JPH046373A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH046373A
JPH046373A JP2107931A JP10793190A JPH046373A JP H046373 A JPH046373 A JP H046373A JP 2107931 A JP2107931 A JP 2107931A JP 10793190 A JP10793190 A JP 10793190A JP H046373 A JPH046373 A JP H046373A
Authority
JP
Japan
Prior art keywords
control device
connection pipe
flow rate
rate control
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2107931A
Other languages
Japanese (ja)
Other versions
JPH07104075B2 (en
Inventor
Shigeo Takada
茂生 高田
Shuichi Tani
秀一 谷
Tomohiko Kasai
智彦 河西
Setsu Nakamura
中村 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107931A priority Critical patent/JPH07104075B2/en
Priority to AU74381/91A priority patent/AU636215B2/en
Priority to ES199191303443T priority patent/ES2046853T3/en
Priority to EP91303443A priority patent/EP0453271B1/en
Priority to DE91303443T priority patent/DE69100424T2/en
Priority to US07/687,434 priority patent/US5156014A/en
Publication of JPH046373A publication Critical patent/JPH046373A/en
Publication of JPH07104075B2 publication Critical patent/JPH07104075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To permit the selective cooling or heating operation of respective indoor machines individually and simultaneously by a method wherein a changeover valve is provided between the first and second connecting pipelines a heat source machine while the first connecting pipeline is permitted to be switched to a low pressure and the second connecting pipeline is permitted to be switched to a high pressure. CONSTITUTION:A relay machine E, accommodating a first branching unit 10, a second flow rate control device 13, a third flow rate control device 15 and a second branching unit 11, is interposed between a heat source machine and a plurality of sets of indoor machines B, C, D. The diameter of a first connecting pipeline 6 is made larger than the same of a second connecting pipeline 7 and a changeover valve 40 is provided between the first and second connecting pipelines of the heat source machine A while the first connecting pipeline 6 is permitted to be switched to a low pressure and the second connecting pipeline 7 is permitted to be switched to a high pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱源機1台に対して複数台の室内機を接続
する多室型ヒートポンプ空気調和機に関するもので、特
に各室内機毎に冷暖房を選択的に、かつ一方の室内機で
は冷房、他方の室内機では暖房か同時に行うことかでき
る空気調和装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source device, and in particular, The present invention relates to an air conditioner that can perform heating and cooling selectively, and can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

〔従来のキ乏術〕[Traditional Kihojutsu]

従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転をするヒートポン
プ式空気調和装置は一般的であり各室内機はすべて暖房
、またはすべて冷房を行うように形成されている。
Conventionally, heat pump air conditioners have been common in which multiple indoor units are connected to one heat source unit using two pipes, a gas pipe and a liquid pipe, and each indoor unit performs heating and cooling operations. or all configured to provide cooling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多室型ヒートポンプ式空気調和装置は以上のよう
に構成されているので、すへての室内機か冷房または暖
房にしか運転しないため、冷房か必要な場所て暖房か行
われたり、逆に暖房か必要な場所で冷房が行われるよう
な問題かあった。
Conventional multi-room heat pump air conditioners are configured as described above, and only operate indoor units for cooling or heating. There were problems with heating or cooling where it was needed.

特に、大規模なビルに据え付けた場合、インテリア部と
ペリメータ部、または一般事務室と、コンピュータルー
ム等のOA化された部屋では空調の負荷か著しく異なる
ため、特に問題となっている。
Particularly when installed in a large building, this poses a particular problem because the air conditioning load differs significantly between the interior and perimeter areas, or between general offices and rooms that are OAized such as computer rooms.

この発明は、上記のような問題点を解決するためになさ
れたもので、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、かつ一方の室内機
では冷房、他方の室内機では暖房か同時に行うことかで
きるようにして、大規模なピルに据え付けた場合、イン
テリア部とペリメータ部、または一般事務室と、コンピ
ュータルーム等のOA化された部屋で空調の負荷か著し
く異なっても、それぞれに対応てきる多室型ヒートポン
プ式空気調和装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems. Multiple indoor units are connected to one heat source unit, and each indoor unit can selectively perform air conditioning and heating. The indoor unit can perform cooling and the other indoor unit can perform heating at the same time, and when installed in a large-scale building, it can be used for OA in interior and perimeter areas, general offices, computer rooms, etc. To provide a multi-room heat pump type air conditioner that can accommodate each room even if the air conditioning loads differ significantly in each room.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、圧縮機、四方切換弁、熱源機側熱交換器、
アキュムレータ、等よりなる1台の熱源機と、室内側熱
交換器、第1の流量制御装置等からなる複数台の室内機
とを、第1、第2の接続配管を介して接続し、上記複数
台の室内機の上記室内側熱交換器の一方を上記第1の接
続配管または、第2の接続配管に切り換え可能に接続し
てなる第1の分岐部と、上記複数台の室内機の上記室内
側熱交換器の他方に、上記第1の流量制御装置を介して
接続され、かつ第2の流量制御装置を介して上記第2の
接続配管に接続してなる第2の分岐部とを、上記第2の
流量制御装置を介して接続し、更に上記第2の分岐部と
上記第1の接続配管を第4の流量制御装置を介して接続
し、 また、上記第2の分岐部と上記第1の接続配管を第3の
流量制御装置を介して接続したバイパス配管を備え、上
記第3の流量制御装置と上記第1の接続配管との間のバ
イパス配管と、上記第2の接続配管と上記第2の流量制
御装置を接続する配管との間で熱交換を行う第1の熱交
換部、及び上記第3の流量制御装置と上記第1の接続配
管との間のバイパス配管と、上記第2の分岐部との間で
熱交換を行う第2の熱交換部を備え、 上記第1の分岐部、第2の流量制御装置、第3の流量制
御装置及び第2の分岐部を内蔵させた中継器を、上記熱
源機と上記複数台の室内機との間に介在させると共に、
上記第1の接続配管は上記第2の接続配管より大径に構
成し、上記熱源機の上記第1及び第2の接続配管間に切
り換え弁を設け、上記第1の接続配管を低圧に、第2の
接続配管を高圧に切り換え可能にしたことを特徴とする
ものである。
This invention includes a compressor, a four-way switching valve, a heat exchanger on the heat source side,
One heat source device consisting of an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. are connected via first and second connection pipes, and the above-mentioned a first branching section in which one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe; a second branch connected to the other side of the indoor heat exchanger via the first flow rate control device and connected to the second connection pipe via the second flow rate control device; are connected via the second flow control device, further connecting the second branch and the first connection pipe via a fourth flow control device; and a bypass pipe connected to the first connection pipe via a third flow control device, the bypass pipe between the third flow control device and the first connection pipe, and the second connection pipe. a first heat exchange section that performs heat exchange between the connecting piping and the piping connecting the second flow rate control device; and a bypass piping between the third flow rate control device and the first connection piping. and a second heat exchange section that performs heat exchange between the first branch section, the second flow rate control device, the third flow rate control device, and the second branch section. A repeater having a built-in unit is interposed between the heat source device and the plurality of indoor units, and
The first connection pipe is configured to have a larger diameter than the second connection pipe, a switching valve is provided between the first and second connection pipes of the heat source device, the first connection pipe is set to a low pressure, It is characterized in that the second connection pipe can be switched to high pressure.

