18
・・・逆止弁、25.26・・・圧力検出部、40・・
・流量制御部制御手段。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 is a diagram showing the refrigerant system configuration of the device of the present invention, Fig. 2 is a diagram showing the operating state of cooling or heating only, Fig. 3 is a state diagram of heating-based simultaneous cooling/heating operation, and Fig. 4 is a state diagram of air-conditioning-based simultaneous cooling/heating operation. FIG. 5 is a block diagram of a refrigerant system according to another embodiment of the apparatus of the present invention, and FIGS. 6 and 7 are block diagrams and flowcharts of the flow control unit control system of the apparatus of the present invention. A... Heat source machine, B-D... Indoor unit, 1... Compressor, 2... Four-way valve, 3... Heat source machine side heat exchanger, 4...
・Accumulator, 5... Indoor heat exchanger, 6...
First connection pipe, 7... Second connection pipe, 7b to 7d
... Connection piping, 8... Three-way switching valve, 9... First flow control section, 10... First branch section, 11... Second
branch part, 13... second flow rate control part, 14... bypass piping, 15... third flow rate control part, 17.18
...Check valve, 25.26...Pressure detection section, 40...
・Flow control unit control means. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、四方弁、熱源機側熱交換器及びアキュムレー
タからなる1台の熱源機と、室内側熱交換器と第1の流
量制御部からなる複数台の室内機とを第1及び第2の接
続配管を介して接続したものにおいて、各室内機の室内
側熱交換器側を第1及び第2の接続配管に切換可能に接
続する弁装置を有する第1の分岐部と、各室内機の第1
の流量制御部側を第2の接続配管に接続する第2の分岐
部と、第2の分岐部と第2の接続配管との間に設けられ
た第2の流量制御部と、一端が第2の分岐部に接続され
、他端が第3の流量制御部と第1及び第2の接続配管へ
のみそれぞれ流通を許可する第1及び第2の逆止弁を介
して第1及び第2の接続配管に接続されたバイパス配管
と、第1の接続配管に設けられ、その圧力を検出する第
1の圧力検出部と、第2の流量制御部と第3の流量制御
部の間の管路に設けられ、その圧力を検出する第2の圧
力検出部と、暖房のみの運転において第1及び第2の圧
力検出部の検出圧力差が所定の範囲内となるよう第2及
び第3の流量制御部を制御する流量制御部制御手段を備
えたことを特徴とする空気調和装置。
One heat source machine consisting of a compressor, a four-way valve, a heat exchanger on the heat source side and an accumulator, and a plurality of indoor units consisting of an indoor heat exchanger and a first flow rate controller are connected to the first and second In those connected via connection piping, a first branch section having a valve device that connects the indoor heat exchanger side of each indoor unit to the first and second connection piping in a switchable manner; 1st
a second branch part that connects the flow rate control part side of the second connection pipe to the second connection pipe; a second flow control part provided between the second branch part and the second connection pipe; The first and second flow pipes are connected to the second branch part through first and second check valves whose other ends permit flow only to the third flow rate control part and the first and second connection pipes, respectively. a bypass pipe connected to the connecting pipe, a first pressure detection section provided in the first connecting pipe and detecting the pressure thereof, and a pipe between the second flow rate control section and the third flow rate control section. A second pressure detection section is installed in the road and detects the pressure, and a second and third pressure detection section is installed in the air conditioner so that the detected pressure difference between the first and second pressure detection sections is within a predetermined range in heating only operation. An air conditioner comprising a flow rate control section control means for controlling a flow rate control section.
JP29320489A 1989-11-09 1989-11-09 Air conditioner Expired - Lifetime JP2508311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29320489A JP2508311B2 (en) 1989-11-09 1989-11-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29320489A JP2508311B2 (en) 1989-11-09 1989-11-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH03152355A true JPH03152355A (en) 1991-06-28
JP2508311B2 JP2508311B2 (en) 1996-06-19

Family

ID=17791772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29320489A Expired - Lifetime JP2508311B2 (en) 1989-11-09 1989-11-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP2508311B2 (en)

Also Published As

Publication number Publication date
JP2508311B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JPH0942804A (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JPH03152355A (en) Air conditioner
JP2727733B2 (en) Air conditioner
JPH046364A (en) Air-conditioner
JP2522363B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JPH03152354A (en) Air conditioner
JP2525927B2 (en) Air conditioner
JPH04347466A (en) Air conditioner
GB2578372A (en) Relay device and air conditioning device
JP2536229B2 (en) Air conditioner
JPH04110573A (en) Air conditioner
JPH04353369A (en) Air conditioner
JPH046361A (en) Air-conditioner
JPH046366A (en) Air-conditioner
JPH086980B2 (en) Air conditioner
JPH05172432A (en) Air conditioning apparatus
JPH04359768A (en) Air conditioner
JPH04371763A (en) Air conditioner
JPH0351672A (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH046365A (en) Air-conditioner