JPH055576A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH055576A
JPH055576A JP3158294A JP15829491A JPH055576A JP H055576 A JPH055576 A JP H055576A JP 3158294 A JP3158294 A JP 3158294A JP 15829491 A JP15829491 A JP 15829491A JP H055576 A JPH055576 A JP H055576A
Authority
JP
Japan
Prior art keywords
control device
refrigerant
flow rate
pipe
rate control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3158294A
Other languages
Japanese (ja)
Other versions
JP3092212B2 (en
Inventor
Shuichi Tani
秀一 谷
Setsu Nakamura
節 中村
Junichi Kameyama
純一 亀山
Noriaki Hayashida
徳明 林田
Tomohiko Kasai
智彦 河西
Shigeo Takada
茂生 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03158294A priority Critical patent/JP3092212B2/en
Publication of JPH055576A publication Critical patent/JPH055576A/en
Application granted granted Critical
Publication of JP3092212B2 publication Critical patent/JP3092212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent damage of a compressor by providing control means for increasing a valve opening of a special flow controller by a predetermined amount if a discharge temperature detected by discharge temperature detecting means provided between the compressor and a four-way switching valve is higher than a preset predetermined temperature. CONSTITUTION:If a discharge temperature detected by discharge temperature detecting means 42 exceeds a preset predetermined temperature during an operation of a compressor 1, a valve opening of a third flow controller 15 of third and fourth flow controllers 15 and 17, is preferentially increased. In this manner, a pressure loss is reduced to allow refrigerant to easily flow. Thus, quantity of refrigerant to be returned to a heat source A is increased, a specific volume of refrigerant to be sucked to the compressor 1 is reduced, and rise of the discharge temperature can be suppressed. That is, a decrease in lubricity of refrigerator oil due to excessive rise of the discharge temperature and hence damage of the compressor 1 are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ空気調和
装置に関するもので、特に各室内機毎に冷暖房を選択的
に、かつ一方の室内機では冷房、他方の室内機では暖房
が同時に行うことができる空気調和装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit, and in particular, heating and cooling are selectively applied to each indoor unit, and The present invention relates to an air conditioner capable of simultaneously performing cooling in one indoor unit and heating in the other indoor unit.

【0002】[0002]

【従来の技術】以下、この発明の従来技術について説明
する。図4はこの発明の従来技術の空気調和装置の冷媒
系を中心とする全体構成図である。また、図5ないし図
7は図4に示す空気調和装置における冷暖房運転時の動
作状態を示したもので、図5は冷房または暖房のみの運
転状態図、図6および図7は冷暖房同時運転の動作を示
すもので、図6は暖房主体(暖房運転容量が冷房運転容
量より大きい場合)を、図7は冷房主体(冷房運転容量
が暖房運転容量より大きい場合)を示す運転動作状態図
である。なお、この従来技術では熱源機1台に室内機3
台を接続した場合について説明するが、2台以上の室内
機を接続した場合はすべて同様である。
2. Description of the Related Art The prior art of the present invention will be described below. FIG. 4 is an overall configuration diagram centering on the refrigerant system of the conventional air conditioner of the present invention. 5 to 7 show operating states during cooling / heating operation in the air conditioner shown in FIG. 4, FIG. 5 is an operating state diagram of only cooling or heating, and FIGS. 6 and 7 show simultaneous cooling / heating operation. FIG. 6 is an operation state diagram showing a heating operation (when the heating operation capacity is larger than the cooling operation capacity), and FIG. 7 is an operation operation state diagram showing the cooling operation (when the cooling operation capacity is larger than the heating operation capacity). .. In this prior art, one heat source unit and one indoor unit 3
The case where two units are connected will be described, but the same applies when two or more indoor units are connected.

【0003】図4において、Aは熱源機、B、C、Dは
後述するようにお互いに並列接続された室内機でそれぞ
れ同じ構成となっている。Eは後述するように、第1の
分岐部10、第2の流量制御装置13、第2の分岐部11、気
液分離装置12、熱交換部16a、16b、16c、16d、19、
第3の流量制御装置15、第4の流量制御装置17を内蔵し
た中継機である。また、1は圧縮機、2は熱源機の冷媒
流通方向を切り換える四方切換弁、3は熱源機側熱交換
器、4はアキュムレータで、上記四方切換弁2を介して
圧縮機1と接続されている。これらによって熱源機Aが
構成される。また、5は3台の室内機B、C、Dに設け
られた室内側熱交換器、6は熱源機Aの四方切換弁2と
中継機Eを後述する第4の逆止弁33を介して接続する太
い第1の接続配管、6b、6c、6dはそれぞれ室内機B、
C、Dの室内側熱交換器5と中継機Eを接続し、第1の
接続配管6に対応する室内機側の第1の接続配管、7は
熱源機Aの熱源機側熱交換器3と中継機Eを後述する第
3の逆止弁32を介して接続する上記第1の接続配管より
細い第2の接続配管である。
In FIG. 4, A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other, which will be described later, and have the same structure. As will be described later, E is a first branch part 10, a second flow rate control device 13, a second branch part 11, a gas-liquid separation device 12, heat exchange parts 16a, 16b, 16c, 16d, 19,
It is a repeater having a third flow control device 15 and a fourth flow control device 17 incorporated therein. Further, 1 is a compressor, 2 is a four-way switching valve for switching the refrigerant flow direction of the heat source unit, 3 is a heat source unit side heat exchanger, 4 is an accumulator, and is connected to the compressor 1 via the four-way switching valve 2. There is. The heat source machine A is constituted by these. Further, 5 is an indoor heat exchanger provided in the three indoor units B, C, D, 6 is a four-way switching valve 2 of the heat source unit A and a relay unit E via a fourth check valve 33 described later. The thick first connecting pipes 6b, 6c, and 6d are connected to the indoor unit B, respectively.
The indoor heat exchangers 5 of C and D are connected to the repeater E, and the indoor unit-side first connecting pipes corresponding to the first connecting pipes 6 and 7 are the heat source unit side heat exchangers 3 of the heat source unit A. Is a second connecting pipe that is thinner than the first connecting pipe for connecting the relay device E via a third check valve 32 described later.

【0004】また、7b、7c、7dはそれぞれ室内機B、
C、Dの室内側熱交換器5と中継機Eを第1の流量制御
装置9を介して接続し、第2の接続配管7に対応する室
内機側の第2の接続配管である。8は室内機側の第1の
接続配管6b、6c、6dを、第1の接続配管6または第2の
接続配管7側に切り換え可能に接続する三方切換弁であ
る。9は室内側熱交換器5に近接して接続され、冷房時
は室内側熱交換器5の出口側のスーパーヒート量、暖房
時はサブクール量により制御される第1の流量制御装置
で、室内機側の第2の接続配管7b、7c、7dに接続され
る。10は室内機側の第1の接続配管6b、6c、6dを、第1
の接続配管6または、第2の接続配管7に切換え可能に
接続する三方切換弁8よりなる第1の分岐部である。11
は室内機側の第2の接続配管7b、7c、7dと、第2の接続
配管7よりなる第2の分岐部である。12は第2の接続配
管7の途中に設けられた気液分離装置で、その気相部は
三方切換弁8の第1口8aに接続され、その液相部は第2
の分岐部11に接続されている。13は気液分離装置12と第
2の分岐部11との間に接続する開閉自在な第2の流量制
御装置(ここでは電気式膨張弁)である。
Further, 7b, 7c and 7d are indoor units B and
The indoor heat exchanger 5 of C and D is connected to the relay E via the first flow rate control device 9, and is a second connection pipe on the indoor unit side corresponding to the second connection pipe 7. Reference numeral 8 is a three-way switching valve that connects the first connection pipes 6b, 6c, 6d on the indoor unit side to the first connection pipe 6 or the second connection pipe 7 side in a switchable manner. Reference numeral 9 is a first flow rate control device which is connected close to the indoor heat exchanger 5 and is controlled by the superheat amount on the outlet side of the indoor heat exchanger 5 during cooling and by the subcool amount during heating. It is connected to the second connection pipes 7b, 7c, 7d on the machine side. Reference numeral 10 designates the first connecting pipes 6b, 6c, 6d on the indoor unit side as the first
It is a first branch portion including a three-way switching valve 8 switchably connected to the connection pipe 6 or the second connection pipe 7. 11
Is a second branch portion including the second connection pipes 7b, 7c, 7d on the indoor unit side and the second connection pipe 7. Reference numeral 12 is a gas-liquid separator provided in the middle of the second connecting pipe 7, the gas phase part of which is connected to the first port 8a of the three-way switching valve 8 and the liquid phase part of which is the second part.
Is connected to the branch part 11. Reference numeral 13 denotes a second flow rate control device (here, an electric expansion valve) that is openable and closable and is connected between the gas-liquid separation device 12 and the second branch portion 11.