〔作 用〕[For production]

この発明においては、冷暖房同時運転における暖房主体
の場合は高圧ガス冷媒を熱源機側切り換え弁、第2の接
続配管、第1の分岐部から暖房しようとしている各室内
機に導入して暖房を行い、その後冷媒は第2の分岐部か
ら一部は冷房しようとしている室内機に流入して冷房を
行い、第1の分岐部から第1の接続配管に流入する。一
方残りの冷媒は第4の流量制御装置を通って、冷房室内
機を通った冷媒と合流して、第1の接続配管に流入し、
熱源機に戻る。更に冷媒の一部を上記第2の分岐部から
、バイパス配管を介して第1の接続配管へ流通させる過
程て、第2の熱交換部で熱交換を行い、冷媒を冷却し十
分にサブクールを増加させて冷房しようとしている室内
機へ流入させる。
In this invention, in the case of heating mainly in simultaneous cooling and heating operation, high-pressure gas refrigerant is introduced into each indoor unit to be heated from the heat source equipment side switching valve, the second connection pipe, and the first branch part. Thereafter, a portion of the refrigerant flows from the second branch into the indoor unit to be cooled, and then flows from the first branch into the first connection pipe. On the other hand, the remaining refrigerant passes through the fourth flow rate control device, joins with the refrigerant that has passed through the cooling indoor unit, and flows into the first connection pipe,
Return to the heat source machine. Further, in the process of circulating a part of the refrigerant from the second branch section to the first connection pipe via the bypass pipe, heat exchange is performed in the second heat exchange part to cool the refrigerant and sufficiently subcool the refrigerant. The increased amount of air flows into the indoor unit that is trying to cool the room.

また冷房主体の場合は、高圧ガスを熱源機て任態量熱交
換し二相状態として熱源機側切り換え弁、第2の接続配
管から、分離されたガス状の冷媒を第1の分岐部を介し
て暖房しようとする室内機に導入して暖房を行い第2の
分岐部に流入する。
In addition, in the case of cooling mainly, the high-pressure gas is exchanged with the heat source machine in an arbitrary amount of heat, and the separated gaseous refrigerant is sent to the first branch part from the heat source machine side switching valve and the second connection pipe. The air is introduced into the indoor unit to be heated through the air, performs heating, and flows into the second branch.

方、分離された液状の残りの冷媒は第2の流量調整装置
を通って第2の分岐部で暖房しようとする室内機を通っ
た冷媒と合流して冷房しようとする各室内機に流入して
冷房を行い、その後に第1の分岐部から第1の接続配管
を通って熱源機側切り換え弁に導かれ再び圧縮機に戻る
。更に冷媒の一部を上記第2の分岐部から、バイパス配
管を介して第1の接続配管へ流通させる過程で、第1及
び第2の熱交換部て熱交換を行い、冷媒を冷却し十分に
サブクールを増加させて冷房しようとしている室内機へ
流入させる。
On the other hand, the separated liquid remaining refrigerant passes through the second flow rate adjustment device, joins with the refrigerant that has passed through the indoor unit that is intended to heat the air at the second branch, and flows into each indoor unit that is attempting to cool the room. After that, the air is guided from the first branch through the first connection pipe to the heat source equipment side switching valve and returned to the compressor. Furthermore, in the process of circulating a portion of the refrigerant from the second branch section to the first connection pipe via the bypass pipe, heat exchange is performed in the first and second heat exchange parts to cool the refrigerant sufficiently. subcooling is increased to flow into the indoor unit that is trying to cool the room.

更に、暖房運転のみの場合、冷媒は熱源機側切り換え弁
より第2の接続配管、第1の分岐部を通り各室内機に導
入され、暖房して第2の分岐部から第1の接続配管を通
・り熱源機側切り換え弁に戻る。
Furthermore, in the case of only heating operation, the refrigerant is introduced into each indoor unit from the heat source equipment side switching valve through the second connection pipe and the first branch, heats, and then flows from the second branch to the first connection pipe. through and return to the heat source equipment side switching valve.

そして、冷房運転のみの場合、冷媒は熱源機側切り換え
弁より第2の接続配管、第2の分岐部を通り各室内機に
導入され、冷房して第1の分岐部から第1の接続配管を
通り熱源機側切り換え弁に戻る。更に冷媒の一部を上記
第2の分岐部から、バイパス配管を介して第1の接続配
管へ流通させる過程で、第1及び第2の熱交換部て熱交
換を行い、冷媒を冷却し十分にサブクールを増加させて
冷房しようとしている室内機へ流入させる。
In the case of only cooling operation, the refrigerant is introduced into each indoor unit from the heat source equipment side switching valve through the second connection pipe and the second branch, cooled, and transferred from the first branch to the first connection pipe. and returns to the heat source machine side switching valve. Furthermore, in the process of circulating a portion of the refrigerant from the second branch section to the first connection pipe via the bypass pipe, heat exchange is performed in the first and second heat exchange parts to cool the refrigerant sufficiently. subcooling is increased to flow into the indoor unit that is trying to cool the room.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

第1図はこの発明の一実施例の空気調和装置の冷媒を中
心とする全体構成図である。また、第2図乃至第4図は
第1図の一実施例における冷暖房運転時の動作状態を示
したもので、第2図は冷房又は暖房のみの運転状態図、
第3図及び第4図は冷暖房同時運転の動作を示すもので
、第3図は暖房主体(暖房運転容量が冷房運転容量より
大きい場合)を、第4図は冷房主体(冷房運転容量が暖
房運転容量より大きい場合)を示す運転動作状態図であ
る。そして、第5図はこの発明のほかの実施例の空気調
和装置の冷媒系を中心とする全体構成図である。
FIG. 1 is a diagram showing the overall configuration of an air conditioner according to an embodiment of the present invention, centering on the refrigerant. In addition, FIGS. 2 to 4 show operating states during cooling/heating operation in the embodiment shown in FIG. 1, and FIG.
Figures 3 and 4 show the operation of simultaneous heating and cooling operations. Figure 3 shows heating-dominant operation (when heating operation capacity is larger than cooling operation capacity), and Figure 4 shows cooling-dominant operation (when cooling operation capacity is larger than heating operation capacity). FIG. FIG. 5 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention.

なお、この実施例では熱源機1台に室内機3台を接続し
た場合について説明するか、2台以上の室内機を接続し
た場合はすへて同様である。
In this embodiment, a case will be described in which three indoor units are connected to one heat source device, or the same applies if two or more indoor units are connected.

第1図において、(A)は熱源機、(B)、(C)、(
D)は後述するように互いに並列接続された室内機でそ
れぞれ同し構成となっている。(E)は後述するように
、第1の分岐部、第2の流量制御装置、第2の分岐部、
気液分離装置、熱交換部、第3の流量制御装置、第4の
流量制御装置を内蔵した中継機。
In Figure 1, (A) is a heat source device, (B), (C), (
D) is an indoor unit connected in parallel to each other, each having the same configuration as described later. (E) includes a first branch, a second flow rate control device, a second branch,
A repeater that incorporates a gas-liquid separation device, a heat exchanger, a third flow rate control device, and a fourth flow rate control device.

