JPH0351672A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0351672A
JPH0351672A JP18665389A JP18665389A JPH0351672A JP H0351672 A JPH0351672 A JP H0351672A JP 18665389 A JP18665389 A JP 18665389A JP 18665389 A JP18665389 A JP 18665389A JP H0351672 A JPH0351672 A JP H0351672A
Authority
JP
Japan
Prior art keywords
control device
flow rate
rate control
indoor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18665389A
Other languages
Japanese (ja)
Other versions
JP2503669B2 (en
Inventor
Setsu Nakamura
中村 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1186653A priority Critical patent/JP2503669B2/en
Publication of JPH0351672A publication Critical patent/JPH0351672A/en
Application granted granted Critical
Publication of JP2503669B2 publication Critical patent/JP2503669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve a reliability of an operation of an air conditioner by a method wherein a heating exchanging part for performing a heat exchanging operation between a connection pipe between each of indoor devices and the second branch part and a bypassing pipe between the third flow rate control device and a check valve is provided. CONSTITUTION:The first branch part 10 provided with a three-way changingover valve 8 for connecting one of indoor devices B to D to either the first or second connection pipes 6 and 7 in such a way as it may be changed over and the second branch part 11 for connecting the other of the indoor devices B to D to the second connection pipe 7 through the first flow rate control device 9 are connected through the second flow rate control device 15. A bypassing pipe 14 is provided, wherein one end of it is connected to the second branch part 11 and the other end of it is connected to the first and second connection pipes 6 and 7 through check valves 17 and 18 for allowing a flowing of refrigerant only to the third flow rate control device 15, the first and second connection pipes 6 and 7. Heat exchangers 16b to 16d for performing a heat exchanging operation between the connection pipes 7b to 7d between each of the indoor devices B to D and the second branch part 11 and the bypassing pipe 14 between the third flow rate control device 15 and the check valves 17, 18 are provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱源機1台に対して、複数台の室内機を接
続する多室型と一トポンプ式空気調和装置に関するもの
で、特に各室内機毎に冷暖房を選択的に、かつ1方の室
内機では冷房、他方の室内機では暖房が同時に行うこと
ができる空気調和装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a multi-room type and one-pump type air conditioner in which a plurality of indoor units are connected to one heat source unit, and in particular, The present invention relates to an air conditioner that can selectively perform heating and cooling for each indoor unit, and can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

〔従来の技術〕[Conventional technology]

従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転をするヒートポン
プ式空気調和装置は一般的であり、各室内機は全て暖房
、または、全て冷房を行うように形成されている0 〔発明が解決しようとする課題〕 従来の多室型ヒートポンプ式空気調和装置は以上のよう
に構成されているので、全ての室内機が、暖房または冷
房にしか運転しないため、冷房が必要な場所で暖房が行
われたり、逆に暖房が必要な場所で冷房が行われる様な
問題があった。
Conventionally, heat pump air conditioners have been common in which multiple indoor units are connected to one heat source unit using two pipes, a gas pipe and a liquid pipe, and each indoor unit performs heating and cooling operation. [Problems to be Solved by the Invention] Since the conventional multi-room heat pump type air conditioner is configured as described above, all the indoor units are configured to perform air conditioning. Since it operates only for heating or cooling, there is a problem that heating is performed in places that require cooling, or conversely, cooling is performed in places that require heating.

特に、大規模なビルに据え付けた場合、インテリア部と
ベリメータ一部、または一般事務室と、コンピューター
ルーム等のOA化された部屋では空調の負荷が著しく異
なるため、特に問題となっている。
In particular, when installed in a large building, the air conditioning load is significantly different between the interior section and a portion of the verimeter, or between a general office and a computer room or other open-aired room, which poses a particular problem.

この発明は、上記のような問題点を解消するためになさ
れたもので、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、かつ1方の室内機
では冷房、他方の室内機では暖房が同時に行うことがで
きる様にして、大規模なピルに据え付けた場合、インテ
リア部とベリメータ一部、または一般事務室ト、コンピ
ュータールーム等のOA化された部屋で空調の負荷が著
しく異なっても、それぞれに対応できる多室型ヒートポ
ンプ式空気調和装置を得ることを目的とする0 〔課題を解決するための手段〕 この発明は、圧縮機、4方弁、熱源機側熱交換器、アキ
ュムレータ等、よりなる1台の熱源機と室内側熱交換器
、第1の流量制御装置等からなる複数台の室内機とを、
第1、第2の接続配管を介して接続したものにおいて、
上記複数台の室内機の一方を上記第1の接続配管または
、第2の接続配管に切り替え可能に接続する弁装置を備
えた第1の分岐部と、上記複数台の室内機の他方を、室
内機に接続された第1の流量制御装置を介して上記第2
の接続配管に接続してなる第2の分岐部とを第2の流量
制御装置を介して接続すると共に、一端が上記第2の分
岐部に接続され、他端が第3の流量制御装Rと上記第1
及び第2の接続配管側へのみ流通を許容する逆止弁を介
して上記第1及び第2の接続配管へ接続されたバイパス
配管を備え、上記各々の室内機と第2の分岐部との接続
配管と、上記第3の流量制御装置と逆止弁との間のバイ
パス配管との間で熱交換を行う熱交換部をそれぞれ設け
たことを特徴とするものである。
This invention was made in order to solve the above-mentioned problems. Multiple indoor units are connected to one heat source unit, and each indoor unit can selectively and unidirectionally perform heating and cooling. One indoor unit can perform cooling and the other indoor unit can perform heating at the same time, and when installed in a large-scale building, it is possible to open the interior part and part of the Verimeter, general office space, computer room, etc. An object of the present invention is to obtain a multi-room heat pump type air conditioner that can handle each room even if the air conditioning loads differ significantly in each room. One heat source device consisting of a flow valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc.
In those connected via the first and second connecting pipes,
a first branching section equipped with a valve device that connects one of the plurality of indoor units to the first connection pipe or the second connection pipe in a switchable manner; and the other of the plurality of indoor units; The above-mentioned second flow rate control device is connected to the indoor unit.
A second branch section connected to the connecting pipe R is connected via a second flow rate control device, and one end is connected to the second branch section and the other end is connected to a third flow rate control device R. and the first above
and a bypass pipe connected to the first and second connecting pipes via a check valve that allows flow only to the second connecting pipe side, and connecting each of the indoor units to the second branch part. The present invention is characterized in that a heat exchange section is provided for exchanging heat between the connecting pipe and the bypass pipe between the third flow rate control device and the check valve.