【0005】14は第2の分岐部11と上記第1の接続配管
6とを結ぶバイパス配管、15はバイパス配管14の途中に
設けられた第3の流量制御装置(ここでは電気式膨張
弁)、16aはバイパス配管14の途中に設けられた第3の
流量制御装置15の下流に設けられ、第2の分岐部11にお
ける各室内機側の第2の接続配管7b、7c、7dの会合部と
の間でそれぞれ熱交換を行う第2の熱交換部である。16
b、16c、16dはそれぞれバイパス配管14の途中に設け
られた第3の流量制御装置15の下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b、7c、
7dとの間でそれぞれ熱交換を行う第3の熱交換部であ
る。19はバイパス配管14の上記第3の流量制御装置15の
下流および第2の熱交換部16aの下流に設けられ、気液
分離装置12と第2の流量制御装置13とを接続する配管と
の間で熱交換を行う第1の熱交換部、17は第2の分岐部
11と上記第1の接続配管6との間に接続する開閉自在な
第4の流量制御装置(ここでは電気式膨張弁)である。
Reference numeral 14 is a bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and 15 is a third flow rate control device (here, an electric expansion valve) provided in the middle of the bypass pipe 14. , 16a are provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and the connecting portion of the second connection pipes 7b, 7c, 7d on the side of each indoor unit in the second branch portion 11 Is a second heat exchanging portion for exchanging heat with the heat exchanger. 16
b, 16c, 16d are respectively provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and the second connection pipes 7b, 7c on the indoor unit side in the second branch section 11 are provided.
It is a third heat exchanging section for exchanging heat with the 7d. 19 is provided in the bypass pipe 14 downstream of the third flow rate control device 15 and downstream of the second heat exchange section 16a, and connects the gas-liquid separation device 12 and the second flow rate control device 13 to each other. A first heat exchange section for performing heat exchange between the two, and a second branch section 17
It is a fourth flow rate control device (here, an electric expansion valve) that is openable and closable and is connected between 11 and the first connection pipe 6.

【0006】一方、32は上記熱源機側熱交換器3と上記
第2の接続配管7との間に設けられた第3の逆止弁であ
り、上記熱源機側熱交換器3から上記第2の接続配管7
へのみ冷媒流通を許容する。33は上記熱源機Aの四方切
換弁2と上記第1の接続配管6との間に設けられた第4
の逆止弁であり、上記第1の接続配管6から上記四方切
換弁2へのみ冷媒流通を許容する。34は上記熱源機A四
方切換弁2と上記第2の接続配管7との間に設けられた
第5の逆止弁であり、上記四方切換弁2から上記第2の
接続配管7へのみ冷媒流通を許容する。35は上記熱源機
側熱交換器3と上記第1の接続配管6との間に設けられ
た第6の逆止弁であり、上記第1の接続配管6から上記
熱源機側熱交換器3へのみ冷媒流通を許容する。上記第
3、第4、第5、第6の逆止弁32、33、34、35で切換弁
40を構成する。
On the other hand, reference numeral 32 is a third check valve provided between the heat source unit side heat exchanger 3 and the second connection pipe 7, from the heat source unit side heat exchanger 3 to the first check valve. 2 connection pipe 7
Allows refrigerant flow only to. 33 is a fourth provided between the four-way switching valve 2 of the heat source unit A and the first connecting pipe 6.
Is a check valve for permitting refrigerant flow only from the first connecting pipe 6 to the four-way switching valve 2. Reference numeral 34 is a fifth check valve provided between the heat source unit A four-way switching valve 2 and the second connection pipe 7, and the refrigerant is only from the four-way switching valve 2 to the second connection pipe 7. Allow distribution. Reference numeral 35 is a sixth check valve provided between the heat source unit side heat exchanger 3 and the first connection pipe 6, and the heat source unit side heat exchanger 3 is connected from the first connection pipe 6. Allows refrigerant flow only to. The third, fourth, fifth, and sixth check valves 32, 33, 34, 35 are switching valves.
Make up 40.

【0007】25は上記第1の分岐部10と第2の流通制御
装置13との間に設けられた第1の圧力検出手段、26は上
記第2の流量制御装置13と第4の流量制御装置17との間
に設けられた第2の圧力検出手段、27は上記第1の接続
配管6部に設けられた第3の圧力検出手段である。ま
た、41は上記四方切換弁2と上記アキュムレータ4とを
接続する配管途中に設けられた低圧飽和温度検出手段、
42は上記四方切換弁2と上記アキュムレータ4とを接続
する配管途中に設けられた吐出温度検出手段、18は上記
圧縮機1と上記四方切換弁2とを接続する配管途中に設
けられた第4の圧力検出手段である。
Reference numeral 25 is a first pressure detecting means provided between the first branch portion 10 and the second flow control device 13, and 26 is the second flow control device 13 and the fourth flow control device. A second pressure detecting means provided between the device 17 and the device 17 is a third pressure detecting means provided in the first connecting pipe 6 part. Further, 41 is a low pressure saturation temperature detecting means provided in the middle of a pipe connecting the four-way switching valve 2 and the accumulator 4.
42 is a discharge temperature detecting means provided in the middle of the pipe connecting the four-way switching valve 2 and the accumulator 4, and 18 is a fourth provided in the middle of the pipe connecting the compressor 1 and the four-way switching valve 2. Is a pressure detecting means.

【0008】次に動作について説明する。まず、図5を
用いて冷房運転のみの場合について説明する。同図に実
線矢印で示すように低圧飽和温度検出手段41の検出温度
が所定値になるように容量制御される圧縮機1より吐出
された高温高圧冷媒ガスは四方切換弁2を通り、熱源機
側熱交換器3で空気と熱交換して凝縮された後、第3の
逆止弁32、第2の接続配管7、気液分離装置12、第2の
流量制御装置13の順に通り、更に第2の分岐部11、室内
機側の第2の接続配管7b、7c、7dを通り、各室内機B、
C、Dに流入する。各室内機B、C、Dに流入した冷媒
は、各室内側熱交換器5の出口のスーパーヒート量によ
り制御される第1の流量制御装置9により低圧まで減圧
されて室内側熱交換器5で室内空気と熱交換して蒸発し
ガス化され室内を冷房する。
Next, the operation will be described. First, the case of only the cooling operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the temperature detected by the low-pressure saturation temperature detecting means 41 reaches a predetermined value as shown by the solid line arrow in the figure passes through the four-way switching valve 2 and the heat source unit. After the heat is exchanged with the air in the side heat exchanger 3 to be condensed, the third check valve 32, the second connection pipe 7, the gas-liquid separation device 12, and the second flow rate control device 13 are passed in this order, and further. Each of the indoor units B, passing through the second branch portion 11 and the second connection pipes 7b, 7c, 7d on the indoor unit side,
It flows into C and D. The refrigerant flowing into each indoor unit B, C, D is decompressed to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of each indoor heat exchanger 5, and the indoor heat exchanger 5 is cooled. It heats and exchanges heat with the room air, is gasified, and cools the room.

【0009】このガス状態となった冷媒は、室内機側の
第1の接続配管6b、6c、6d、三方切換弁8、第1の分岐
部10、第1の接続配管6、第4の逆止弁33、熱源機Aの
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される循環サイクルを構成し、冷房運転を行う。この
時、三方切換弁8の第1口8aは閉路、第2口8bと第3口
8cは開路されている。また、冷媒はこの時、第1の接続
配管6が低圧、第2の接続配管7が高圧のため必然的に
第3の逆止弁32、第4の逆止弁33へ流通する。また、こ
のサイクルの時、第2の流量制御装置13を通過した冷媒
の一部がバイパス配管14へ入り第3の流量制御装置15で
低圧まで減圧されて第3の熱交換部16b、16c、16dで
第2の分岐部11の各室内機側の第2の接続配管7b、7c、
7dとの間で、また第2の熱交換部16aで第2の分岐部11
の各室内機側の第2の接続配管7b、7c、7dの会合部との
間で、更に第1の熱交換部19で第2の流量制御装置13に
流入する冷媒との間で、熱交換を行い蒸発した冷媒は、
第1の接続配管6、第4の逆止弁33へ入り、熱源機Aの
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される。
The refrigerant in the gas state is the first connection pipes 6b, 6c, 6d on the indoor unit side, the three-way switching valve 8, the first branch portion 10, the first connection pipe 6, and the reverse pipe of the fourth connection pipe. A circulation cycle in which the compressor 1 is sucked through the stop valve 33, the four-way switching valve 2 of the heat source unit A, and the accumulator 4 constitutes a cooling operation. At this time, the first port 8a of the three-way switching valve 8 is closed, and the second port 8b and the third port are closed.
8c is open circuit. At this time, the refrigerant inevitably circulates to the third check valve 32 and the fourth check valve 33 because the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure. In addition, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the bypass pipe 14 and is depressurized to a low pressure by the third flow rate control device 15, so that the third heat exchange parts 16b, 16c, At 16d, the second connecting pipes 7b, 7c on the indoor unit side of the second branch portion 11 are provided.
7d and the second branch part 11 in the second heat exchange part 16a.
Between the second connection pipes 7b, 7c, 7d on the side of each indoor unit, and with the refrigerant flowing into the second flow rate control device 13 at the first heat exchange unit 19. The refrigerant that has been exchanged and evaporated is
It enters the first connecting pipe 6 and the fourth check valve 33, and is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4.