(1)は圧縮機、(2)は熱源機の冷媒流通方向を切り
換える四方切換弁、(3)は熱源機側熱交換器、(4)
はアキュムレータで、上記機器(1)〜(3)と接続さ
れ熱源機(A)を構成する。(5)は3台の室内側熱交
換器、(6)は熱源機(A)の四方切換弁(2)と中継
機(E)を接続する太い第1の接続配管、(6b)、(
6c)、(6d)はそれぞれ室内機(B) 、(C)、
(D)の室内側熱交換器(5)と中継機(E)を接続し
、第1の接続配管(6)に対応する室内機側の第1の接
続配管、(7)は熱源機(A)の熱源機側熱交換器(3
)と中継機(E)を接続する上記第1の接続配管より細
い第2の接続配管(7b)、(7c)、(7d)はそれ
ぞれ室内機(B) 、(C) 、(D)の室内側熱交換
器(5)と中継機(E)を接続し、第2の接続配管(7
)に対応する室内機側の第2の接続配管、(8)は室内
機側の第1の接続配管(6a)、(6b)、(6c)を
、第1の接続配管(6)または第2の接続配管(7)側
に切り換え可能に接続する三方切換弁、(9)は室内側
熱交換器(5)に近接して接続され室内側熱交換器(5
)の出口側の冷房時はスーパーヒート量、暖房時はサブ
クール量により制御される第1の流量制御装置で、室内
機側の第2の接続配管(7b)、(7c)、(7d)に
接続される。α0)は室内機側の第1の接続配管(6b
)、(6c)、(6d)を、第1の接続配管(6)また
は第2の接続配管(7)側に切り換え可能に接続する三
方切換弁(8)よりなる第1の分岐部、αυは室内機側
の第2の接続配管(7b)、(7c)、(7d)と、第
2の接続配管よりなる第2の分岐部、02は第2の接続
配管(7)の途中に設けられた気液分離装置で、その気
相部は三方切換弁(8)の第1口(8a)に接続され、
その液相部は第2の分岐部αυに接続されている。03
は気液分離装置α2と第2の分岐部01)との間に接続
する開閉自在な第2の流量制御装置、04)は第2の分
岐部0Dと上記第1の接続配管(6)とを結ぶバイパス
配管、a5はバイパス配管04)の途中に設けられた第
3の流量MIlI装置、(16b) 、 (+6c)、
(+6d)はバイパス配管α4の第3の流量制御装置α
りの下流に設けられ、第2の分岐部a1)における各室
内機側の第2の接続配管(7b)、(7c)、(7d)
の合流部との間でそれぞれ熱交換を行う第3の熱交換部
、(16a)はバイパス配管α4の第3の流量制御装置
α9の下流に設けられ、第2の分岐部αDにおける各室
内機側の第2の接続配管(7b)、(7C)、(7d)
の合流部との間で熱交換を行う第2の熱交換部、(19
+はバイパス配管0滲の上記vc3の流量制御装置α9
の下流及び第2の熱交換部(16a)の下流に設けられ
気液分離装置0のと第2の流量制御装置03とを接続す
る配管との間で熱交換を行う第1の熱交換部、07)は
第2の分岐部Q11と上記第1の接続配管(6)との間
に接続する開閉自在な第4の流量制御装置である。
(1) is a compressor, (2) is a four-way switching valve that switches the refrigerant flow direction of the heat source machine, (3) is a heat exchanger on the heat source machine side, (4)
is an accumulator, which is connected to the above devices (1) to (3) to constitute a heat source device (A). (5) is the three indoor heat exchangers, (6) is the thick first connection pipe that connects the four-way switching valve (2) of the heat source device (A) and the repeater (E), (6b), (
6c) and (6d) are indoor units (B), (C), respectively.
The indoor heat exchanger (5) of (D) and the repeater (E) are connected, and the first connection pipe on the indoor unit side corresponding to the first connection pipe (6), (7) is the heat source machine ( A) Heat source machine side heat exchanger (3
) and the repeater (E), and the second connection pipes (7b), (7c), and (7d) are thinner than the first connection pipes (7b), (7c), and (7d) of the indoor units (B), (C), and (D), respectively. Connect the indoor heat exchanger (5) and the repeater (E), and connect the second connection pipe (7
), and (8) connects the first connection pipes (6a), (6b), (6c) on the indoor unit side to the first connection pipe (6) or the first connection pipe (6c) on the indoor unit side. The three-way switching valve (9) is switchably connected to the connecting pipe (7) of No. 2, and the three-way switching valve (9) is connected in close proximity to the indoor heat exchanger (5).
) is the first flow control device that is controlled by the super heat amount during cooling and the subcool amount during heating, and is connected to the second connecting pipes (7b), (7c), and (7d) on the indoor unit side. Connected. α0) is the first connection pipe (6b) on the indoor unit side.
), (6c), and (6d) are switchably connected to the first connecting pipe (6) or the second connecting pipe (7) side. 02 is a second branch part consisting of the second connection pipes (7b), (7c), and (7d) on the indoor unit side and the second connection pipe, and 02 is provided in the middle of the second connection pipe (7). the gas-liquid separator, the gas phase part of which is connected to the first port (8a) of the three-way switching valve (8),
The liquid phase part is connected to the second branch part αυ. 03
04) is a second flow rate control device that can be opened and closed and is connected between the gas-liquid separator α2 and the second branch 01), and 04) is the second flow control device that is connected between the second branch 0D and the first connecting pipe (6). A5 is the third flow rate MII device installed in the middle of bypass piping 04), (16b), (+6c),
(+6d) is the third flow control device α of the bypass pipe α4
second connection pipes (7b), (7c), (7d) provided downstream of the
A third heat exchange section (16a) is provided downstream of the third flow rate control device α9 of the bypass pipe α4, and is connected to each indoor unit in the second branch αD. Second side connection pipes (7b), (7C), (7d)
a second heat exchange section that performs heat exchange with the confluence section of (19
+ is the flow control device α9 of the above VC3 with 0 leakage in the bypass piping
and a first heat exchange section that exchanges heat between piping that is provided downstream of the gas-liquid separator 0 and the second flow rate control device 03 and that is provided downstream of the second heat exchange section (16a). , 07) is a fourth flow rate control device that can be opened and closed and is connected between the second branch Q11 and the first connection pipe (6).

(32)は上記熱源機側熱交換器(3)と上記第2の接
続配管(7)との間に設けられた第3の逆止弁であり、
上記熱源機側熱交換器(3)から上記第2の接続配管(
7)へのみ冷媒流通を許容する。(33)は、上記熱源
機(A)の四方切換弁(2)と上記第1の接続配管(6
)との間に設けられた第4の逆止弁であり、上記第1の
接続配管(6)から上記四方切換弁(2)へのみ冷媒流
通を許容する。(34)は、上記熱源機(A)の四方切
換弁(2)と上記第2の接続配管(ア)との間に設けら
れた第5の逆止弁であり、上記四方切換弁(2)から上
記第2の接続配管(7)へのみ冷媒流通を許容する。
(32) is a third check valve provided between the heat source machine side heat exchanger (3) and the second connection pipe (7),
From the heat source machine side heat exchanger (3) to the second connection pipe (
Refrigerant flow is allowed only to 7). (33) connects the four-way switching valve (2) of the heat source device (A) and the first connection pipe (6).
), which allows refrigerant to flow only from the first connecting pipe (6) to the four-way switching valve (2). (34) is a fifth check valve provided between the four-way switching valve (2) of the heat source device (A) and the second connection pipe (A); ) to the second connection pipe (7).

(35)は上記熱源機側熱交換器(3)と上記第1の接
続配管(6)との間に設けられた第6の逆止弁であり、
上記第1の接続配管(6)から上記熱源機側熱交換器(
3)へのみ冷媒流通を許容する。上記第3の逆止弁(3
2)〜上記第6の逆止弁(35)で切り換え弁(40)
を構成する。
(35) is a sixth check valve provided between the heat source machine side heat exchanger (3) and the first connection pipe (6),
From the first connection pipe (6) to the heat source equipment side heat exchanger (
Refrigerant flow is allowed only to 3). The third check valve (3
2) ~ Switching valve (40) with the sixth check valve (35)
Configure.

このように構成されたこの発明の実施例について説明す
る。
An embodiment of the invention configured in this manner will be described.

まず、第2図を用いて冷房運転のみの場合について説明
する。
First, the case of only cooling operation will be explained using FIG.