〔作用〕[Effect]

この発明において、冷暖房同時運転における暖房主体の
場合は、高圧ガス冷媒を第1の接続配管、第1の分岐部
から暖房しようとしている各室内機に導入して暖房を行
い、その後、冷媒は第2の分岐部から一部は冷房しよう
としている室内機に流入して冷房を行い第1の分岐部か
ら第2の接続配管に流入する。一方、残りの冷媒は第2
の流量制御装置を通って気液分離装置に流入し、冷房室
内機を通った冷媒と合流して第2の接続配管に流入し、
熱源機に戻る0更に冷媒の一部を、上記第2の分岐部か
ら、バイパス配管を介して流通させ、熱交換部で熱交換
を行い、冷媒を冷却しサブクールを充分につけ冷房しよ
うとしている室内機へ流入する。
In this invention, when heating is the main component in simultaneous cooling and heating operation, high-pressure gas refrigerant is introduced from the first connecting pipe and the first branch into each indoor unit to be heated, and then the refrigerant is A part of the air flows from the second branch into the indoor unit to be cooled, and then flows from the first branch into the second connection pipe. Meanwhile, the remaining refrigerant is
The refrigerant flows into the gas-liquid separation device through the flow rate control device, merges with the refrigerant that has passed through the cooling indoor unit, and flows into the second connection pipe,
Return to the heat source device 0 Furthermore, a part of the refrigerant is circulated from the second branch section through the bypass piping, heat exchange is performed in the heat exchange section, the refrigerant is cooled, and the room that is being cooled is sufficiently subcooled. flow into the machine.

また、冷房主体の場合は、高圧ガスを熱源機で任意量熱
交換し二相状態として第2の接続配管からガス状の冷媒
を第1の分岐部を介して暖房しようとする室内機に導入
して暖房を行い第2の分岐部に流入する。一方、液状の
残りの冷媒は第2の流量制御装置を通って第2の分岐部
で暖房しようとする室内機を通った冷媒と合流して冷房
しようとする各室内機に流入して冷房を行い、その後に
第1の分岐部から第1の接続配管を通って熱源機に導か
れ再び圧縮機に戻る。更に冷媒の一部を、第2の分岐部
から、バイパス配管を介して第1の接続配管へ流入させ
る過程で、熱交換部で熱交換を行い、上記第2の分岐部
へ流入する前の冷媒を冷却し、更に上記第2の分岐部か
ら、冷房しようとする室内機へ流出する冷媒を冷却しサ
ブクールを充分につけ冷房しようとしている室内機へ流
入する。
In addition, in the case of mainly cooling, high-pressure gas is exchanged with an arbitrary amount of heat using a heat source device, and the gaseous refrigerant is introduced into a two-phase state from the second connecting pipe through the first branch to the indoor unit that is to be heated. It performs heating and flows into the second branch. On the other hand, the remaining liquid refrigerant passes through the second flow rate control device, joins with the refrigerant that has passed through the indoor unit that is attempting to heat at the second branch, and flows into each indoor unit that is attempting to cool. After that, the heat source is guided from the first branch through the first connection pipe to the heat source machine and returns to the compressor. Furthermore, in the process of flowing a part of the refrigerant from the second branch part to the first connection pipe via the bypass pipe, heat exchange is performed in the heat exchange part, and the refrigerant is heated before flowing into the second branch part. The refrigerant is cooled, and the refrigerant that flows out from the second branch to the indoor unit to be cooled is cooled, sufficiently subcooled, and flows into the indoor unit to be cooled.

更に、暖房運転のみの場合、冷媒は熱源機より第1の接
続配管、第1の分岐部を通り各室内機に導入され、暖房
して第2の分岐部から第2の接続配管を通り熱源機に戻
る。
Furthermore, in the case of only heating operation, the refrigerant is introduced from the heat source device through the first connecting pipe and the first branch to each indoor unit, heated, and then passed from the second branch to the second connecting pipe to the heat source. Return to the machine.

そして、冷房運転のみの場合、冷媒は熱源機よシ第2の
接続配管、第2の分岐部を通り各室内機に導入され、冷
房して第1の分岐部から第1の接続配管を通り熱源機に
戻る。
In the case of only cooling operation, the refrigerant is introduced into each indoor unit through the heat source equipment, the second connection pipe, and the second branch, cooled, and then passed from the first branch to the first connection pipe. Return to the heat source machine.

更に冷媒の一部を、第2の分岐部から、パイパス配管を
介して上記第1の接続配管へ流入させる過程で熱交換部
で熱交換を行い、上記第2の分岐部へ流入する前の冷媒
を冷却し、更に上記第2の分岐部から冷房しようとする
室内機へ流出する冷媒を冷却しサブクールを充分につけ
冷房しようとしている室内機へ流入する。
Further, in the process of flowing a part of the refrigerant from the second branch part to the first connection pipe via the bypass pipe, heat exchange is performed in the heat exchange part, and before flowing into the second branch part, The refrigerant is cooled, and the refrigerant that flows out from the second branch to the indoor unit to be cooled is further cooled, sufficiently subcooled, and flows into the indoor unit to be cooled.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図である。また、第2図乃至第4
図は第1図の一実施例における冷暖房運転時の動作状態
を示したもので、第2図は冷房または暖房のみの運転動
作状態図、第3図及び第4図は冷暖房同時運転の動作を
示すもので、第3図は暖房主体(暖房運転容量が冷房運
転容量より大きい場合)を、第4図は冷房主体(冷房運
転容量が暖房運転容量より大きい場合)を示す運転動作
状態図である。そして、第5図はこの発明の他の実施例
の空気調和装置の冷媒系を中心とする全体構成図である
FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to a first embodiment of the present invention. Also, Figures 2 to 4
The figure shows the operating state during cooling/heating operation in the embodiment shown in Fig. 1, Fig. 2 shows the operating state of cooling or heating only, and Figs. 3 and 4 show the operation of simultaneous cooling/heating operation. Figure 3 is an operating state diagram showing heating-dominant operation (when the heating operating capacity is greater than cooling operating capacity), and Figure 4 is an operating state diagram showing cooling-dominant operation (when cooling operating capacity is greater than heating operating capacity). . FIG. 5 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention.