【0010】一方、第1、第2、第3の熱交換部19、16
a、16b、16c、16dで熱交換し冷却され、サブクール
を充分につけられた上記第2の分岐部11の冷媒は冷房し
ようとしている室内機B、C、Dへ流入する。
On the other hand, the first, second and third heat exchange parts 19, 16
The refrigerant in the second branch portion 11 that has been subjected to heat exchange and cooling in a, 16b, 16c, 16d and is sufficiently subcooled flows into the indoor units B, C, D that are about to be cooled.

【0011】次に、図5を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に、第4の圧力検出手段18の検出圧力が所定値になるよ
うに容量制御される圧縮機1より吐出された高温高圧冷
媒ガスは、四方切換弁2を通り、第5の逆止弁34、第2
の接続配管7、気液分離装置12を通り、第1の分岐部1
0、三方切換弁8、室内機側の第1の接続配管6b、6c、6
dの順に通り、各室内機B、C、Dに流入し、室内空気
と熱交換して凝縮液化し、室内を暖房する。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by the dotted arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the pressure detected by the fourth pressure detecting means 18 becomes a predetermined value is the four-way switching valve 2 Through the fifth check valve 34, the second
Through the connecting pipe 7 and the gas-liquid separation device 12 of the first branch 1
0, three-way switching valve 8, first connection pipes 6b, 6c, 6 on the indoor unit side
The air flows into each of the indoor units B, C, and D in the order of d, exchanges heat with the indoor air to be condensed and liquefied, and heats the room.

【0012】この液状態となった冷媒は、各室内側熱交
換器5の出口のサブクール量により制御されてほぼ全開
状態の第1の流量制御装置9を通り、室内機側の第2の
接続配管7b、7c、7dから第2の分岐部11に流入して合流
し、更に第4の流量制御装置17を通る。ここで、第1の
流量制御装置9または第3、第4の流量制御装置15、17
で低圧の気液二相状態まで減圧される。低圧まで減圧さ
れた冷媒は、第1の接続配管6を経て熱源機Aの第6の
逆止弁35、熱源機側熱交換器3に流入し、空気と熱交換
して蒸発しガス状態となり、熱源機Aの四方切換弁2、
アキュムレータ4を経て圧縮機1に吸入される循環サイ
クルを構成し、暖房運転を行う。この時、三方切換弁8
は第2口8bは閉路、第1口8aと第3口8cは開路されてい
る。また、冷媒はこの時、第1の接続配管6が低圧、第
2の接続配管7が高圧のため必然的に第5の逆止弁34、
第6の逆止弁35へ流通する。
The refrigerant in this liquid state is controlled by the subcool amount at the outlet of each indoor heat exchanger 5 and passes through the first flow rate control device 9 in a substantially fully opened state, and then the second connection on the indoor unit side. From the pipes 7b, 7c, 7d, they flow into the second branch portion 11 and merge, and further pass through the fourth flow control device 17. Here, the first flow control device 9 or the third and fourth flow control devices 15, 17
The pressure is reduced to a low pressure gas-liquid two-phase state. The refrigerant depressurized to a low pressure flows into the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 through the first connection pipe 6, exchanges heat with the air and becomes a gas state. , The four-way switching valve 2 of the heat source unit A,
A circulation cycle in which the compressor 1 is sucked through the accumulator 4 constitutes a heating operation. At this time, the three-way switching valve 8
The second port 8b is closed, and the first port 8a and the third port 8c are open. At this time, the refrigerant is inevitably the fifth check valve 34, because the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure.
It flows to the sixth check valve 35.

【0013】次に冷暖同時運転における暖房主体の場合
について図6を用いて説明する。同図に点線矢印で示す
ように第4の圧力検出手段18の検出圧力が所定値になる
ように容量制御される圧縮機1より吐出された高温高圧
冷媒ガスは、四方切換弁2を経て第5の逆止弁34、第2
の接続配管7を通して中継機Eへ送られ、気液分離装置
12を通り、第1の分岐部10、三方切換弁8、室内機側の
第1の接続配管6b、6cの順に通り、暖房しようとしてい
る各室内機B、Cに流入し、室内側熱交換器5で室内空
気と熱交換して凝縮液化され、室内を暖房する。この凝
縮液化した冷媒は、各室内側熱交換器5の出口のサブク
ール量により制御されほぼ全開状態の第1の流量制御装
置9を通り、少し、減圧されて第2の分岐部11に流入す
る。
Next, the case of mainly heating in the simultaneous cooling and heating operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the pressure detected by the fourth pressure detecting means 18 reaches a predetermined value as shown by the dotted arrow in the figure passes through the four-way switching valve 2 to 5 check valve 34, second
Sent to the repeater E through the connection pipe 7 of the
After passing through 12, the first branch portion 10, the three-way switching valve 8, and the first connection pipes 6b and 6c on the indoor unit side in this order, flow into the indoor units B and C that are going to be heated, and heat exchange on the indoor side. In the vessel 5, heat is exchanged with room air to be condensed and liquefied, and the room is heated. The condensed and liquefied refrigerant passes through the first flow rate control device 9 which is controlled by the subcool amount at the outlet of each indoor heat exchanger 5 and is in a substantially fully opened state, and is slightly depressurized and flows into the second branch portion 11. ..

【0014】この冷媒の一部は、室内機側の第2の接続
配管7dを通り、冷房しようとする室内機Dに入り、室内
側熱交換器5の出口のスーパーヒート量により制御され
る第1の流量制御装置9に入り、減圧された後に、室内
側熱交換器5に入って熱交換して蒸発しガス状態となっ
て室内を冷房し、第1の接続配管6dを経て三方切換弁8
を介して第1の接続配管6に流入する。一方、他の冷媒
は第1の圧力検出手段25の検出圧力、第2の圧力検出手
段26の検出圧力の圧力差が所定範囲となるように制御さ
れる第4の流量制御装置17を通って、冷房しようとする
室内機Dを通った冷媒と合流して太い第1の接続配管6
を経て、熱源機Aの第6の逆止弁35、熱源機側熱交換器
3に流入し、空気と熱交換して蒸発しガス状態となる。
A part of this refrigerant passes through the second connection pipe 7d on the indoor unit side, enters the indoor unit D to be cooled, and is controlled by the superheat amount at the outlet of the indoor heat exchanger 5. After entering the flow rate control device 9 of No. 1 and being decompressed, it enters the indoor heat exchanger 5 to exchange heat and evaporate into a gas state to cool the room, and the three-way switching valve via the first connecting pipe 6d. 8
Through the first connecting pipe 6. On the other hand, the other refrigerant passes through the fourth flow rate control device 17 which is controlled so that the pressure difference between the pressure detected by the first pressure detecting means 25 and the pressure detected by the second pressure detecting means 26 falls within a predetermined range. , The first connecting pipe 6 which is thick to join with the refrigerant having passed through the indoor unit D to be cooled
After that, the gas flows into the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 to exchange heat with the air and evaporate into a gas state.

【0015】この冷媒は、熱源機Aの四方切換弁2、ア
キュムレータ4を経て圧縮機1に吸入される循環サイク
ルを構成し、暖房主体運転を行う。この時、冷房する室
内機Dの室内側熱交換器5の蒸発圧力と熱源機側熱交換
器3の圧力差が、太い第1の接続配管6に切り換えるた
めに小さくなる。また、この時、室内機B、Cに接続さ
れた三方切換弁8の第2口8bは閉路、第1口8aと第3口
8c開路されており、室内機Dの第1口8aは閉路、第2口
8bと第3口8cは開路されている。また、冷媒はこの時、
第1の接続配管6が低圧、第2の接続配管7が高圧のた
め必然的に第5の逆止弁34、第6の逆止弁35へ流通す
る。
This refrigerant constitutes a circulation cycle in which it is drawn into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4, and performs heating-main operation. At this time, the evaporation pressure of the indoor side heat exchanger 5 of the indoor unit D to be cooled and the pressure difference of the heat source unit side heat exchanger 3 are reduced due to switching to the thick first connection pipe 6. At this time, the second port 8b of the three-way switching valve 8 connected to the indoor units B and C is closed, and the first port 8a and the third port 8a are closed.
8c is open, the first port 8a of the indoor unit D is closed, the second port
8b and the third mouth 8c are opened. At this time, the refrigerant is
Since the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure, the first connecting pipe 6 necessarily flows to the fifth check valve 34 and the sixth check valve 35.