すなわち、第2図に実線矢印で示すように圧縮器(1)
より吐出された高温高圧の冷媒ガスは四方切換弁(2)
を通り、熱源機側熱交換器(3)て熱交換して凝縮され
た後、第3の逆止弁(32)、第2の接続配管(7)、
気液分離装置atr、第2の流量制御装置o3の順に通
り、更に第2の分岐部αυ、室内機側の第2の接続配管
(7b)、(7c)、(7d)を通り、各室内機(B)
 、(C) 、(D)に流入する。そして、各室内機(
B) 、(C) 、(D)に流入した冷媒は、各室内側
熱交器(5)出口のスーパーヒート量により制御される
第1の流量制御装置(9)により低圧まで減圧されて室
内側熱交換器(5)で室内空気と熱交換して蒸発し、ガ
ス化され室内を冷房する。そして、このガス状態となっ
た冷媒は、室内機側の第1の接続配管(6b)、(6c
)、(6d)、三方切換弁(8)、第1の分岐部α■を
通り、第1の接続配管(6)、第4の逆止弁(33)、
熱源機(A)の四方切換弁(2)、アキュムレータ(4
)を経て、圧縮機(1)に吸入される循環サイクルを構
成し、冷房運転を行う。このとき、三方切換弁(8)の
第10(8a)は閉路、第20(8b)及び第30(8
c)は開路されている。また、この時冷媒は、第1の接
続配管(6)か低圧、第2の接続配管(7)か高圧のた
め必然的に第3の逆止弁(32)、第4の逆止弁(33
)へ流通する。
That is, as shown by the solid line arrow in Fig. 2, the compressor (1)
The high temperature and high pressure refrigerant gas discharged from the four-way switching valve (2)
After passing through the heat source equipment side heat exchanger (3) for heat exchange and condensation, the third check valve (32), the second connection pipe (7),
It passes through the gas-liquid separator atr, the second flow rate control device o3 in that order, and then passes through the second branch part αυ, the second connection pipes (7b), (7c), and (7d) on the indoor unit side, and then passes through each indoor unit. Machine (B)
, (C) and (D). Then, each indoor unit (
The refrigerant flowing into B), (C), and (D) is reduced to a low pressure by the first flow rate control device (9), which is controlled by the amount of superheat at the outlet of each indoor heat exchanger (5), and then sent indoors. It exchanges heat with indoor air in the inner heat exchanger (5), evaporates, and gasifies to cool the room. Then, this refrigerant in a gas state is transferred to the first connection pipes (6b) and (6c) on the indoor unit side.
), (6d), the three-way switching valve (8), passing through the first branch part α■, the first connecting pipe (6), the fourth check valve (33),
The four-way switching valve (2) and accumulator (4) of the heat source machine (A)
) to form a circulation cycle in which the air is sucked into the compressor (1) to perform cooling operation. At this time, the 10th (8a) of the three-way switching valve (8) is closed, the 20th (8b) and the 30th (8th)
c) is open circuited. Also, at this time, the refrigerant is at low pressure in the first connection pipe (6) and high pressure in the second connection pipe (7), so it is inevitably the third check valve (32) and the fourth check valve ( 33
).

さらに、このサイクルの時、第2の流量制御装置a3を
通過した冷媒の一部かバイパス配管(14)へ入り、第
3の流量制御装置似て低圧まで減圧されて、第3の熱交
換部(+6b) 、 (+6c)、(16d)で各室内
機側の第2の接続配管(7b)、(7C)、(7d)と
の間で、第2の熱交換部(16a)で第2の分岐部O1
)の各室内機側の第2の接続配管(7b)、(7C)、
(7d)の合流部との間で、更に第1の熱交換部09)
で第2の流量制御装置03に流入する冷媒との間で、熱
交換を行い蒸発した冷媒は、第1の接続配管(6)、第
4の逆止弁(3釦へ入り四方切換弁(2)、アキュムレ
ータ(4)を経て圧縮機(1)に吸入される。一方、第
1及び第2及び第3の熱交換部α9)、(16a) 、
(+6b)、(+6c)、(+66)で熱交換し冷却さ
れサブクールを充分につけられた上記第2の分岐部αυ
の冷媒は冷房しようとしている室内機(B)、(C)、
(D)へ流入する。
Furthermore, during this cycle, part of the refrigerant that has passed through the second flow rate control device a3 enters the bypass pipe (14), is reduced to a low pressure by the third flow rate control device, and is then transferred to the third heat exchange section. (+6b), (+6c), (16d) and the second connection pipes (7b), (7C), (7d) on each indoor unit side, and the second heat exchanger (16a) Branch part O1 of
) second connection pipes (7b), (7C), on each indoor unit side.
(7d), and the first heat exchange section 09)
The evaporated refrigerant exchanges heat with the refrigerant flowing into the second flow rate control device 03, enters the first connection pipe (6), the fourth check valve (button 3, and enters the four-way switching valve 2), is sucked into the compressor (1) via the accumulator (4).Meanwhile, the first, second and third heat exchange parts α9), (16a),
The second branch αυ is cooled by heat exchange with (+6b), (+6c), and (+66) and is sufficiently subcooled.
The refrigerant is used in the indoor units (B), (C), and
(D).

次に、第2図を用いて暖房運転のみの場合について説明
する。すなわち、第2図に点線矢印で示すように圧縮機
(1)より吐出された高温高圧の冷媒ガスは四方切換弁
(2)を通り、第5の逆止弁(34)、第2の接続配管
(7)、気液分離装置O2を通り、第1の分岐部(10
)、三方切換弁(8)、室内機側の第1の接続配管(6
b)、(6c)、(6d)の順に通り、各室内機(B)
 、(C)、(D)に流入し、室内空気と熱交換して凝
縮液化し、室内を暖房する。そして、この液状態となっ
た冷媒は、各室内側熱交換器(5)出口のサブクール量
により制御される第1の流量制御装置(9)を通り、室
内機側の第2の接続配管(7b)、(7c)、(7d)
から第2の分岐部αυに流入して合流し、更に第4の流
量制御装置Onを通り、ここで第1の流量制御袋fI:
、(9)または第4の流量制御装置αnて低圧の二相状
態まて減圧される。そして、低圧まで減圧された冷媒は
、第1の接続配管(6)を経て、第6の逆止弁(35)
から、熱源機側熱交換器(3)に流入し熱交換して蒸発
しガス状態となり、四方切換弁(2)、アキュムレータ
(4)を経て圧縮機(11に吸入される循環サイクルを
構成し、暖房運転を行う。このとき、三方切換弁(8)
の第20(8b)は閉路、第10(8a)及び第30(
8c)は開路されている。また、この時冷媒は、第1の
接続配管(6)か低圧、第2の接続配管(7)か高圧の
ため必然的に第5の逆止弁(34)、第6の逆止弁(3
5)へ流通する。
Next, the case of only heating operation will be described using FIG. 2. That is, as shown by the dotted line arrow in FIG. 2, the high temperature and high pressure refrigerant gas discharged from the compressor (1) passes through the four-way switching valve (2), the fifth check valve (34), and the second connection. The pipe (7) passes through the gas-liquid separator O2 and connects to the first branch part (10
), three-way switching valve (8), first connection pipe on the indoor unit side (6)
b), (6c), and (6d) in order, and each indoor unit (B)
, (C), and (D), it exchanges heat with indoor air, condenses and liquefies, and heats the room. Then, this liquid refrigerant passes through the first flow rate control device (9) that is controlled by the subcooling amount at the outlet of each indoor heat exchanger (5), and then passes through the second connection pipe ( 7b), (7c), (7d)
Flows into the second branch αυ, merges, and further passes through the fourth flow rate control device On, where the first flow rate control bag fI:
, (9) or the fourth flow rate control device αn to reduce the pressure to a low pressure two-phase state. The refrigerant, which has been reduced in pressure to a low pressure, passes through the first connection pipe (6) and passes through the sixth check valve (35).
From there, it flows into the heat exchanger (3) on the heat source side, exchanges heat, evaporates, becomes a gas, and is sucked into the compressor (11) through the four-way switching valve (2) and the accumulator (4), forming a circulation cycle. , perform heating operation. At this time, the three-way switching valve (8)
The 20th (8b) is a closed circuit, the 10th (8a) and the 30th (
8c) is open circuited. Also, at this time, the refrigerant is at low pressure in the first connection pipe (6) and high pressure in the second connection pipe (7), so it is inevitably the fifth check valve (34) and the sixth check valve ( 3
5).