なお、この実施例では、熱源機1台に室内機3台を接続
した場合について説明するが、2台以上の室内機を接続
した場合も同様である。
In this embodiment, a case will be described in which three indoor units are connected to one heat source device, but the same applies to a case in which two or more indoor units are connected.

第1図において、(A)は熱源機、(B) e (0)
 #(D)は後述するように互いに並列接続された室内
機でそれぞれ同じ構成となっている。(K)は後述する
ように、第1の分岐部、第2の流量制御装置、第2の分
岐部、気液分離装置、熱交換部を内蔵した中継機。
In Figure 1, (A) is a heat source machine, (B) e (0)
#(D) are indoor units connected in parallel to each other, each having the same configuration, as will be described later. (K) is a repeater that incorporates a first branching section, a second flow rate control device, a second branching section, a gas-liquid separation device, and a heat exchange section, as will be described later.

(1)は圧縮機、(2)は熱源機の冷媒流通方向を切換
える4方弁、(3)は熱源機側熱交換器、(4)はアキ
ュムレータで、上記機器(1)〜(3)と接続され、熱
源機(ム)を構成する。(5)は3台の室内側熱交換器
、(6)は熱源機(ム)の4方弁(2)と中継機(1c
)を接続する第1の接続配管、(ab) 、 (60)
 、 (6a)はそれぞれ室内機(B) 、 (0) 
、 (D)の室内側熱交換器(5)と中継機(IC)を
接続し、第1の接続配管(6)に対応する室内機側の第
1の接続配管、(7)は熱源機(A)の熱源機側熱交換
器(3)と中継機(E)を接続する第2の接続配管、(
7b) 、 (70) + (711)はそれぞれ室内
機(B)、 (0) 、 (D)の室内側熱交換器(5
)と中継機(]e)を接続し第2の接続配管(7)に対
応する室内機側の第2の接続配管、(8)は室内機側の
第1の接続配管(6b) 、 (ae) 、 (6(1
)と、第1の接続配管(6)または、第2の接続配管(
7)側に切り替え可能に接続する三方切替弁、(9)は
室内側熱交換器(5)に近接して接続され室内側熱交換
器(5)の出口側の冷房時はスーパーヒート量、暖房時
はサブクール量により制御される第1の流量制御装置で
、室内機側の第2の接続配管(7b) ? (’7G)
 I C′76>に接続される。αGは室内機側の第1
の接続配管(61:+) # (60) l (6d)
と、第1の接続配管(6)または、第2の接続配管(7
)に切り替え可能に接続する三方切替弁(8)よシなる
第1の分岐部、但は室内機側の第2の接続配管(+71
)) y (ツC)p (7d)と第2の接続配管(7
)よυなる第2の分岐部、0は第2の接続配置F (7
)の途中に設けられた気液分離装置で、その気層部は三
方切替弁(8)の第10(8a)に接続され、その液層
部は第2の分岐部■に接続されている。口は、気液分離
装置(6)と第2の分岐部−との間に接続する開閉自在
な第2の流量制御装置、α4は第2の分岐部0と上記第
1の接続配管(6)及び上記第2接続配管(7)とを結
ぶバイパス配管、(至)はバイパス配管(2)の途中に
設けられた第3の流量制御装置、(16b) (16a
) (164)はそれぞれバイパス配管α4の途中に設
けられた第3の流量制御装置の下流に設けられ、第2の
分岐部0の各室内機側の第2の接続配管()b) t 
(10) t ()d)との間でそれぞれ熱交換を行う
それぞれの熱交換部、α力はrt イハス配9 (14
O熱交換部(16b) (160) (16(1)と上
記第1の接続配管(6)との間に設けられた第1の逆止
弁、(至)はバイパス配管α4の熱交換部ωと上記第1
の接続配管(7)との間に設けられた第1の逆止弁αη
と並列関係の第2の逆止弁であシ、第1及び第2の逆止
弁(ロ)(至)は共に熱交換部(16b) (16o)
(16(1)側から第1及び第2の接続配管(6) (
7)側へのみ冷媒流通を許容する。
(1) is a compressor, (2) is a four-way valve that switches the refrigerant flow direction of the heat source machine, (3) is a heat exchanger on the heat source machine side, (4) is an accumulator, and the above equipment (1) to (3) and is connected to constitute a heat source unit. (5) is the three indoor heat exchangers, (6) is the four-way valve (2) of the heat source equipment (mu) and the repeater (1c).
), (ab), (60)
, (6a) are indoor units (B) and (0), respectively.
, (D) connects the indoor heat exchanger (5) and the repeater (IC), and the first connection pipe on the indoor unit side corresponding to the first connection pipe (6), (7) is the heat source equipment A second connection pipe connecting the heat source machine side heat exchanger (3) of (A) and the relay machine (E), (
7b), (70) + (711) are the indoor heat exchangers (5) of the indoor units (B), (0), and (D), respectively.
) and the repeater (]e) and the second connection pipe on the indoor unit side corresponding to the second connection pipe (7), (8) is the first connection pipe on the indoor unit side (6b), ( ae), (6(1
) and the first connection pipe (6) or the second connection pipe (
A three-way switching valve (9) is connected in close proximity to the indoor heat exchanger (5) and is connected to the indoor heat exchanger (5) to generate a superheat amount when cooling the outlet side of the indoor heat exchanger (5). During heating, the first flow rate control device is controlled by the sub-cooling amount, and the second connection pipe (7b) on the indoor unit side is connected. ('7G)
IC'76>. αG is the first on the indoor unit side
Connection piping (61:+) # (60) l (6d)
and the first connection pipe (6) or the second connection pipe (7)
) with the exception of the second connecting pipe (+71) on the indoor unit side.
)) y (ツC)p (7d) and the second connection pipe (7
) so υ, 0 is the second connection arrangement F (7
), the gas layer part is connected to No. 10 (8a) of the three-way switching valve (8), and the liquid layer part is connected to the second branch part (■). . The opening is a second flow rate control device that can be opened and closed and is connected between the gas-liquid separation device (6) and the second branch 0, and α4 is the connection between the second branch 0 and the first connecting pipe (6). ) and the bypass pipe connecting the second connection pipe (7), (to) a third flow rate control device provided in the middle of the bypass pipe (2), (16b) (16a
) (164) are respectively provided downstream of the third flow rate control device provided in the middle of the bypass pipe α4, and are the second connection pipes () b) t on the side of each indoor unit of the second branch part 0.
(10) Each heat exchange part performs heat exchange between t ()d), α force is rt Ihas distribution 9 (14
O heat exchange part (16b) (160) (first check valve provided between 16 (1) and the first connection pipe (6), (to) heat exchange part of bypass pipe α4 ω and the above first
The first check valve αη provided between the connecting pipe (7) and the connecting pipe (7)
The first and second check valves (b) and (to) are both connected to the heat exchange section (16b) (16o).
(16(1) side to first and second connection pipes (6) (
7) Allow refrigerant flow only to the side.