【0016】このサイクル時、一部の液冷媒は第2の分
岐部11の各室内機側の第2の接続配管7b、7c、7dの会合
部からバイパス配管14へ入り、第3の流量制御装置15で
低圧まで減圧されて、第3の熱交換部16b、16c、16d
で第2の分岐部11の各室内機側の第2の接続配管7b、7
c、7dとの間で、また第2の熱交換部16aで第2の分岐
部11の各室内機側の第2の接続配管7b、7c、7dの会合部
との間で、更に第1の熱交換部19で第2の流量制御装置
13から流入する冷媒との間で熱交換を行い、蒸発した冷
媒は、第1の接続配管6、第6の逆止弁35を経由し、熱
源機側熱交換器3へ入り、空気と熱交換して蒸発気化し
た後、熱源機Aの四方切換弁2、アキュムレータ4を経
て圧縮機1に吸入される。一方、第1、第2、第3の熱
交換部19、16a、16b、16c、16dで熱交換し、冷却さ
れ、サブクールを充分につけられた上記第2の分岐部11
の冷媒は冷房しようとしている室内機Dへ流入する。
During this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the connecting portion of the second connecting pipes 7b, 7c, 7d on the indoor unit side of the second branching portion 11 and controls the third flow rate. The pressure is reduced to a low pressure by the device 15, and the third heat exchange parts 16b, 16c, 16d
The second connection pipes 7b, 7 on the indoor unit side of the second branching unit 11
c, 7d, and between the second heat exchanging portion 16a and the second connecting pipes 7b, 7c, 7d on the side of each indoor unit of the second branching portion 11, the first connecting portion is further connected. The second flow rate control device in the heat exchange section 19 of
The heat exchange is performed with the refrigerant flowing in from 13, and the evaporated refrigerant enters the heat source unit side heat exchanger 3 via the first connecting pipe 6 and the sixth check valve 35, and the After exchanging and evaporating, it is sucked into the compressor 1 through the four-way switching valve 2 of the heat source unit A and the accumulator 4. On the other hand, the second branch portion 11 is heat-exchanged by the first, second, and third heat exchange portions 19, 16a, 16b, 16c, 16d, cooled, and sufficiently subcooled.
Of the refrigerant flows into the indoor unit D that is about to be cooled.

【0017】次に、冷暖房同時運転における冷房主体の
場合について図7を用いて説明する。同図に実線矢印で
示すように、低圧飽和温度検出手段41の検出温度が所定
値になるように容量制御される圧縮機1より吐出された
高温高圧冷媒ガスは、四方切換弁2を経て熱源機側熱交
換器3に流入し、空気と熱交換して気液二相の高温高圧
状態となる。その後、この二相の高温高圧状態の冷媒は
第3の逆止弁32、第2の接続配管7を経て、中継機Eの
気液分離装置12へ送られる。ここで、ガス状冷媒と液状
冷媒に分離され、分離されたガス状冷媒は第1の分岐部
10、三方切換弁8、室内機側の第1の接続配管6dの順に
通り、暖房しようとする室内機Dに流入し、室内側熱交
換器5で室内空気と熱交換して凝縮液化し、室内を暖房
する。更に、室内側熱交換器5の出口のサブクール量に
より制御され、ほぼ全開状態の第1の流量制御装置9を
通り、少し減圧されて、第2の分岐部11に流入する。
Next, a case of mainly cooling in the simultaneous heating and cooling operation will be described with reference to FIG. As indicated by the solid line arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the temperature detected by the low-pressure saturation temperature detecting means 41 reaches a predetermined value passes through the four-way switching valve 2 and becomes a heat source. It flows into the machine-side heat exchanger 3 and exchanges heat with air to be in a gas-liquid two-phase high-temperature high-pressure state. Then, the two-phase high-temperature high-pressure refrigerant is sent to the gas-liquid separation device 12 of the relay machine E through the third check valve 32 and the second connection pipe 7. Here, the gaseous refrigerant is separated into the gaseous refrigerant and the liquid refrigerant, and the separated gaseous refrigerant is the first branch portion.
10, the three-way switching valve 8, the first connection pipe 6d on the indoor unit side, in that order, flows into the indoor unit D to be heated, heat-exchanges with the indoor air in the indoor heat exchanger 5, and is condensed and liquefied. Heat the room. Further, it is controlled by the amount of subcool at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state, is slightly decompressed, and flows into the second branch portion 11.

【0018】一方、残りの液状冷媒は第1の圧力検出手
段25の検出圧力、第2の圧力検出手段26の検出圧力によ
って制御される第2の流量制御装置13を通って、第2の
分岐部11に流入し、暖房しようとする室内機Dを通った
冷媒と合流する。第2の分岐部11、室内機側の第2の接
続配管7b、7cの順に通り、各室内機B、Cに流入する。
各室内機B、Cに流入した冷媒は、室内機側熱交換器5
の出口のスーパーヒート量に制御される第1の流量制御
装置9により低圧まで減圧された後に、室内側熱交換器
5に流入し、室内空気と熱交換して蒸発しガス化され、
室内を冷房する。更に、このガス状態となった冷媒は、
室内機側の第1の接続配管6b、6c、三方切換弁8、第1
の分岐部10を通り、第1の接続配管6、第4の逆止弁3
3、熱源機Aの四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、冷房主体
運転を行う。また、この時、室内機B、Cに接続された
三方切換弁8の第1口8aは閉路、第2口8bと第3口8cは
開路されており、室内機Dの第2口8bは閉路、第1口8a
と第3口8cは開路されている。冷媒はこの時、第1の接
続配管6が低圧、第2の接続配管7が高圧のため、必然
的に第3の逆止弁32、第4の逆止弁33へ流通する。
On the other hand, the remaining liquid refrigerant passes through the second flow rate control device 13 controlled by the pressure detected by the first pressure detecting means 25 and the pressure detected by the second pressure detecting means 26, and then the second branch. It flows into the portion 11 and joins the refrigerant passing through the indoor unit D to be heated. The second branch portion 11 and the second connection pipes 7b and 7c on the indoor unit side are passed in this order to flow into the indoor units B and C.
The refrigerant flowing into each of the indoor units B and C is used as the indoor unit side heat exchanger 5
After being depressurized to a low pressure by the first flow rate control device 9 controlled to the superheat amount at the outlet of, the gas flows into the indoor heat exchanger 5, exchanges heat with the indoor air, is evaporated, and is gasified,
Cool the room. Furthermore, the refrigerant in this gas state is
Indoor unit side first connection piping 6b, 6c, three-way switching valve 8, first
Passing through the branch portion 10 of the first connecting pipe 6 and the fourth check valve 3
3. A circulation cycle in which the compressor 1 is sucked through the four-way switching valve 2 of the heat source device A and the accumulator 4 is configured to perform the cooling main operation. At this time, the first port 8a of the three-way switching valve 8 connected to the indoor units B and C is closed, the second port 8b and the third port 8c are open, and the second port 8b of the indoor unit D is Cycle, 1st mouth 8a
And the third mouth 8c is opened. At this time, the refrigerant inevitably circulates to the third check valve 32 and the fourth check valve 33 because the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure.

【0019】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、7dの会
合部からバイパス配管14へ入り、第3の流量制御装置15
で低圧まで減圧されて、第3の熱交換部16b、16c、16
dで第2の分岐部11の各室内機側の第2の接続配管7b、
7c、7dとの間で、また第2の熱交換器部16aで第2の分
岐部11の各室内機側の第2の接続配管7b、7c、7dの会合
部との間で、更に第1の熱交換部19で第2の流量制御装
置13に流入する冷媒との間で熱交換を行い、蒸発した冷
媒は第1の接続配管6第4の逆止弁33へ入り、熱源機A
の四方切換弁2、アキュムレータ4を経て圧縮機1に吸
入される。一方、第1、第2、第3の熱交換部19、16
a、16b、16c、16dで熱交換し冷却されサブクールを
充分につけられた上記第2の分岐部11の冷媒は冷房しよ
うとしている室内機B、Cへ流入する。
During this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the meeting portion of the second connecting pipes 7b, 7c, 7d on the side of each indoor unit of the second branch portion 11 and reaches the third flow rate. Controller 15
Depressurized to low pressure by the third heat exchange parts 16b, 16c, 16
The second connection pipe 7b on the indoor unit side of the second branch portion 11 at d,
7c and 7d, and between the second heat exchanger section 16a and the second connecting pipes 7b, 7c, 7d on the side of each indoor unit of the second branch section 11 and the meeting section of the second connecting section 7a. In the first heat exchange section 19, heat is exchanged with the refrigerant flowing into the second flow rate control device 13, and the evaporated refrigerant enters the first connecting pipe 6 and the fourth check valve 33, and the heat source unit A
It is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4. On the other hand, the first, second and third heat exchange parts 19, 16
The refrigerant in the second branch portion 11 that has been heat-exchanged and cooled by a, 16b, 16c, and 16d and is sufficiently subcooled flows into the indoor units B and C that are about to be cooled.