冷暖同時運転における暖房主体の場合について第3図を
用いて説明する。ここでは室内機(B)、(C)の2台
か暖房、室内機(D) 1台か冷房しようとしている場
合について説明する。
A case in which heating is the main component in simultaneous cooling and heating operation will be explained using FIG. 3. Here, we will explain the case where two indoor units (B) and (C) are used for heating, and one indoor unit (D) is used for cooling.

すなわち、第3図に実線矢印で示すように圧縮機(1)
より吐出された高温高圧冷媒ガスは四方切換弁(2)、
第5の逆比弁(34)、第2の接続配管(7)を通り、
中継機(E)へ送られ、気液分離装置α2を通り、そし
て第1の分岐部αO)、三方切換弁(8)、室内機側の
第1の接続配管(6b)、(6c)の順に通り、暖房し
ようとしている室内機(B)、(C)に流入し、室内側
熱交換器(5)で室内空気と熱交換して凝縮液化され、
室内を暖房する。そして、この液状態となった冷媒は、
各室内側熱交換器(5)出口のサブクール量により制御
されほぼ全開状態の第1の流量制御装置(9)を通り少
し減圧されて第2の分岐部OI)に流入する。そして、
この冷媒の一部は、室内機側の第2の接続配管(7d)
を通り、冷房しようとしている室内機(D)に入り、室
内側熱交換器(5)出口のスーパーヒート量により制御
される第1の流量制御装置(9)に入り減圧された後に
、室内側熱交換器(5)に入って熱交換して蒸発しガス
状態となって室内を冷房し、三方切換弁(8)を介して
第1の接続配管(6)に流入する。
That is, as shown by the solid line arrow in Fig. 3, the compressor (1)
The high temperature and high pressure refrigerant gas discharged from the four-way switching valve (2),
Passing through the fifth inverse ratio valve (34) and the second connection pipe (7),
It is sent to the repeater (E), passes through the gas-liquid separator α2, and then passes through the first branch αO), the three-way switching valve (8), and the first connection pipes (6b) and (6c) on the indoor unit side. The air flows into the indoor units (B) and (C) that are being heated, and is condensed and liquefied by exchanging heat with indoor air in the indoor heat exchanger (5).
Heat the room. The refrigerant in this liquid state is
It is controlled by the subcooling amount at the outlet of each indoor heat exchanger (5), passes through the first flow rate control device (9) which is in an almost fully open state, and is slightly depressurized before flowing into the second branch OI). and,
A part of this refrigerant is transferred to the second connection pipe (7d) on the indoor unit side.
, enters the indoor unit (D) that is being cooled, enters the first flow rate control device (9) controlled by the amount of superheat at the outlet of the indoor heat exchanger (5), and is depressurized, and then enters the indoor unit (D). It enters the heat exchanger (5), exchanges heat, evaporates, becomes a gas, cools the room, and flows into the first connection pipe (6) via the three-way switching valve (8).

一方、他の冷媒は第2の接続配管(7)の高圧、第2の
分岐部0Dの中間圧値によって制御される開閉自在な第
4の流量制御袋fa07)を通って、冷房しようとする
室内機(D)を通った冷媒と合流して、太い第1の接続
配管(6)を経て熱源機(A)の第6の逆止弁(35)
、熱源機側熱交換器(3)に流入し熱交換して藩発しガ
ス状態となる。そして、その冷媒は、熱源機の四方切換
弁(2)、アキュムレータ(4)を経て圧縮機(1)に
吸入される循環サイクルを構成し、暖房主体運転を行う
。この時、冷房する室内機(D)の室内側熱交換器(5
)の蒸発圧力と熱源機側熱交換器(3)の蒸発圧力の圧
力差か、太い第1の接続配管(6)に切り換えるために
小さくなる。また、この時、室内機(B”l 、(C)
に接続された三方切換弁(8)の第20(8b)は閉路
、第10(8a)及び第30(8c)は開路されており
、室内機(D)に接続された三方切換弁(8)は第10
(8a)は閉路、第2 口(8b)及び第30(8c)
は開路されている。さらに、この時冷媒は、第1の接続
配管(6)か低圧、第2の接続配管(7)が高圧のため
必然的に第5の逆止弁(34)、第6の逆止弁(35)
へ流通する。
On the other hand, other refrigerants try to cool the air by passing through the openable and closable fourth flow rate control bag fa07), which is controlled by the high pressure of the second connection pipe (7) and the intermediate pressure value of the second branch 0D. It joins with the refrigerant that has passed through the indoor unit (D) and passes through the thick first connection pipe (6) to the sixth check valve (35) of the heat source unit (A).
, flows into the heat exchanger (3) on the heat source side, exchanges heat, and becomes gaseous. Then, the refrigerant forms a circulation cycle in which the refrigerant is sucked into the compressor (1) through the four-way switching valve (2) and the accumulator (4) of the heat source device, and performs heating-dominant operation. At this time, the indoor heat exchanger (5
) and the evaporation pressure of the heat exchanger (3) on the heat source side become smaller due to switching to the thicker first connection pipe (6). Also, at this time, the indoor unit (B”l, (C)
The 20th (8b) of the three-way switching valve (8) connected to the indoor unit (D) is closed, the 10th (8a) and the 30th (8c) are open, and the three-way switching valve (8) connected to the indoor unit (D) is closed. ) is the 10th
(8a) is a closed circuit, 2nd port (8b) and 30th (8c)
is open. Furthermore, at this time, since the refrigerant is at low pressure in the first connection pipe (6) and high pressure in the second connection pipe (7), the refrigerant is inevitably passed through the fifth check valve (34) and the sixth check valve ( 35)
distributed to.

また、このサイクル時、一部の液冷媒は第2の分岐部0
υの各室内機側の第2の接続配管(7b)、(7c)、
(7d)の合流部からバイパス配管04)へ入り、第3
の流量制御装置09て低圧まで減圧されて第3の熱交換
部(16b) 、 (16c)、(16d)で各室内機
側の第2の接続配管(7b)、(7c)、(7d)との
間で、第2の熱交換部(16a)で第2の分岐部αυの
各室内機側の第2の接続配管(7b)、(7c)、(7
d)の合流部との間で、更に第1の熱交換部09で第2
の流量制御装置a3から流入する冷媒との間で熱交換を
行い、蒸発した冷媒は、第1の接続配管(6)へ入り、
熱源機(A)の第6の逆止弁(35)、熱源機側熱交換
器(3)に流入し熱交換して蒸発し、ガス状態となる。
Also, during this cycle, some liquid refrigerant flows to the second branch 0.
Second connection pipes (7b), (7c), on each indoor unit side of υ
It enters the bypass pipe 04) from the confluence part of (7d), and enters the third
The flow rate control device 09 reduces the pressure to a low pressure, and the third heat exchange section (16b), (16c), (16d) connects the second connection pipes (7b), (7c), (7d) on each indoor unit side. and the second connection pipes (7b), (7c), (7
d) and the second heat exchanger in the first heat exchanger 09.
The evaporated refrigerant exchanges heat with the refrigerant flowing in from the flow rate control device a3, and enters the first connection pipe (6).
It flows into the sixth check valve (35) of the heat source device (A) and the heat exchanger (3) on the heat source device side, exchanges heat, and evaporates to become a gas.