このように構成されたこの発明の実施例について説明す
る0 まず、第2図を用いて冷房運転のみの場合について説明
する。
An embodiment of the present invention configured as described above will be described. First, a case where only cooling operation is performed will be described using FIG. 2.

すなわち、同図に実線矢印で示すように圧縮機(1)よ
シ吐出された高温高圧冷媒ガスは4方弁(2)を通り、
熱源機側熱交換器(3)で熱交換して凝縮液化された後
、第2の接続配管(7)、気液分離装置四、第2の流量
制御装置(至)の順に通り、更に第2の分岐部01室内
機側の第2の接続配管()b)、()’L(va)を通
シ、各室内機(B) e (0) ? (D)に流入す
る。そして、各室内機(B) t (0) # (I)
)に流入した冷媒は、各室内側熱交換器(5)出口のス
ーパーと一ト量により制御される第1の流量制御装置(
9)によシ低圧まで減圧されて室内側熱交換器(5)で
、室内空気と熱交換して蒸発しガス化され室内を冷房す
る。そして、このガス状態となった冷媒は、室内機側の
第1の接続配管(6b) # (6G) # (6(1
)、三方切替弁(8)、第1の分岐部ao1第1の接続
配管(6)、熱源機の4方弁(2)、アキエムレータ(
4)を経て圧縮機(1)に吸入される循環サイクルを構
成し、冷房運転をおこなう。この時、三方切替弁(8)
の第10(8&)は閉路、第20(8b)及び第30(
8o)は開路されている。
That is, as shown by the solid line arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way valve (2),
After being condensed and liquefied by heat exchange in the heat exchanger (3) on the heat source side, it passes through the second connection pipe (7), the gas-liquid separator 4, the second flow rate control device (to), and then the Pass through the second connecting pipe ()b), ()'L(va) on the indoor unit side of branch part 01 of 2, and connect each indoor unit (B) e (0)? (D). And each indoor unit (B) t (0) # (I)
) The refrigerant flowing into the first flow rate control device (
9) The pressure is reduced to low pressure, and in the indoor heat exchanger (5), it exchanges heat with indoor air, evaporates and becomes gas, and cools the room. Then, this gaseous refrigerant is transferred to the first connection pipe (6b) # (6G) # (6(1
), three-way switching valve (8), first branch part ao1 first connection pipe (6), four-way valve of heat source equipment (2), Akiemator (
4) to form a circulation cycle in which air is sucked into the compressor (1) to perform cooling operation. At this time, the three-way switching valve (8)
The 10th (8 &) is a closed circuit, the 20th (8b) and the 30th (
8o) is open circuited.

また、このサイクルの時、第2の流量制御装置0を通過
した冷媒の一部がバイパス配管α4へ入り第3の流量制
御装置(2)で低圧まで減圧されて熱交換部(16b)
(1aa)(z6a)で第2の分岐部0の各室内機側の
第2の接続配管<−tb> 、 <ツC)、()d)と
の間でそれぞれ熱交換を行い蒸発した冷媒は、第1の逆
止弁α力を通り、第1の接続配管(6)へ入り熱源機の
4方弁(2)、アキュムレータ(4)を経て圧縮機(1
)に吸入される。この時、第1の接続配管(6)が低圧
、第2の接続配管(7)が高圧のため必然的に第1の逆
止弁α力側を流通する。一方、熱交換部(16b)(1
6c)(1aa)でそれぞれ熱交換し冷却されサブクー
ルを充分につけられた冷媒は室内機側の第2の接続配管
(7b ) (7G)(7(L)を通って冷房しようと
している室内機(B) (0) (D)へ流入する。
Also, during this cycle, a part of the refrigerant that has passed through the second flow control device 0 enters the bypass pipe α4, is reduced to a low pressure by the third flow control device (2), and is transferred to the heat exchange section (16b).
(1aa) At (z6a), the refrigerant evaporated through heat exchange with the second connection pipe <-tb>, <C), and ()d) on the side of each indoor unit of the second branch part 0, respectively. passes through the first check valve α force, enters the first connection pipe (6), passes through the four-way valve (2) of the heat source machine, the accumulator (4), and then enters the compressor (1).
) is inhaled. At this time, since the first connecting pipe (6) is at low pressure and the second connecting pipe (7) is at high pressure, the flow inevitably flows through the α force side of the first check valve. On the other hand, the heat exchange part (16b) (1
The refrigerant that has been cooled by heat exchange in 6c) (1aa) and sufficiently subcooled passes through the second connecting pipe (7b) (7G) (7(L) on the indoor unit side to the indoor unit (7(L)) that is about to be cooled. B) (0) Flows into (D).

次に、第2図を用いて暖房運転のみの場合について説明
する。すなわち、同図に点線矢印で示すように圧縮al
t (1)より吐出された高温高圧冷媒ガスは、4方弁
(2)を通シ、第1の接続配管(6)、第1の分岐部α
01三方切替弁(8)、室内機側の第1の接続配管(6
b) t (ao) t (611)の順に通シ、各室
内機(B)(0) l (1))に流入し、室内空気と
熱交換して凝縮液化し、室内を暖房する。そして、この
液状態となった冷媒は、各室内側熱交換器(5)出口の
サブクール量により制御される第1の流量制御装置(9
)を通シ、室内機側の第2の接続配管(7′b)、(7
゜)。
Next, the case of only heating operation will be described using FIG. 2. In other words, as shown by the dotted arrow in the same figure, the compressed al
The high-temperature, high-pressure refrigerant gas discharged from (1) passes through the four-way valve (2), the first connecting pipe (6), and the first branch part α.
01 Three-way switching valve (8), first connection pipe on the indoor unit side (6
b) t (ao) t (611), flows into each indoor unit (B) (0) l (1)), exchanges heat with indoor air, condenses and liquefies, and heats the room. Then, this liquid refrigerant is transferred to the first flow rate control device (9), which is controlled by the subcooling amount at the outlet of each indoor heat exchanger (5).
), the second connection pipe (7'b) on the indoor unit side, (7
゜).