【0020】[0020]

【発明が解決しようとする課題】従来の多室型ヒートポ
ンプ式空気調和装置は以上のように構成されているの
で、運転中に圧縮機吐出温度が過上昇した場合、冷凍機
油の潤滑性が低下し圧縮機が損傷するというような問題
があった。なお、近似技術として、特開平1−134172号
公報がある。
Since the conventional multi-chamber heat pump type air conditioner is constructed as described above, if the compressor discharge temperature rises excessively during operation, the lubricity of the refrigerating machine oil will deteriorate. However, there was a problem that the compressor was damaged. As an approximation technique, there is JP-A-1-134172.

【0021】この発明は、上記のような問題点を解決す
るためになされたもので、熱源機1台に対して複数台の
室内機を接続し、各室内機毎に冷暖房を選択的に、かつ
一方の室内機では冷房、他方の室内機では暖房が同時に
行うことができる空気調和装置において、圧縮機吐出温
度が過上昇した場合に、冷凍機油の潤滑性が低下し圧縮
機が損傷するのを防止することを目的とする。
The present invention has been made to solve the above problems, and a plurality of indoor units are connected to one heat source unit, and heating / cooling is selectively performed for each indoor unit. In an air conditioner that can perform cooling in one indoor unit and heating in the other indoor unit at the same time, if the discharge temperature of the compressor rises excessively, the lubricity of the refrigerating machine oil decreases and the compressor is damaged. The purpose is to prevent.

【0022】[0022]

【課題を解決するための手段】この発明に係る空気調和
装置は、圧縮機、四方切換弁、熱源機側熱交換器、アキ
ュムレータ等、よりなる1台の熱源機と、室内側熱交換
器、第1の流量制御装置等からなる複数台の室内機と
を、第1、第2の接続配管を介して接続したものにおい
て、上記複数台の室内機の上記室内側熱交換器の一方を
上記第1の接続配管または、第2の接続配管に切り換え
可能に接続する第1の分岐部と、上記複数台の室内機の
上記室内側熱交換器の他方を、上記第1の流量制御装置
を介して上記第2の接続配管に接続してなる第2の分岐
部との間に第2の流量制御装置を介在させると共に、上
記第2の分岐部と第1の接続配管を第4の流量制御装置
を介して接続し、更に一端が上記第2の分岐部に接続さ
れ、他端が第3の流量制御装置を介して上記第1の接続
配管へ接続されたバイパス配管を備え、上記第3の流量
制御装置と上記第1の接続配管との間のバイパス配管
と、上記第2の接続配管と上記第2の流量制御装置を接
続する配管との間で熱交換を行う第1の熱交換部を備
え、上記第1の分岐部、第2の分岐部、第2の流量制御
装置、第3の流量制御装置、第4の流量制御装置、第1
の熱交換部、及びバイパス配管を内蔵させた中継機を、
上記熱源機と上記複数台の室内機との間に介在させ、更
に上記第1の接続配管は上記第2の接続配管より大径に
構成して、上記熱源機側熱交換器が凝縮器となる運転時
には、上記凝縮器の冷媒出口側から上記第2の接続配管
側にのみ冷媒を流通させると共に上記第1の接続配管か
ら上記四方切換弁側にのみ冷媒を流通させ、かつ上記熱
源機側熱交換器が蒸発器となる運転時には、上記第1の
接続配管から上記蒸発器の冷媒流入側にのみ冷媒を流通
させると共に、上記四方切換弁から第2の接続配管側に
のみ冷媒を流通させ得る流路切り替え装置を設け、上記
圧縮機と四方切換弁との間に設けられた吐出温度検出手
段で検出された吐出温度が予め設定された所定温度より
も高い場合に、上記第3及び第4の流量制御装置の弁開
度を所定量大きくする制御手段を設けたものである。
SUMMARY OF THE INVENTION An air conditioner according to the present invention comprises a heat source unit comprising a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, etc., and an indoor side heat exchanger, In a case where a plurality of indoor units including a first flow rate control device and the like are connected via first and second connection pipes, one of the indoor heat exchangers of the plurality of indoor units is The first branch part that is switchably connected to the first connection pipe or the second connection pipe, and the other of the indoor heat exchangers of the plurality of indoor units are connected to the first flow control device. A second flow rate control device is interposed between the second flow path control device and the second branch portion connected to the second connection pipe via the second flow path, and the second branch portion and the first connection pipe are connected to the fourth flow rate. The second flow path is connected to the second branch portion, and the other end is connected to the third flow path. A bypass pipe connected to the first connection pipe via a control device; a bypass pipe between the third flow rate control device and the first connection pipe; the second connection pipe; A first heat exchanging section for exchanging heat with a pipe connecting the second flow rate control device is provided, and the first branch section, the second branch section, the second flow rate control apparatus, and the third Flow control device, fourth flow control device, first
The heat exchanger and the repeater with built-in bypass piping
It is interposed between the heat source unit and the plurality of indoor units, and the first connecting pipe has a larger diameter than the second connecting pipe, and the heat source unit side heat exchanger is a condenser. During the operation, the refrigerant is circulated only from the refrigerant outlet side of the condenser to the second connection pipe side, and the refrigerant is circulated only from the first connection pipe to the four-way switching valve side, and the heat source unit side. During operation in which the heat exchanger serves as an evaporator, the refrigerant is circulated from the first connection pipe only to the refrigerant inflow side of the evaporator, and the refrigerant is circulated only from the four-way switching valve to the second connection pipe side. If the discharge temperature detected by the discharge temperature detecting means provided between the compressor and the four-way switching valve is higher than a predetermined temperature set in advance, the third and third flow path switching devices are provided. Increase the valve opening of the flow control device of 4 by a predetermined amount It is provided with a control means that.

【0023】[0023]

【作用】この発明においては、圧縮機吐出温度が上昇し
た時、上記圧縮機と四方切換弁との間に設けられた吐出
温度検出手段で検出された吐出温度が予め設定された所
定温度よりも高い場合に、上記第3及び第4の流量制御
装置の弁開度を所定量大きくする制御手段を設けたこと
により、吐出温度が上昇することによって冷凍機油の潤
滑性が低下し圧縮機が損傷するのを防止することができ
る。
According to the present invention, when the compressor discharge temperature rises, the discharge temperature detected by the discharge temperature detecting means provided between the compressor and the four-way switching valve is higher than the preset predetermined temperature. When the temperature is high, the control means for increasing the valve openings of the third and fourth flow rate control devices by a predetermined amount is provided, so that the discharge temperature rises, the lubricity of the refrigerating machine oil decreases, and the compressor is damaged. Can be prevented.

【0024】[0024]

【実施例】【Example】

実施例1.以下、この発明の実施例について説明する。
図1はこの発明の一実施例による空気調和装置の冷媒系
を中心とする全体構成図である。図1において、Aは熱
源機、B、C、Dは後述するように互いに並列接続され
た室内機でそれぞれ同じ構成となっている。Eは後述す
るように、第1の分岐部10、第2の流量制御装置13、第
2の分岐部11、気液分離装置12、熱交換部16a、16b、
16c、16d、19、第3の流量制御装置15、第4の流量制
御装置17を内蔵した中継機である。また、1は圧縮機、
2は熱源機の冷媒流通方向を切り換える四方切換弁、3
は熱源機側熱交換器、4はアキュムレータで、上記四方
切換弁2を介して圧縮機1と接続されている。これらに
よって熱源機Aが構成される。また、5は3台の室内機
B、C、Dに設けられた室内側熱交換器、6は熱源機A
の四方切換弁2と中継機Eを後述する第4の逆止弁33を
介して接続する太い第1の接続配管、6b、6c、6dはそれ
ぞれ室内機B、C、Dの室内側熱交換器5と中継機Eを
接続し、第1の接続配管6に対応する室内機側の第1の
接続配管、7は熱源機Aの熱源機側熱交換器3と中継機
Eを後述する第3の逆止弁32を介して接続する上記第1
の接続配管より細い第2の接続配管である。
Example 1. Examples of the present invention will be described below.
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. In FIG. 1, A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other as described later, and have the same configuration. As will be described later, E is a first branch part 10, a second flow rate control device 13, a second branch part 11, a gas-liquid separation device 12, heat exchange parts 16a, 16b,
16c, 16d, 19, a third flow control device 15, and a fourth flow control device 17 are built-in repeaters. 1 is a compressor,
2 is a four-way switching valve that switches the refrigerant flow direction of the heat source unit, 3
Is a heat source unit side heat exchanger, and 4 is an accumulator, which is connected to the compressor 1 via the four-way switching valve 2. The heat source machine A is constituted by these. Further, 5 is an indoor heat exchanger provided in the three indoor units B, C and D, and 6 is a heat source device A.
Thick connecting pipes for connecting the four-way switching valve 2 and the relay unit E via a fourth check valve 33 described later, 6b, 6c and 6d are indoor heat exchanges of the indoor units B, C and D, respectively. The first connection pipe on the indoor unit side that connects the unit 5 and the relay unit E and corresponds to the first connection pipe 6 is a heat source unit side heat exchanger 3 of the heat source unit A and the relay unit E which will be described later. The above-mentioned first connecting through check valve 32 of No. 3
2 is a second connection pipe thinner than the connection pipe of FIG.