そして、この冷媒は熱源機(A)の四方切換弁(2)、
アキュムレータ(4)を経て圧縮機(1)に吸入される
。一方、第1、第2、第3の熱交換部Q9)、(16a
)、(16b)、(16c)、(16d)て熱交換し冷
却されサブクールを充分につけられた上記第2の分岐部
αυの冷媒は冷房しようとしている室内機(D)へ流入
する。 冷暖房同時運転における冷房主体の場合につい
て第4図を用いて説明する。ここでは、室内機(B)、
(C)の2台が冷房、室内機(D)1台か暖房しようと
している場合について説明する。
Then, this refrigerant is transferred to the four-way switching valve (2) of the heat source device (A),
It is sucked into the compressor (1) via the accumulator (4). On the other hand, the first, second, and third heat exchange parts Q9), (16a
), (16b), (16c), and (16d), the refrigerant in the second branch part αυ, which has been cooled by heat exchange and has been sufficiently subcooled, flows into the indoor unit (D) to be cooled. A case in which cooling is the main component in simultaneous heating and cooling operation will be described with reference to FIG. 4. Here, the indoor unit (B),
A case will be explained in which two indoor units (C) are trying to cool the room, and one indoor unit (D) is trying to heat the room.

すなわち、第4図に実線矢印で示すように圧縮機(1)
より吐出された高温高圧冷媒ガスは、熱源機側熱交換器
(3)で任意量熱交換して二相の高温高圧ガスとなり、
第3の逆止弁(32)、第2の接続配管(7)を通り、
中継機(Iljの気液分離装置0zへ送られる。そして
、ここで、ガス状冷媒と液状冷媒に分離され、分離され
たガス状冷媒は第1の分岐部00)、三方切換弁(8)
、室内機側の第1の接続配管(6d)の順に通り、暖房
しようとしている室内機(D)に流入し、室内側熱交換
器(5)で室内空気と熱交換して凝縮液化し、室内を暖
房する。更に、室内側熱交換器(5)出口のサブクール
量により制御されほぼ全開状態の第1の流量制御装置(
9)を通り少し減圧されて、第2の分岐部ODに流入す
る。一方、気液分離装置0■で分離された残りの液状冷
媒は第2の接続配管(7)の高圧、第2の分岐部ODの
中間圧値によって制御される開閉自在な第2の流量制御
装置03を通って第2の分岐部αDに流入し、暖房しよ
うとしている室内機(D)を通った冷媒と合流する。そ
して、第2の分岐部αD、室内機側の第2の接続配管(
7b)、(7C)の順に通り、各室内機(B)、(C)
に流入する。そして、各室内機(B)、(C)に流入し
た冷媒は、室内機側熱交換器(5)出口のスーパーヒー
ト量により制御される第1の流量制御装#(9)により
低圧まで減圧されて室内側熱交換器(5)に流入し、室
内空気と熱交換して蒸発しガス化され室内を冷房する。
That is, as shown by the solid line arrow in Fig. 4, the compressor (1)
The high-temperature, high-pressure refrigerant gas discharged from the heat exchanger (3) on the heat source side exchanges heat in an arbitrary amount to become a two-phase high-temperature, high-pressure gas.
Passing through the third check valve (32) and the second connection pipe (7),
It is sent to the gas-liquid separator 0z of the repeater (Ilj), where it is separated into gaseous refrigerant and liquid refrigerant, and the separated gaseous refrigerant is transferred to the first branch section 00), the three-way switching valve (8)
, passes through the first connecting pipe (6d) on the indoor unit side, flows into the indoor unit (D) to be heated, exchanges heat with indoor air in the indoor heat exchanger (5), and condenses and liquefies. Heat the room. Furthermore, the first flow rate control device (which is controlled by the subcooling amount at the outlet of the indoor heat exchanger (5) and is in an almost fully open state)
9) and is slightly depressurized, and then flows into the second branch OD. On the other hand, the remaining liquid refrigerant separated by the gas-liquid separator 0■ is controlled by the high pressure of the second connection pipe (7) and the intermediate pressure value of the second branch OD, which allows the second flow rate to be freely opened and closed. The refrigerant flows into the second branch αD through the device 03 and joins with the refrigerant that has passed through the indoor unit (D) to be heated. Then, the second branch part αD, the second connection pipe on the indoor unit side (
7b), (7C), and each indoor unit (B), (C)
flows into. The refrigerant that has flowed into each indoor unit (B) and (C) is then reduced to a low pressure by the first flow rate control device # (9) that is controlled by the amount of superheat at the outlet of the indoor unit side heat exchanger (5). The air flows into the indoor heat exchanger (5), exchanges heat with indoor air, evaporates and becomes gas, and cools the room.

更に、このガス状態となった冷媒は、室内機側の第1の
接続配管(6b)、(6c)、三方切換弁(8)、第1
の分岐部αωを通り、第1の接続配管(6)、第4の逆
止弁(33)、熱源機(A)の四方切換弁(2)、アキ
ュムレータ(4)を経て圧縮機(1)に吸入される循環
サイクルを構成し、冷房主体運転を行う。この時、室内
機(B)、(C)に接続された三方切換弁(8)の第2
0(8b)及び第30(8c)は開路、第10(8a)
は閉路されており、室内機(D)に接続された三方切換
弁(8)の第10(8a)及び第30(8c)は開路、
第20(8b)は閉路されている。また、この時冷媒は
、第1の接続配管(6)か低圧、第2の接続配管か高圧
のため、必然的に第3の逆圧弁(32)、第4の逆止弁
(33)へ流通する。
Furthermore, the refrigerant in the gas state is transferred to the first connection pipes (6b), (6c) on the indoor unit side, the three-way switching valve (8), and the first connection pipe (6b), (6c) on the indoor unit side.
The compressor (1) passes through the branch part αω of A circulation cycle is configured in which air is sucked into the air, and air-conditioning is mainly used. At this time, the second three-way switching valve (8) connected to the indoor units (B) and (C)
0 (8b) and 30th (8c) are open circuits, 10th (8a)
is closed, and the 10th (8a) and 30th (8c) of the three-way switching valve (8) connected to the indoor unit (D) are open,
The 20th (8b) is closed. Also, at this time, the refrigerant is at low pressure in the first connection pipe (6) and high pressure in the second connection pipe, so it inevitably flows into the third check valve (32) and the fourth check valve (33). circulate.

更に、このサイクル時、一部の液冷媒は第2の分岐部(
11)の各室内機側の第2の接続配管(7b)、(7c
)、(7d)の合流部からバイパス配管CI4+へ入す
、第3の流量制御装置a!19で低圧まで減圧されて第
3の熱交換部(16b) 、(+6c) 、(16d)
で各室内機側の第2の接続配管(7b)、(7C)、(
7d)との間で、第2の熱交換部(16a)で第2の分
岐部01)の各室内機側の第2の接続配管(7b)、 
(7c)、(7d)の合流部との間で、更に第1の熱交
換部Cl9)で第2の流jl i’1i(J御装置a3
へ流入する冷媒との間で熱交換を行い蒸発した冷媒は、
第1の接続配管(6)へ入り、熱源機(A)の第4の逆
止弁(33)、熱源機(A)の四方切換弁(2)、アキ
ュムレータ(4)を経て圧縮機(])に吸入される。
Furthermore, during this cycle, some liquid refrigerant flows to the second branch (
11) on the side of each indoor unit (7b), (7c)
), the third flow rate control device a! enters the bypass pipe CI4+ from the confluence part of (7d). The pressure is reduced to low pressure at step 19, and the third heat exchange section (16b), (+6c), (16d)
Then connect the second connection pipes (7b), (7C), (
7d), the second connection pipe (7b) on each indoor unit side of the second branch part 01) in the second heat exchange part (16a),
(7c) and (7d), and the second flow jl i'1i (J control device a3) in the first heat exchanger Cl9).
The evaporated refrigerant exchanges heat with the refrigerant flowing into the
It enters the first connection pipe (6), passes through the fourth check valve (33) of the heat source machine (A), the four-way switching valve (2) of the heat source machine (A), the accumulator (4), and then the compressor (] ) is inhaled.