()d)から第2の分岐部Iに流入して合流し、更に第
2の流量制御装!!2(13を通シ、ここで第1の流量
制御装置(9)、又は第2の流量制御装置■のどちらか
一方で低圧の二相状態まで減圧される。そして、低圧ま
で減圧された冷媒は、気液分離装置@、第2の接続配管
(7)を経て熱源機(λ)の熱源機側熱交換器(3〕に
流入し熱交換して蒸発しガス状態となった冷媒は、熱源
機の4方弁(2)、アキュムレータ(4)を経て圧縮機
(1)に吸入される循環サイクルを構成し、暖房運転を
おこなう。この時、三方切替弁(8)は、上述した冷房
運転のみの場合と同様に開閉されている。
() d) flows into the second branch I, merges, and then flows into the second flow control device! ! 2 (13), where the pressure is reduced to a low-pressure two-phase state by either the first flow control device (9) or the second flow control device (2).Then, the refrigerant reduced to a low pressure The refrigerant flows into the heat source unit side heat exchanger (3) of the heat source unit (λ) through the gas-liquid separator @ and the second connection pipe (7), exchanges heat, evaporates, and becomes a gas. A circulation cycle is configured in which air is sucked into the compressor (1) via the four-way valve (2) of the heat source device and the accumulator (4), and heating operation is performed.At this time, the three-way switching valve (8) It is opened and closed in the same way as when driving only.

冷暖房同時運転における暖房主体の場合について第3図
を用いて説明する。
A case in which heating is the main component in simultaneous cooling and heating operation will be described with reference to FIG.

すなわち、同図に点線矢印で示すように圧縮機(1)よ
シ吐出された高温高圧冷媒ガスは、第1の接続配管(6
)を通して中継機(幻へ送られ、そして第1の分岐部0
01ミ方切替弁18)、室内機側の第1の接続配管(6
b) * (6c)の順に通り、暖房しようとする各室
内機(B) 、 (0)に流入し、室内側熱交換器(5
)で室内空気と熱交換して凝縮液化され室内を暖房する
。そして、この凝縮液化した冷媒は、各室内側熱交換器
(B) (0)出口のサブクール量により制御されほぼ
全開状態の第1の流量制御装置(9)を通り少し減圧さ
れて第2の分岐部αυに流入する。
That is, as shown by the dotted arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor (1) is transferred to the first connection pipe (6).
) to the relay (phantom), and the first branch 0
01 Mi-way switching valve 18), the first connection pipe on the indoor unit side (6
b) * Passes in the order of (6c), flows into each indoor unit (B) and (0) to be heated, and enters the indoor heat exchanger (5).
), it exchanges heat with the indoor air and is condensed and liquefied, heating the room. This condensed and liquefied refrigerant is controlled by the subcooling amount at the outlet of each indoor heat exchanger (B) (0), passes through the first flow rate control device (9) that is almost fully open, and is slightly depressurized and then transferred to the second flow rate control device (9). It flows into the branch αυ.

そして、この冷媒の一部は、室内機側の第2の接続配管
(’i’d)を通シ冷房しようとする室内機(D) K
入シ、室内側熱交換器(D)出口のスーパーヒート量に
より制御される第1の流量制御装置(9)に入り減圧さ
れた後に、室内側熱交換器(5)に入って熱交換して蒸
発しガス状態となって室内を冷房し、三方切替弁(8)
を介して気液分離装置@に流入する。
A part of this refrigerant passes through the second connecting pipe ('i'd) on the indoor unit side to the indoor unit (D) K
After entering the first flow rate control device (9) controlled by the amount of superheat at the outlet of the indoor heat exchanger (D) and being depressurized, it enters the indoor heat exchanger (5) for heat exchange. It evaporates, becomes a gas, cools the room, and activates the three-way switching valve (8).
into the gas-liquid separator@.

一方、他の冷媒は第2の分岐部o1第2の接続配管の開
閉自在な高圧、低圧値によって制御される第2の流量制
御装置(至)を通って気液分離装置@に流入し、冷房し
ようとする室内機(1))を通った冷媒と合流して第2
の接続配管(7)に流入し、熱源機(A)の熱源機側熱
交換器(3)に流入し熱交換して蒸発しガス状態となる
。そして、その冷媒は、熱源機の4方弁(2)、アキュ
ムレータ(4)を経て圧縮機(1)に吸入される循環サ
イクルを構成し、暖房主体運転をおこなう。この時、室
内機(B) (0)に接続された三方切替弁(8)の第
10(8&)は閉路、第20(8b)及び第30(8o
)は開路されており、室内機(D)の第20(8b)は
閉路、第10(8a)、第30(8c)は開路されてい
る。
On the other hand, the other refrigerant flows into the gas-liquid separation device @ through the second flow rate control device (to) controlled by the high and low pressure values that can be opened and closed in the second branch part o1 and the second connection pipe, It joins with the refrigerant that has passed through the indoor unit (1) to be cooled and flows into the second
It flows into the connecting pipe (7) of the heat source device (A), flows into the heat source device side heat exchanger (3) of the heat source device (A), exchanges heat, and evaporates into a gas state. Then, the refrigerant forms a circulation cycle in which the refrigerant is sucked into the compressor (1) through the four-way valve (2) of the heat source device and the accumulator (4), thereby performing heating-dominant operation. At this time, the 10th (8&) of the three-way switching valve (8) connected to the indoor unit (B) (0) is closed, the 20th (8b) and the 30th (8o)
) is open, the 20th (8b) of the indoor unit (D) is closed, and the 10th (8a) and 30th (8c) are open.