【0025】また、7b、7c、7dはそれぞれ室内機B、
C、Dの室内側熱交換器5と中継機Eを第1の流量制御
装置9を介して接続し、第2の接続配管7に対応する室
内機側の第2の接続配管である。8は室内機側の第1の
接続配管6b、6c、6dを、第1の接続配管6または第2の
接続配管7側に切り換え可能に接続する三方切換弁であ
る。9は室内側熱交換器5に近接して接続され、冷房時
は室内側熱交換器5の出口側スーパーヒート量、暖房時
はサブクール量により制御される第1の流量制御装置
で、室内機側の第2の接続配管7b、7c、7dに接続され
る。10は室内機側の第1接続配管6b、6c、6dを、第1の
接続配管6または、第2の接続配管7に切換え可能に接
続する三方切換弁8によりなる第1の分岐部である。11
は室内機側の第2の接続配管7b、7c、7dと第2の接続配
管7よりなる第2の分岐部である。12は第2の接続配管
7の途中に設けられた気液分離装置で、その気相部は三
方切換弁8の第1口8aに接続され、その液相部は第2の
分岐部11に接続されている。13は気液分離装置12と第2
の分岐部11との間に接続する開閉自在な第2の流量制御
装置(ここでは電気式膨張弁)である。
Further, 7b, 7c and 7d are indoor units B and 7b, respectively.
The indoor heat exchanger 5 of C and D is connected to the relay E via the first flow rate control device 9, and is a second connection pipe on the indoor unit side corresponding to the second connection pipe 7. Reference numeral 8 is a three-way switching valve that connects the first connection pipes 6b, 6c, 6d on the indoor unit side to the first connection pipe 6 or the second connection pipe 7 side in a switchable manner. Reference numeral 9 is a first flow rate control device which is connected close to the indoor heat exchanger 5 and is controlled by the superheat amount on the outlet side of the indoor heat exchanger 5 during cooling and by the subcool amount during heating. Side second connection pipes 7b, 7c, 7d. Reference numeral 10 is a first branch portion including a three-way switching valve 8 that connects the first connection pipes 6b, 6c, 6d on the indoor unit side to the first connection pipe 6 or the second connection pipe 7 in a switchable manner. .. 11
Is a second branch portion composed of the second connection pipes 7b, 7c, 7d and the second connection pipe 7 on the indoor unit side. Reference numeral 12 is a gas-liquid separator provided in the middle of the second connecting pipe 7, the gas phase portion of which is connected to the first port 8a of the three-way switching valve 8, and the liquid phase portion of which is connected to the second branch portion 11. It is connected. 13 is the gas-liquid separation device 12 and the second
Is a second flow control device (here, an electric expansion valve) that can be opened and closed and that is connected to the branch portion 11 of the.

【0026】14は第2の分岐部11と上記第1の接続配管
6とを結ぶバイパス配管、15はバイパス配管14の途中に
設けられた第3の流量制御装置(ここでは電気式膨張
弁)、16aはバイパス配管14の途中に設けられた第3の
流量制御装置15の下流に設けられ、第2の分岐部11にお
ける各室内機側の第2の接続配管7b、7c、7dの会合部と
の間でそれぞれ熱交換を行う第2の熱交換部である。16
b、16c、16dはそれぞれバイパス配管14の途中に設け
られた第3の流量制御装置15の下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b、7c、
7dとの間でそれぞれ熱交換を行う第3の熱交換部であ
る。19はバイパス配管14の上記第3の流量制御装置15の
下流および第2の熱交換部16aの下流に設けられ、気液
分離装置12と第2の流量制御装置13とを接続する配管と
の間で熱交換を行う第1の熱交換部、17は第2の分岐部
11と上記第1の接続配管6との間に接続する開閉自在な
第4の流量制御装置(ここでは電気式膨張弁)である。
Reference numeral 14 is a bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and 15 is a third flow control device (here, an electric expansion valve) provided in the middle of the bypass pipe 14. , 16a are provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and the connecting portion of the second connection pipes 7b, 7c, 7d on the side of each indoor unit in the second branch portion 11 Is a second heat exchanging portion for exchanging heat with the heat exchanger. 16
b, 16c, 16d are respectively provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and the second connection pipes 7b, 7c on the indoor unit side in the second branch section 11 are provided.
It is a third heat exchanging section for exchanging heat with the 7d. 19 is provided in the bypass pipe 14 downstream of the third flow rate control device 15 and downstream of the second heat exchange section 16a, and connects the gas-liquid separation device 12 and the second flow rate control device 13 to each other. A first heat exchange section for performing heat exchange between the two, and a second branch section 17
It is a fourth flow rate control device (here, an electric expansion valve) that is openable and closable and is connected between 11 and the first connection pipe 6.

【0027】一方、32は上記熱源機側熱交換器3と上記
第2の接続配管7との間に設けられた第3の逆止弁であ
り、上記熱源機側熱交換器3から上記第2の接続配管7
へのみ冷媒流通を許容する。33は上記熱源機Aの四方切
換弁2と上記第1の接続配管6との間に設けられた第4
の逆止弁であり、上記第1の接続配管6から上記四方切
換弁2へのみ冷媒流通を許容する。34は上記熱源機Aの
四方切換弁2と上記第2の接続配管7との間に設けられ
た第5の逆止弁であり、上記四方切換弁2から上記第2
の接続配管7へのみ冷媒流通を許容する。35は上記熱源
機側熱交換器3と上記第1の接続配管6との間に設けら
れた第6の逆止弁であり、上記第1の接続配管6から上
記熱源機側熱交換器3へのみ冷媒流通を許容する。上記
第3、第4、第5、第6の逆止弁32、33、34、35で流路
切換え装置40を構成する。
On the other hand, reference numeral 32 is a third check valve provided between the heat source side heat exchanger 3 and the second connecting pipe 7, and the heat source side heat exchanger 3 to the third check valve are provided. 2 connection pipe 7
Allows refrigerant flow only to. 33 is a fourth provided between the four-way switching valve 2 of the heat source unit A and the first connecting pipe 6.
Is a check valve for permitting refrigerant flow only from the first connecting pipe 6 to the four-way switching valve 2. Reference numeral 34 is a fifth check valve provided between the four-way switching valve 2 of the heat source unit A and the second connecting pipe 7, and the four-way switching valve 2 to the second check valve
Refrigerant is allowed to flow only to the connecting pipe 7. Reference numeral 35 is a sixth check valve provided between the heat source unit side heat exchanger 3 and the first connection pipe 6, and the heat source unit side heat exchanger 3 is connected from the first connection pipe 6. Allows refrigerant flow only to. The above-mentioned third, fourth, fifth, and sixth check valves 32, 33, 34, 35 constitute a flow path switching device 40.

【0028】25は上記第1の分岐部10と第2の流量制御
装置13との間に設けられた第1の圧力検出手段、26は上
記第2の流量制御装置13と第4の流量制御装置17との間
に設けられた第2の圧力検出手段、27は上記第1の接続
配管6に設けられた第3の圧力検出手段である。また、
41は上記四方切換弁2と上記アキュムレータ4とを接続
する配管途中に設けられた低圧飽和温度検出手段、42は
上記四方切換弁2と上記圧縮機1とを接続する配管途中
に設けられた吐出温度検出手段、18は上記圧縮機1と上
記四方切換弁2とを接続する配管途中に設けられた第4
の圧力検出手段である。
Reference numeral 25 is a first pressure detecting means provided between the first branch portion 10 and the second flow rate control device 13, and 26 is the second flow rate control device 13 and the fourth flow rate control device. A second pressure detecting means provided between the device 17 and 27 is a third pressure detecting means provided in the first connecting pipe 6. Also,
Reference numeral 41 is a low pressure saturation temperature detecting means provided in the middle of the pipe connecting the four-way switching valve 2 and the accumulator 4, and 42 is a discharge provided in the middle of the pipe connecting the four-way switching valve 2 and the compressor 1. A temperature detecting means, 18 is a fourth provided in the middle of a pipe connecting the compressor 1 and the four-way switching valve 2.
Is a pressure detecting means.