一方、第1、第2、第3の熱交換部a9)、(16a)
、(16b) 、(16c)、(+6d)て熱交換し冷
却されサブクルを充分につけられた上記第2の分岐部a
l)の冷媒は冷房しようとしている室内機(B)、(C
)へ流入する。
On the other hand, the first, second, and third heat exchange parts a9), (16a)
, (16b), (16c), and (+6d), the second branch part a is cooled by heat exchange and sufficiently covered with subcles.
The refrigerant in l) is used in the indoor units (B) and (C) that are trying to cool the room.
).

なお、上記実施例では三方切換弁(8)を設けて室内機
側の第1の接続配管(6b)、(6c)、(6d)と、
第1の接続配管(6)または、第2の接続配管(7)に
切り換え可能に接続しているか、第5図に示すように2
つのてんしへん(30)、(3J)等の開閉弁を設けて
上述したように切り換え可能に接続しても同様な作用効
果を奏す。
In addition, in the above embodiment, a three-way switching valve (8) is provided to connect the first connection pipes (6b), (6c), (6d) on the indoor unit side,
Either it is switchably connected to the first connection pipe (6) or the second connection pipe (7), or it is connected to the second connection pipe (7) as shown in FIG.
Even if on-off valves such as two tensioners (30) and (3J) are provided and connected in a switchable manner as described above, similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、この発明の空気調和装置は、圧縮機
、四方切換弁、熱源機側熱交換器、アキュムレータ、等
よりなる1台の熱源機と、室内側熱交換器、第1の流量
制御装置等からなる複数台の室内機とを、第1、第2の
接続配管を介して接続し、上記複数台の室内機の上記室
内側熱交換器の一方を上記第1の接続配管または、第2
の接続配管に切り換え可能に接続してなる第1の分岐部
と、上記複数台の室内機の上記室内側熱交換器の他方に
、上記第1の流量制御装置を介して接続され、かつ第2
の流量制御装置を介して上記第2の接続配管に接続して
なる第2の分岐部とを、上記第2の流量制御装置を介し
て接続し、更に、上記第2の分岐部と、上記第1の接続
配管を第4の流量制御装置を介して接続し、 また、上記第2の分岐部と上記第1の接続配管を第3の
流量制御装置を介して接続したバイパス配管を備え、上
記第3の流量制御装置と上記第1の接続配管との間のバ
イパス配管と、上記第2の接続配管と上記第2の流量制
御装置を接続する配管との間で熱交換を行う第1の熱交
換部を備え、上記第1の分岐部、第2の流量制御装置、
第3の流量制御装置及び第2の分岐部を内蔵させた中継
機を、上記熱源機と上記複数台の室内機との間に介在さ
せると共に、上記第1の接続配管は上記第2の接続配管
より大径に構成し、上記熱源機の上記第1及び第2の接
続配管間に切り換え弁を設け、上記第1の接続配管を低
圧に、第2の接続配管を高圧に切り換え可能にしたもの
において、上記第2の分岐部と上記第1の接続配管を第
3の流量制御装置を介して接続したバイパス配管を備え
、上記第3の流量制御装置と上記第1の接続配管との間
のバイパス配管と、上記第2の接続配管と上記第2の流
量制御装置を接続する配管との間で熱交換を行う第1の
熱交換部、及び上記第3の流量制御装置と上記第1の接
続配管との間のバイパス配管と、上記第2の分岐部との
間で熱交換を行う第2の熱交換部を備えたものである。
As explained above, the air conditioner of the present invention includes one heat source device including a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., an indoor heat exchanger, and a first flow rate control device. A plurality of indoor units consisting of devices, etc. are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first connection pipe or, Second
a first branch part switchably connected to the connecting pipe of the plurality of indoor units, and a first branch part connected to the other of the indoor heat exchangers of the plurality of indoor units via the first flow rate control device; 2
A second branch section connected to the second connection pipe via the flow rate control device is connected via the second flow rate control device; The first connection pipe is connected to the first connection pipe via a fourth flow rate control device, and the bypass pipe is connected to the second branch portion and the first connection pipe via a third flow rate control device, A first pipe that exchanges heat between a bypass pipe between the third flow control device and the first connection pipe, and a pipe connecting the second connection pipe and the second flow control device. a heat exchange section, the first branch section, a second flow rate control device,
A relay machine incorporating a third flow rate control device and a second branch part is interposed between the heat source device and the plurality of indoor units, and the first connection pipe is connected to the second connection pipe. The pipe is configured to have a larger diameter than the pipe, and a switching valve is provided between the first and second connection pipes of the heat source device, so that the first connection pipe can be switched to low pressure and the second connection pipe to high pressure. wherein the second branch part and the first connection pipe are connected via a third flow rate control device, the bypass pipe being connected between the third flow rate control device and the first connection line; a first heat exchange section that performs heat exchange between the bypass pipe and the pipe connecting the second connection pipe and the second flow rate control device; and the third flow rate control unit and the first heat exchange unit. The second heat exchange part is provided for exchanging heat between the bypass pipe between the connecting pipe and the second branch part.