また、このサイクル時、一部の液冷媒は各室内機側の第
2の接続配管()b) t (7o)t ()d)から
バイパス配管α4へ入り、第3の流量制御装置側で低圧
まで減圧されて熱交換部(z6b) (16o) (1
6(1)で、それぞれ熱交換を行い蒸発した冷媒は、第
2の逆止弁(至)を通シ、第2の接続配管(7)へ入シ
、熱源機(A)の熱源機側熱交換器(3)に流入し熱交
換して蒸発しガス状態となる。そして、その冷媒は、熱
源機の4方弁(2)、アキュムレータ(4)を経て圧縮
機(1)に吸入される。この時、第1の接続配管(6)
が高圧筒2の接続配管(7)が低圧のため必然的に第2
の逆止弁(至)側を流通する。一方、熱交換部(16’
b)(16a)(161)で熱交換し冷却されサブクー
ルをつけられた冷媒は上記第2の分岐部0へ流入し、更
に上記第2の分岐部0から熱交換部(16(1)で熱交
換し冷却されて更にサブクールを充分につけられ、冷房
しようとしている室内機(D)へ流入する。
Also, during this cycle, some of the liquid refrigerant enters the bypass pipe α4 from the second connection pipe () b) t (7o) t () d) on each indoor unit side, and enters the bypass pipe α4 on the third flow rate control device side. The pressure is reduced to low pressure and the heat exchange section (z6b) (16o) (1
In step 6 (1), the refrigerant that has undergone heat exchange and evaporated passes through the second check valve (to), enters the second connection pipe (7), and enters the heat source unit side of the heat source unit (A). It flows into the heat exchanger (3), exchanges heat, and evaporates into a gas state. The refrigerant is then sucked into the compressor (1) through the four-way valve (2) of the heat source device and the accumulator (4). At this time, the first connection pipe (6)
However, since the connecting pipe (7) of the high pressure cylinder 2 is low pressure, the second
Flows through the check valve (to) side of the valve. On the other hand, the heat exchange section (16'
b) The refrigerant that has been heat exchanged, cooled and subcooled in (16a) and (161) flows into the second branch section 0, and further flows from the second branch section 0 to the heat exchange section (16 (1)). The air is cooled through heat exchange, is sufficiently subcooled, and flows into the indoor unit (D) that is attempting to cool the air.

冷暖房同時運転における冷房主体の場合について第4図
を用いて説明する。
A case in which cooling is the main component in simultaneous heating and cooling operation will be described with reference to FIG. 4.

すなわち、同図に実線矢印で示すように圧縮機(1)よ
り吐出された高温高圧冷媒ガスは、熱源何機熱交換器(
3)で任意量を熱交換して二相の高温高圧状態とな#)
第2の接続配管(7)によシ、中継機(E)の気液分離
装置(イ)へ送られる。そして、ここで、ガス状冷媒と
液状冷媒に分離され、分離されたガス状冷媒を第1の分
岐部αG、三方切替弁(8)、室内機側の第1の接続配
管(6d)の順に通り、暖房しようとする室内機(D)
に流入し、室内側熱交換器(D)で室内空気と熱交換し
て凝縮液化し、室内を暖房する。更に、室内側熱交換器
(1))出口のサブクール量により制御されほぼ全開状
態の第1の流量制御装置(9)を通り少し減圧されて第
2の分岐部叩に流入する。一方、残りの液状冷媒は第2
の分岐部11第2の接続配管の開閉自在な高圧、低圧値
によって制御される第2の流量制御装置α9を通って第
2の分岐部Uに流入し、暖房しようとする室内機(1)
)を通った冷媒と合流する。そして、第2の分岐部0、
室内機側の第2の接続配管()13)(7G)の順に通
り、各室内機(II)l(0)に流入する。
That is, as shown by the solid arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor (1) is transferred to several heat sources and a heat exchanger (
In 3), exchange any amount of heat to create a two-phase high-temperature, high-pressure state.#)
It is sent to the gas-liquid separator (A) of the repeater (E) through the second connection pipe (7). Here, the refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant is transferred to the first branch αG, the three-way switching valve (8), and the first connection pipe (6d) on the indoor unit side in this order. Indoor unit trying to heat the street (D)
It flows into the indoor heat exchanger (D), exchanges heat with indoor air, condenses and liquefies, and heats the room. Furthermore, it is controlled by the subcooling amount at the outlet of the indoor heat exchanger (1), and passes through the first flow rate control device (9), which is in an almost fully open state, and is slightly depressurized before flowing into the second branch section. On the other hand, the remaining liquid refrigerant is
Indoor unit (1) flowing into the second branch U through the second flow rate control device α9 controlled by the openable and closable high and low pressure values of the second connecting pipe (11) and heating the indoor unit (1)
) and joins with the refrigerant that has passed through it. And the second branch part 0,
It passes through the second connection pipes () 13) (7G) on the indoor unit side in this order and flows into each indoor unit (II) l(0).