【0029】次に、動作に付いて説明するが、冷房運転
のみ、暖房運転のみ、暖主運転、冷主運転各々の動作は
図2ないし図4に示す従来の空気調和装置と全く同様で
あるのでここでは省略し、圧縮機吐出温度上昇時の、第
3、第4の流量制御装置15、17の流量制御について説明
する。圧縮機運転中に、吐出温度検出手段42で検出され
た吐出温度が、予め設定された所定温度を越えた場合、
第3もしくは第4の流量制御装置15、17の弁開度を、第
3の流量制御装置15の弁開度を優先的に所定量大きくす
ることによって、圧損を低減し冷媒を流れ易くする。こ
のため、熱源機Aへ戻る冷媒量が増加し、圧縮機に吸入
される冷媒の比容積が減少し、吐出温度の上昇を抑える
ことができる。
Next, the operation will be described. The operations of the cooling operation only, the heating operation only, the warm main operation and the cool main operation are exactly the same as those of the conventional air conditioner shown in FIGS. 2 to 4. Therefore, the description thereof is omitted here, and the flow rate control of the third and fourth flow rate control devices 15 and 17 when the compressor discharge temperature rises will be described. During the operation of the compressor, if the discharge temperature detected by the discharge temperature detecting means 42 exceeds a preset predetermined temperature,
By increasing the valve opening degree of the third or fourth flow rate control device 15 or 17 preferentially by the predetermined valve opening degree of the third flow rate control device 15, the pressure loss is reduced and the refrigerant easily flows. Therefore, the amount of refrigerant returning to the heat source unit A increases, the specific volume of the refrigerant sucked into the compressor decreases, and the rise in discharge temperature can be suppressed.

【0030】次に、図2のフローチャートに沿って圧縮
機吐出温度上昇時の、第3、第4の流量制御装置15、17
の制御内容を説明する。ステップ50では、吐出温度検出
手段42で検出された吐出温度が、予め設定された所定温
度よりも高いか高くないかを判定し、高い場合にはステ
ップ51へ進み、高くない場合にはステップ52へ進む。ス
テップ52では、第3の流量制御装置15の弁開度を変化さ
せないでステップ53へ進む。ステップ53では、第4の流
量制御装置17の弁開度を変化させないでステップ50へ戻
る。ステップ51では、第3の流量制御装置15の弁開度が
所定最大開度か、所定最大開度でないかを判定し、所定
最大開度の場合にはステップ54へ進み、所定最大開度で
ない場合にはステップ55へ進む。ステップ55では、第3
の流量制御装置15の弁開度を増加させてステップ50へ戻
る。ステップ54では、第4の流量制御装置17の弁開度を
増加させてステップ50へ戻る。このようにして圧縮機吐
出温度上昇時の第3、第4の流量制御装置15、17の流量
制御を行う。
Next, according to the flow chart of FIG. 2, the third and fourth flow rate control devices 15 and 17 at the time when the compressor discharge temperature rises.
The control content of will be described. In step 50, it is judged whether the discharge temperature detected by the discharge temperature detecting means 42 is higher or higher than a predetermined temperature set in advance. If it is higher, the process proceeds to step 51, and if it is not higher, the process proceeds to step 52. Go to. In step 52, the valve opening degree of the third flow control device 15 is not changed and the process proceeds to step 53. In step 53, the valve opening degree of the fourth flow rate control device 17 is not changed and the process returns to step 50. In step 51, it is determined whether the valve opening degree of the third flow rate control device 15 is a predetermined maximum opening degree or not, and if it is the predetermined maximum opening degree, the process proceeds to step 54 and it is not the predetermined maximum opening degree. If so, proceed to step 55. In step 55, the third
The valve opening of the flow control device 15 is increased and the process returns to step 50. In step 54, the valve opening degree of the fourth flow control device 17 is increased, and the process returns to step 50. In this way, the flow rate control of the third and fourth flow rate control devices 15 and 17 when the compressor discharge temperature rises is performed.

【0031】実施例2.なお、上記実施例1では三方切
換弁8を設けて室内機側の第1の接続配管6b、6c、6d
を、第1の接続配管6または、第2の接続配管7に切り
換え可能に接続しているが、図7に示すように2つの電
磁弁30、31等の開閉弁を設けて上述したように切り換え
可能に接続しても同様な作用効果が得られる。
Example 2. In the first embodiment, the three-way switching valve 8 is provided and the first connection pipes 6b, 6c, 6d on the indoor unit side are provided.
Is connected to the first connecting pipe 6 or the second connecting pipe 7 in a switchable manner. As shown in FIG. 7, two solenoid valves 30, 31, etc. are provided on-off valves as described above. Similar effects can be obtained even if the connection is switchable.

【0032】[0032]

【発明の効果】以上説明した通り、この発明に係る空気
調和装置は、圧縮機、四方切換弁、熱源機側熱交換器、
アキュムレータ等、よりなる1台の熱源機と、室内側熱
交換器、第1の流量制御装置等からなる複数台の室内機
とを、第1、第2の接続配管を介して接続したものにお
いて、上記複数台の室内機の上記室内側熱交換器の一方
を上記第1の接続配管または、第2の接続配管に切り換
え可能に接続する第1の分岐部と、上記複数台の室内機
の上記室内側熱交換器の他方を、上記第1の流量制御装
置を介して上記第2の接続配管に接続してなる第2の分
岐部との間に第2の流量制御装置を介在させると共に、
上記第2の分岐部と第1の接続配管を第4の流量制御装
置を介して接続し、更に一端が上記第2の分岐部に接続
され、他端が第3の流量制御装置を介して上記第1の接
続配管へ接続されたバイパス配管を備え、上記第3の流
量制御装置と上記第1の接続配管との間のバイパス配管
と、上記第2の接続配管と上記第2の流量制御装置を接
続する配管との間で熱交換を行う第1の熱交換部を備
え、上記第1の分岐部、第2の分岐部、第2の流量制御
装置、第3の流量制御装置、第4の流量制御装置、第1
の熱交換部、及びバイパス配管を内蔵させた中継機を、
上記熱源機と上記複数台の室内機との間に介在させ、更
に上記第1の接続配管は上記第2の接続配管より大径に
構成して、上記熱源機側熱交換器が凝縮器となる運転時
には、上記凝縮器の冷媒出口側から上記第2の接続配管
側にのみ冷媒を流通させると共に上記第1の接続配管か
ら上記四方切換弁側にのみ冷媒を流通させ、かつ上記熱
源機側熱交換器が蒸発器となる運転時には、上記第1の
接続配管から上記蒸発器の冷媒流入側にのみ冷媒を流通
させると共に、上記四方切換弁から第2の接続配管側に
のみ冷媒を流通させ得る流路切り替え装置を設け、圧縮
機吐出温度が上昇した時、上記圧縮機と四方切換弁との
間に設けられた吐出温度検出手段で検出された吐出温度
が予め設定された所定温度よりも高い場合に、上記第3
及び第4の流量制御装置の弁開度を所定量大きくする制
御手段を設けたことにより、吐出温度が過上昇すること
によって冷凍機油の潤滑性が低下し圧縮機が損傷するの
を防止でき、また、吐出温度上昇によって圧縮機駆動用
モータの巻線温度が過上昇することによる圧縮機損傷を
防止できる。
As described above, the air conditioner according to the present invention includes a compressor, a four-way switching valve, a heat source side heat exchanger,
In one in which one heat source device composed of an accumulator and the like and a plurality of indoor units composed of an indoor heat exchanger, a first flow rate control device, etc. are connected via first and second connection pipes A first branching portion that connects one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or the second connection pipe in a switchable manner, and the plurality of indoor units While interposing a second flow rate control device between the other of the indoor heat exchangers and a second branch portion formed by connecting the second flow path control device to the second connection pipe. ,
The second branch portion and the first connection pipe are connected via a fourth flow rate control device, one end is further connected to the second branch portion, and the other end is connected via a third flow rate control device. A bypass pipe connected to the first connection pipe; a bypass pipe between the third flow control device and the first connection pipe; the second connection pipe; and the second flow control. A first heat exchanging section for exchanging heat with a pipe connecting the apparatus is provided, and the first branching section, the second branching section, the second flow rate control device, the third flow rate control apparatus, and the third flow rate control apparatus. 4 flow control device, first
The heat exchanger and the repeater with built-in bypass piping
It is interposed between the heat source unit and the plurality of indoor units, and the first connecting pipe has a larger diameter than the second connecting pipe, and the heat source unit side heat exchanger is a condenser. During the operation, the refrigerant is circulated only from the refrigerant outlet side of the condenser to the second connection pipe side, and the refrigerant is circulated only from the first connection pipe to the four-way switching valve side, and the heat source unit side. During operation in which the heat exchanger serves as an evaporator, the refrigerant is circulated from the first connection pipe only to the refrigerant inflow side of the evaporator, and the refrigerant is circulated only from the four-way switching valve to the second connection pipe side. When a compressor discharge temperature rises by providing a flow path switching device to obtain a discharge temperature, the discharge temperature detected by the discharge temperature detecting means provided between the compressor and the four-way switching valve is higher than a predetermined temperature set in advance. If higher, the third
By providing the control means for increasing the valve opening of the fourth flow rate control device by a predetermined amount, it is possible to prevent the lubricity of the refrigerating machine oil from being lowered and the compressor from being damaged due to an excessive rise in the discharge temperature. Further, it is possible to prevent the compressor from being damaged due to the winding temperature of the compressor driving motor rising excessively due to the discharge temperature rising.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a first embodiment of the present invention.