従って、複数台の室内機を選択的に、かつ、一方の室内
機では冷房、他方の室内機では暖房を同時に行うことか
でき、しかも、冷房しようとしている室内機へ分配され
る前にサブクールを十分につけてから冷房しようとして
いる各室内機へ分配流入させるため、液冷媒の分配性か
向上し、かつ第1の流量制御装置入口のサブクールか確
保てき、信頼性か向上する。更に、冷房運転のみの場合
及び冷暖同時運転における冷房主体の場合で、上記第2
の接続配管を流れる冷媒か二相状態である場合にも、上
記第1の熱交換部において冷却されるため、上記第2の
流量制御装置の入口では冷媒は常に十分サブクールのつ
いた液冷媒となり、上記第2の流量制御装置の冷媒の流
通及び流量制御か容易になる。
Therefore, it is possible to selectively use multiple indoor units, cooling one indoor unit and heating the other indoor unit at the same time. Moreover, subcooling is performed before being distributed to the indoor unit that is attempting to cool the air. Since the liquid refrigerant is sufficiently turned on and distributed to each indoor unit to be cooled, the distribution of the liquid refrigerant is improved, and a subcooling area at the inlet of the first flow rate control device is ensured, thereby improving reliability. Furthermore, in the case of only cooling operation and in the case of cooling mainly in simultaneous cooling and heating operation, the second
Even if the refrigerant flowing through the connecting pipe is in a two-phase state, it is cooled in the first heat exchange section, so the refrigerant always becomes a liquid refrigerant with sufficient subcooling at the inlet of the second flow rate control device. This makes it easier to control the flow and flow rate of the refrigerant in the second flow rate control device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の空気調和装置の冷媒系を
中心とする全体構成図である。第2図は第1図で示した
一実施例の冷房または暖房のみの運転状態図、第3図は
第1図で示した一実施例の暖房主体(暖房運転容量か冷
房運転容量より大きい場合)の運転動作状態図、第4図
は第1図で示した一実施例の冷房主体(冷房運転容量か
暖房運転容量より大きい場合)の運転動作状態図、第5
図はこの発明の他の実施例の空気調和装置の冷媒系を中
心とする全体構成図である。 図において、(A)は熱源機、(B) 、(C)、(1
))は同し構成となっている室内機、(E)は中継機、
(1)は圧縮機、(2)は四方切換弁、(3)は熱源機
側熱交換器、(4)はアキュムレータ、(5)は室内側
熱交換器、(6)は第1の接続配管、(6b)、(6c
)、(6d)は室内機側の第2の接続配管、(7b)、
(7c)、(7d)は室内機側の第2の接続配管、(8
)は三方切換弁、(9)は第1の流量制御装置、(10
)は第1の分岐部、01)は第2の分岐部、qつは気液
分離装置、03は第2の流量制御装置、(14)はバイ
パス配管、09は第3の流量制御装置、(16a)、(
+6b)、(16c)、(+6d)は第2及び第3の熱
交換部、09)は第1の熱交換部、α力は第4の流量制
御装置、(30)、(31)は電磁弁等の開閉弁、(3
2)は第3の逆止弁、(33)は第4の逆止弁、(34
)は第5の逆止弁、(35)は第6の逆止弁、(40)
は熱源機側切り換え弁である。 なお、図中、同一符号は同一 または相当部分を示す。
FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to an embodiment of the present invention. Fig. 2 is a diagram showing the operating state of only cooling or heating in the embodiment shown in Fig. 1, and Fig. 3 is a diagram showing the operating state of only cooling or heating in the embodiment shown in Fig. 1. ), FIG. 4 is a diagram of the operating state of the cooling main unit (when the cooling operating capacity is larger than the heating operating capacity) of the embodiment shown in FIG. 1, and FIG.
The figure is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention. In the figure, (A) is a heat source machine, (B), (C), (1
)) is an indoor unit with the same configuration, (E) is a repeater,
(1) is the compressor, (2) is the four-way switching valve, (3) is the heat exchanger on the heat source side, (4) is the accumulator, (5) is the indoor heat exchanger, (6) is the first connection Piping, (6b), (6c
), (6d) is the second connection pipe on the indoor unit side, (7b),
(7c) and (7d) are the second connection pipes on the indoor unit side, (8
) is a three-way switching valve, (9) is a first flow control device, (10
) is the first branch part, 01) is the second branch part, q is the gas-liquid separation device, 03 is the second flow rate control device, (14) is the bypass piping, 09 is the third flow rate control device, (16a), (
+6b), (16c), (+6d) are the second and third heat exchange parts, 09) is the first heat exchange part, α force is the fourth flow rate control device, (30) and (31) are the electromagnetic Opening/closing valves such as valves, (3
2) is the third check valve, (33) is the fourth check valve, (34
) is the fifth check valve, (35) is the sixth check valve, (40)
is the switching valve on the heat source machine side. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】  圧縮機、四方切換弁、熱源機側熱交換機、アキュムレ
ータ、等よりなる1台の熱源機と、室内側熱交換器、第
1の流量制御装置等からなる複数台の室内機とを、第1
、第2の接続配管を介して接続し、上記複数台の室内機
の上記室内側熱交換器の一方を上記第1の接続配管また
は、第2の接続配管に切り換え可能に接続してなる第1
の分岐部と、上記複数台の室内機の上記室内側熱交換器
の他方に、上記第1の流量制御装置を介して接続され、
かつ第2の流量制御装置を介して上記第2の接続配管に
接続してなる第2の分岐部とを、上記第2の流量制御装
置を介して接続し、更に、上記第2の分岐部と、上記第
1の接続配管を第4の流量制御装置を介して接続し、 また、上記第2の分岐部と上記第1の接続配管を第3の
流量制御装置を介して接続したバイパス配管を備え、上
記第3の流量制御装置と上記第1の接続配管との間のバ
イパス配管と、上記第2の接続配管と上記第2の流量制
御装置を接続する配管との間で熱交換を行う第1の熱交
換部、及び上記第3の流量制御装置と上記第1の接続配
管との間のバイパス配管と、上記第2の分岐部との間で
熱交換を行う第2の熱交換部を備え、 上記第1の分岐部、第2の流量制御装置、第3の流量制
御装置及び第2の分岐部を内蔵させた中継器を、上記熱
源機と上記複数台の室内機との間に介在させると共に、
上記第1の接続配管は上記第2の接続配管より大径に構
成し、上記熱源機の上記第1及び第2の接続配管間に切
り換え弁を設け、上記第1の接続配管を低圧に、第2の
接続配管を高圧に切り換え可能にしたことを特徴とする
、冷暖房同時運転可能な空気調和装置。
[Claims] One heat source device including a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units including an indoor heat exchanger, a first flow rate control device, etc. machine and the first
, connected via a second connection pipe, and one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe. 1
and the other of the indoor heat exchangers of the plurality of indoor units via the first flow rate control device,
and a second branch section connected to the second connection pipe via the second flow rate control device, and further connected to the second branch section via the second flow rate control device. and the first connecting pipe connected via a fourth flow rate control device, and a bypass pipe connecting the second branch section and the first connecting line via a third flow rate control device. heat exchange between a bypass pipe between the third flow control device and the first connection pipe and a pipe connecting the second connection pipe and the second flow control device. a first heat exchange section that performs heat exchange, and a second heat exchange that performs heat exchange between the bypass piping between the third flow rate control device and the first connection piping, and the second branch section. A repeater having a built-in first branch, a second flow control device, a third flow control device, and a second branch is connected between the heat source device and the plurality of indoor units. While intervening,
The first connection pipe is configured to have a larger diameter than the second connection pipe, a switching valve is provided between the first and second connection pipes of the heat source device, the first connection pipe is set to a low pressure, An air conditioner capable of simultaneous heating and cooling operation, characterized in that the second connecting pipe can be switched to high pressure.
JP2107931A 1990-04-23 1990-04-23 Air conditioner Expired - Lifetime JPH07104075B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2107931A JPH07104075B2 (en) 1990-04-23 1990-04-23 Air conditioner
AU74381/91A AU636215B2 (en) 1990-04-23 1991-04-15 Air conditioning apparatus
ES199191303443T ES2046853T3 (en) 1990-04-23 1991-04-17 AIR CONDITIONER.
EP91303443A EP0453271B1 (en) 1990-04-23 1991-04-17 Air conditioning apparatus
DE91303443T DE69100424T2 (en) 1990-04-23 1991-04-17 Air conditioner.
US07/687,434 US5156014A (en) 1990-04-23 1991-04-18 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107931A JPH07104075B2 (en) 1990-04-23 1990-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH046373A true JPH046373A (en) 1992-01-10
JPH07104075B2 JPH07104075B2 (en) 1995-11-13

Family

ID=14471689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107931A Expired - Lifetime JPH07104075B2 (en) 1990-04-23 1990-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JPH07104075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605885B2 (en) 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605885B2 (en) 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve

Also Published As

Publication number Publication date
JPH07104075B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPH0754217B2 (en) Air conditioner
JPH02118372A (en) Air-conditioning device
JP2598550B2 (en) Air conditioner
JPH046372A (en) Air conditioner
JPH046373A (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2503669B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2757584B2 (en) Air conditioner
JPH046364A (en) Air-conditioner
JPH046361A (en) Air-conditioner
JPH0752044B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JPH04110573A (en) Air conditioner
JP2718287B2 (en) Air conditioner
JP2800472B2 (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus
JP2723380B2 (en) Air conditioner
JP2503668B2 (en) Air conditioner
JPH0311276A (en) Air conditioner
JPH055576A (en) Air conditioner
JPH04327768A (en) Air conditioner
JPH046362A (en) Air-conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 15