そして、各室内機CB)IcO)に流入した冷媒は、室
内側熱交換器(B)t(G)出口のスーパーと−ト量に
より制御される第1の流量制御装置【9)によシ低圧ま
で減圧されて室内空気と熱交換して蒸発しガス化され室
内を冷房する。更に、このガス状態となった冷媒は、室
内機側の第1の接続配管(6b) (6a)三方切替弁
(8)、第1の分岐部no、第1の接続配管(6)、熱
源機の4方弁(2)、アキュムレータ(4)を経て圧縮
機(1)に吸入される循環サイクルを構成し、冷冷房主
体運転をおこなう。この時、室内機(B)(0) (り
)  に接続された三方切替弁(8)の第10(8&)
〜第30(80)は暖房主体運転と同様に開閉されてい
る。また、このサイクルの時、一部の液冷媒は各室内機
側の第2接続配管(’7b) 、 (〒O) l (7
6)の合流部から、バイパス配管(2)へ入り、第3の
流量制御装置(至)で低圧まで減圧されて熱交換部(1
ab) (16G) (16a)で、それぞれ熱交換を
行い蒸発した冷媒は、第1の逆止弁動を通シ、第1の接
続配管(6)へ入シ熱源機の4方弁(2)、アキュムレ
ータ(4)を経て圧縮機(1)に吸入される。この時、
第1の接続配管(6)は低圧、第2の接続配管(7)は
高圧のため必然的に第1の逆止弁α力価を流通する。一
方、熱交換部(16(1)で熱交換し冷却されサブクー
ルをつけられた冷媒は上記第2の分岐部0へ流入し、上
記第2の分岐部0υから熱交換部(16b) (16o
)でそれぞれ熱交換し、冷却され更にサブクールを充分
につけられて冷房しようとしている室内機(B) (Q
)へ流入する。
Then, the refrigerant flowing into each indoor unit CB)IcO) is controlled by the first flow rate control device [9] controlled by the amount of super and -t at the outlet of the indoor heat exchanger (B)t(G). It is reduced to a low pressure, exchanges heat with indoor air, evaporates, and becomes gas, cooling the room. Furthermore, this refrigerant in a gas state is transferred to the first connecting pipe (6b) (6a) on the indoor unit side, the three-way switching valve (8), the first branch no., the first connecting pipe (6), and the heat source. This constitutes a circulation cycle in which air is sucked into the compressor (1) through the four-way valve (2) and accumulator (4) of the machine, and performs mainly cooling/cooling operation. At this time, the 10th (8&) of the three-way switching valve (8) connected to the indoor unit (B) (0) (ri)
- No. 30 (80) are opened and closed in the same way as in the heating-based operation. Also, during this cycle, some of the liquid refrigerant is transferred to the second connection pipe ('7b) on each indoor unit side, (〒O) l (7
6) enters the bypass pipe (2), which is reduced to a low pressure by the third flow control device (toward) and then transferred to the heat exchange section (1).
ab) (16G) At (16a), the refrigerant that has undergone heat exchange and evaporated passes through the first check valve actuator and enters the first connecting pipe (6). ) and is sucked into the compressor (1) via the accumulator (4). At this time,
Since the first connecting pipe (6) has a low pressure and the second connecting pipe (7) has a high pressure, the first check valve α titer inevitably flows therethrough. On the other hand, the refrigerant that has been heat exchanged, cooled, and subcooled in the heat exchange part (16(1)) flows into the second branch part 0, and from the second branch part 0υ to the heat exchange part (16b) (16o
), the indoor unit (B) (Q
).

々お、上記実施例では三方切替弁(8)を設けて室内機
側の第1の接続配管(61)) s (6Q) p (
6a>と、第1の接続配管(6)または、第2の接続配
管(7)に切シ替え可能に接続しているが、第5図に示
すように2つの電磁弁(至)、 on等の開閉弁を設け
て上述したように切り替え可能に接続しても同様な作用
効果を奏す。
In the above embodiment, a three-way switching valve (8) is provided to connect the first connection pipe (61) on the indoor unit side (6Q) p (
6a> and the first connection pipe (6) or the second connection pipe (7) in a switchable manner, as shown in FIG. Even if an on-off valve such as the above is provided and connected in a switchable manner as described above, the same effect can be obtained.

〔発明の効果〕 以上説明したとおシ、この発明の空気調和装置は、1台
の熱源機と、複数台の室内機と圧縮機、4方弁、熱源機
側熱交換器、アキュムレータ等、よりなる1台の熱源機
と、室内側熱交換器、第1の流量制御装置等からなる複
数台の室内機とを、第1、第2の接続配管を介して接続
したものにおいて、上記複数台の室内機の一方を上記第
1の接続配管または、第2の接続配管に切シ替え可能に
接続する弁装置を備えた第1の分岐部と、上記複数台の
室内機の他方を、室内機に接続された第1の流量制御装
置を介して上記第2の接続配管に接続してなる第2の分
岐部とを第2の流量制御装置を介して接続すると共に一
端が上記第2の分岐部に接続され、他端が第3の流量制
御装置と上記第1及び第2の接続配管側へのみ流通を許
容する逆止弁を介して上記第1及び第2の接続配管へ接
続されたバイパス配管を備え、上記各々の室内機と第2
の分岐部との接続配管と、上記第3の流量制御装置と逆
止弁との間のバイパス配管との間で熱交換を行う熱交換
部をそれぞれ設けたものである。
[Effects of the Invention] As explained above, the air conditioner of the present invention includes one heat source machine, a plurality of indoor units and compressors, a four-way valve, a heat exchanger on the heat source machine side, an accumulator, etc. In a system in which one heat source device consisting of a heat source device and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. are connected via first and second connection pipes, the plurality of indoor units A first branching part equipped with a valve device that connects one of the indoor units to the first connection pipe or the second connection pipe in a switchable manner, and the other of the plurality of indoor units are connected to the first connection pipe or the second connection pipe. A second branch section connected to the second connection pipe via a first flow control device connected to the machine is connected via a second flow control device, and one end is connected to the second connection pipe. connected to the branch part, and the other end is connected to the first and second connecting pipes via a check valve that allows flow only to the third flow rate control device and the first and second connecting pipes. It is equipped with bypass piping that connects each of the above indoor units and the second
A heat exchange section is provided for exchanging heat between a connecting pipe connected to the branch part of and a bypass pipe between the third flow rate control device and the check valve.

従って、冷暖房を選択的に、かつ一方の室内機では冷房
、他方の室内機では暖房を同時に行うことができ、しか
も室内機へ分配されるそれぞれの接続配管に応じて液冷
媒のサブクールを充分に取る事ができるので、冷房運転
する各室内機に接続された第1の流量制御装置前のサブ
クールが確保でき、信頼性が向上する。
Therefore, cooling and heating can be performed selectively, with one indoor unit performing cooling and the other indoor unit heating at the same time.Furthermore, the liquid refrigerant can be sufficiently subcooled according to each connection pipe distributed to the indoor units. Therefore, subcooling can be secured in front of the first flow rate control device connected to each indoor unit that performs cooling operation, and reliability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図である。第2図は第1図で示し
た一実施例の冷房または暖房のみの運転動作状態図、第
3図は第1図で示した一実施例の暖房主体(暖房運転容
量が冷房運転容量よシ大きい場合)の運転動作状態図、
第4図は第1図で示した一実施例の冷房主体(冷房運転
容量が暖房運転容量より太き論場合)を示す運転動作状
態図、第5図はこの発明の他の実施例の空気調和装置の
冷媒系を中心とする全体構成図である。 図において、(A)は熱源機、(B) I (0) #
 (D)は室内機、(E)は中継機、(1)は圧縮機、
(2)は熱源機の4方弁、(3)は熱源機側熱交換器、
(4)はアキュムレータ、(5)は室内側熱交換器、(
6)は第1の接続配管、(6b) #(60) e (
6”)は室内機側の第1の接続配管、(7)は第2の接
続配管、()b)、(グC)、(グd)は室内機側の第
2の接続配管、(8)は三方切替弁、c9)は第1の流
量制御装置、αGは第1の分岐部、卸は第2の分岐部、
@は気液分離装置、@は第2の流量制御装置、α4はバ
イパス配管、(2)は第3の流量制御装置、(16b)
 (160) (164)は熱交換部、Q7)mは第1
及び第2の逆止弁である。 なお、図中、同一符号は同一 または相当部分を示す。
FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to a first embodiment of the present invention. Fig. 2 is a diagram showing the operating state of cooling or heating only in the embodiment shown in Fig. 1, and Fig. 3 is a diagram showing the operating state of the embodiment shown in Fig. 1 mainly in heating (heating operation capacity is smaller than cooling operation capacity). operation state diagram for (large case),
FIG. 4 is an operating state diagram showing the main cooling operation (when the cooling operation capacity is larger than the heating operation capacity) of the embodiment shown in FIG. 1, and FIG. FIG. 2 is an overall configuration diagram centered on the refrigerant system of the harmonizer. In the figure, (A) is the heat source machine, (B) I (0) #
(D) is an indoor unit, (E) is a repeater, (1) is a compressor,
(2) is the four-way valve of the heat source machine, (3) is the heat exchanger on the heat source machine side,
(4) is an accumulator, (5) is an indoor heat exchanger, (
6) is the first connection pipe, (6b) #(60) e (
6") is the first connection pipe on the indoor unit side, (7) is the second connection pipe, ()b), (gC), (gd) is the second connection pipe on the indoor unit side, ( 8) is a three-way switching valve, c9) is the first flow rate control device, αG is the first branch, wholesale is the second branch,
@ is the gas-liquid separation device, @ is the second flow rate control device, α4 is the bypass piping, (2) is the third flow rate control device, (16b)
(160) (164) is the heat exchange part, Q7)m is the first
and a second check valve. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、4方弁、熱源機側交換器、アキュムレータ等、
よりなる1台の熱源機と、室内側熱交換器、第1の流量
制御装置等からなる複数台の室内機とを、第1、第2の
接続配管を介して接続したものにおいて、上記複数台の
室内機の一方を上記第1の接続配管または、第2の接続
配管に切り替え可能に接続する弁装置を備えた第1の分
岐部と、上記複数台の室内機の他方を、室内機に接続さ
れた第1の流量制御装置を介して上記第2の接続配管に
接続してなる第2の分岐部とを第2の流量制御装置を介
して接続すると共に一端が上記第2の分岐部に接続され
、他端が第3の流量制御装置と上記第1及び第2の接続
配管側へのみ流通を許容する逆止弁を介して上記第1及
び第2の接続配管へ接続されたバイパス配管を備え、上
記各々の室内機と第2の分岐部との接続配管と、上記第
3の流量制御装置と逆止弁との間のバイパス配管との間
で熱交換を行う熱交換部をそれぞれ設けたことを特徴と
する空気調和装置。
Compressor, 4-way valve, heat source machine side exchanger, accumulator, etc.
A heat source device consisting of one heat source device and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. are connected via first and second connection piping. A first branching section includes a valve device that connects one of the indoor units to the first connection pipe or the second connection pipe in a switchable manner, and the other of the plurality of indoor units is connected to the indoor unit. A second branch section connected to the second connecting pipe via a first flow control device connected to and the other end is connected to the first and second connecting pipes via a check valve that allows flow only to the third flow rate control device and the first and second connecting pipes. A heat exchange section that includes bypass piping and performs heat exchange between the connection piping between each of the indoor units and the second branch section and the bypass piping between the third flow rate control device and the check valve. An air conditioner characterized by being provided with.
JP1186653A 1989-07-19 1989-07-19 Air conditioner Expired - Lifetime JP2503669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186653A JP2503669B2 (en) 1989-07-19 1989-07-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186653A JP2503669B2 (en) 1989-07-19 1989-07-19 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0351672A true JPH0351672A (en) 1991-03-06
JP2503669B2 JP2503669B2 (en) 1996-06-05

Family

ID=16192339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186653A Expired - Lifetime JP2503669B2 (en) 1989-07-19 1989-07-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP2503669B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6883345B2 (en) 2002-06-12 2005-04-26 Lg Electronics Inc. Multi-type air conditioner and method for operating the same
JP2016099056A (en) * 2014-11-21 2016-05-30 株式会社富士通ゼネラル Air conditioning device
JP2016151372A (en) * 2015-02-17 2016-08-22 株式会社富士通ゼネラル Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165458U (en) * 1987-04-14 1988-10-27
JPS63279063A (en) * 1987-05-08 1988-11-16 日本エ−・シ−・イ−株式会社 Simultaneous air-conditioning method at plurality of position

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165458U (en) * 1987-04-14 1988-10-27
JPS63279063A (en) * 1987-05-08 1988-11-16 日本エ−・シ−・イ−株式会社 Simultaneous air-conditioning method at plurality of position

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6883345B2 (en) 2002-06-12 2005-04-26 Lg Electronics Inc. Multi-type air conditioner and method for operating the same
JP2016099056A (en) * 2014-11-21 2016-05-30 株式会社富士通ゼネラル Air conditioning device
JP2016151372A (en) * 2015-02-17 2016-08-22 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JP2503669B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JPH03125868A (en) Air conditioner
JPH01134172A (en) Air conditioner
JPH02118372A (en) Air-conditioning device
JPH0351672A (en) Air conditioner
JPH0293263A (en) Air conditioning device
JP2616523B2 (en) Air conditioner
JP2616525B2 (en) Air conditioner
JP2616524B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JPH046370A (en) Air-conditioner
JPH0765825B2 (en) Air conditioner
JPH046361A (en) Air-conditioner
JPH0311276A (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JP2503668B2 (en) Air conditioner
JPH04110573A (en) Air conditioner
JPH046373A (en) Air conditioner
JP2718287B2 (en) Air conditioner
JPH0325256A (en) Multi-room type air conditioner
JP2800472B2 (en) Air conditioner
JP2723380B2 (en) Air conditioner
JP2642695B2 (en) Air conditioner
JPH046360A (en) Air-conditioner
JPH05172430A (en) Air conditioning apparatus
JP3092214B2 (en) Air conditioner