【図2】この発明の実施例1による空気調和装置の制御
装置の動作を示すフローチャートである。
FIG. 2 is a flowchart showing the operation of the control device for the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図3】この発明の実施例2による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 3 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a second embodiment of the present invention.

【図4】従来の空気調和装置の冷媒系を中心とする全体
構成図である。
FIG. 4 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner.

【図5】従来の空気調和装置の冷房または暖房のみの運
転状態を説明するための冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram for explaining an operating state of only a cooling or a heating of the conventional air conditioner.

【図6】従来の空気調和装置の暖房主体の運転状態を説
明するための冷媒回路図である。
FIG. 6 is a refrigerant circuit diagram for explaining an operating state of a heating-based main body of a conventional air conditioner.

【図7】従来の空気調和装置の冷房主体の運転状態を説
明するための冷媒回路図である。
FIG. 7 is a refrigerant circuit diagram for explaining an operating state of a conventional air conditioner mainly for cooling.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方切換弁 3 熱源機側熱交換器 4 アキュムレータ 5 室内側熱交換器 6、6b、6c、6d 第1の接続配管 7、7b、7c、7d 第2の接続配管 9 第1の流量制御装置 10 第1の分岐部 11 第2の分岐部 13 第2の流量制御装置 14 バイパス配管 15 第3の流量制御装置 16a、16b、16c、16d、19 熱交換部 17 第4の流量制御装置 19 第1の熱交換部 40 流路切換え装置 42 吐出温度検出手段 A 熱源機 B、C、D 室内機 E 中継機 1 Compressor 2 Four-way switching valve 3 Heat source side heat exchanger 4 Accumulator 5 Indoor side heat exchanger 6, 6b, 6c, 6d 1st connection pipe 7, 7b, 7c, 7d 2nd connection pipe 9 1st Flow control device 10 First branch part 11 Second branch part 13 Second flow control device 14 Bypass piping 15 Third flow control device 16a, 16b, 16c, 16d, 19 Heat exchange part 17 Fourth flow control device Device 19 First heat exchange unit 40 Flow path switching device 42 Discharge temperature detection means A Heat source unit B, C, D Indoor unit E Repeater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林田 徳明 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 高田 茂生 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Noriaki Hayashida 6-566 Tehira, Wakayama City Wakayama Works, Mitsubishi Electric Corporation (72) Tomohiko Kasai 6-566 Tehira, Wakayama Mitsubishi (72) Inventor Shigeo Takada 6-5-66, Tehira, Wakayama City Mitsubishi Electric Co., Ltd. Wakayama Factory

Claims (1)

【特許請求の範囲】 【請求項1】 圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等、よりなる1台の熱源機と、室内
側熱交換器、第1の流量制御装置等からなる複数台の室
内機とを、第1、第2の接続配管を介して接続したもの
において、上記複数台の室内機の上記室内側熱交換器の
一方を上記第1の接続配管または、第2の接続配管に切
り換え可能に接続する第1の分岐部と、上記複数台の室
内機の上記室内側熱交換器の他方を、上記第1の流量制
御装置を介して上記第2の接続配管に接続してなる第2
の分岐部との間に第2の流量制御装置を介在させると共
に、上記第2の分岐部と第1の接続配管を第4の流量制
御装置を介して接続し、更に一端が上記第2の分岐部に
接続され、他端が第3の流量制御装置を介して上記第1
の接続配管へ接続されたバイパス配管を備え、上記第3
の流量制御装置と上記第1の接続配管との間のバイパス
配管と、上記第2の接続配管と上記第2の流量制御装置
を接続する配管との間で熱交換を行う第1の熱交換部を
備え、上記第1の分岐部、第2の分岐部、第2の流量制
御装置、第3の流量制御装置、第4の流量制御装置、第
1の熱交換部、及びバイパス配管を内蔵させた中継機
を、上記熱源機と上記複数台の室内機との間に介在さ
せ、更に上記第1の接続配管は上記第2の接続配管より
大径に構成して、上記熱源機側熱交換器が凝縮器となる
運転時には、上記凝縮器の冷媒出口側から上記第2の接
続配管側にのみ冷媒を流通させると共に上記第1の接続
配管から上記四方切換弁側にのみ冷媒を流通させ、か
つ、上記熱源機側熱交換器が蒸発器となる運転時には、
上記第1の接続配管から上記蒸発器の冷媒流入側にのみ
冷媒を流通させると共に、上記四方切換弁から第2の接
続配管側にのみ冷媒を流通させ得る流路切り替え装置を
設け、上記圧縮機と四方切換弁との間に設けられた吐出
温度検出手段で検出された吐出温度が予め設定された所
定温度よりも高い場合に、上記第3及び第4の流量制御
装置の弁開度を所定量大きくする制御手段を設けたこと
を特徴とする冷房暖房同時運転可能な空気調和装置。
Claim: What is claimed is: 1. A heat source unit comprising a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, etc., an indoor side heat exchanger, a first flow control device, etc. In which a plurality of indoor units are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first connection pipe, or The first branch part that is switchably connected to the second connection pipe and the other of the indoor heat exchangers of the plurality of indoor units are connected to the second connection part via the first flow rate control device. The second that is connected to the pipe
The second flow rate control device is interposed between the second flow rate control device and the second flow path control device, and the second flow path control device is connected to the second flow path control device via the fourth flow rate control device. The first end is connected to the branch part, and the other end is connected via the third flow rate control device.
The bypass pipe connected to the connection pipe of
Heat exchange for exchanging heat between the bypass pipe between the flow control device and the first connection pipe, and the pipe connecting the second connection pipe and the second flow control device. And includes the first branching section, the second branching section, the second flow rate control device, the third flow rate control apparatus, the fourth flow rate control apparatus, the first heat exchange section, and the bypass pipe. The relay device is interposed between the heat source unit and the plurality of indoor units, and the first connecting pipe has a diameter larger than that of the second connecting pipe. During the operation in which the exchanger serves as a condenser, the refrigerant is circulated only from the refrigerant outlet side of the condenser to the second connection pipe side, and the refrigerant is circulated from the first connection pipe only to the four-way switching valve side. And, in the operation in which the heat source side heat exchanger becomes an evaporator,
The compressor is provided with a flow path switching device that allows the refrigerant to flow from the first connection pipe only to the refrigerant inflow side of the evaporator and allows the refrigerant to flow only from the four-way switching valve to the second connection pipe side. And the four-way switching valve, the discharge temperature detected by the discharge temperature detecting means is higher than a predetermined temperature set in advance, the valve opening degree of the third and fourth flow rate control devices is determined. An air conditioner capable of simultaneous cooling and heating operation, which is provided with control means for increasing the amount by a fixed amount.
JP03158294A 1991-06-28 1991-06-28 Air conditioner Expired - Fee Related JP3092212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03158294A JP3092212B2 (en) 1991-06-28 1991-06-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03158294A JP3092212B2 (en) 1991-06-28 1991-06-28 Air conditioner

Publications (2)

Publication Number Publication Date
JPH055576A true JPH055576A (en) 1993-01-14
JP3092212B2 JP3092212B2 (en) 2000-09-25

Family

ID=15668468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03158294A Expired - Fee Related JP3092212B2 (en) 1991-06-28 1991-06-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP3092212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422099A (en) * 2009-05-08 2012-04-18 三菱电机株式会社 Air conditioner
WO2014054120A1 (en) * 2012-10-02 2014-04-10 三菱電機株式会社 Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422099A (en) * 2009-05-08 2012-04-18 三菱电机株式会社 Air conditioner
US8881548B2 (en) 2009-05-08 2014-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014054120A1 (en) * 2012-10-02 2014-04-10 三菱電機株式会社 Air conditioner
CN104685304A (en) * 2012-10-02 2015-06-03 三菱电机株式会社 Air conditioner
JPWO2014054120A1 (en) * 2012-10-02 2016-08-25 三菱電機株式会社 Air conditioner
US10161647B2 (en) 2012-10-02 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus

Also Published As

Publication number Publication date
JP3092212B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
JPWO2019053876A1 (en) Air conditioner
JP4326829B2 (en) Air conditioner, refrigerant circuit of air conditioner, and control method of refrigerant circuit in air conditioner
JP2875507B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JPH05172431A (en) Air conditioning apparatus
JP2621687B2 (en) Air conditioner
JP2757584B2 (en) Air conditioner
JP2003279174A (en) Air conditioning device
JP3138491B2 (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH10325641A (en) Refrigerating device
JPH05322348A (en) Air conditioner
JP2723380B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JP2800472B2 (en) Air conditioner
JPH05172432A (en) Air conditioning apparatus
JPH0765825B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JPH05231749A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees