JPH03141157A - Refractory for blast furnace having low heat conductivity - Google Patents

Refractory for blast furnace having low heat conductivity

Info

Publication number
JPH03141157A
JPH03141157A JP1277989A JP27798989A JPH03141157A JP H03141157 A JPH03141157 A JP H03141157A JP 1277989 A JP1277989 A JP 1277989A JP 27798989 A JP27798989 A JP 27798989A JP H03141157 A JPH03141157 A JP H03141157A
Authority
JP
Japan
Prior art keywords
resistance
refractory
carbon
mixture
heat conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1277989A
Other languages
Japanese (ja)
Other versions
JP2783433B2 (en
Inventor
Kazuteru Aoyama
和輝 青山
Shuichi Nomiyama
野見山 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP1277989A priority Critical patent/JP2783433B2/en
Publication of JPH03141157A publication Critical patent/JPH03141157A/en
Application granted granted Critical
Publication of JP2783433B2 publication Critical patent/JP2783433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the title refractory having remarkably improved alkali resistance, spalling resistance, abrasion resistance and oxidation resistance by adding prescribed amount of sintering agent and antioxidant to a mixture containing beta-Al2O3, C and SiC at prescribed weight ratio, further adding a binding agent thereto, kneading the mixture and forming and burning the kneaded material. CONSTITUTION:2-10wt.% sintering agent and 1-5wt.% antioxidant are added to 100wt.% mixture consisting of 10-80wt.% beta-Al2O3, 5-25wt.% carbon and 15-85wt.% SiC. A binding agent is further added to the mixture and the mixture is kneaded, formed and burned to provide the aimed blast refractory having low heat conductivity. In the above-mentioned ingredients, it is especially required to use a carbon having dense structure having <=60% graphitization degree as the carbon. The above-mentioned refractory has low heat conductivity, small heat loss and excellent acid resistance and alkali resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐アルカリ性、耐スポール性、耐摩耗性および
耐酸化性を著しく向上させた低熱伝導性高炉用耐火物に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low thermal conductivity refractory for blast furnaces which has significantly improved alkali resistance, spall resistance, wear resistance and oxidation resistance.

[従来の技術] 従来から骨材にβ−アルミナ、炭素、炭化珪素を用い、
これに金属珪素を添加して粒子間を炭化珪素結合もしく
は炭素結合させることによって、耐食性、耐スポール性
および耐アルカリ性を向上させた高炉用耐火物が特公昭
56−35630号公報で提案されている。
[Conventional technology] β-alumina, carbon, and silicon carbide have traditionally been used as aggregates,
Japanese Patent Publication No. 56-35630 proposes a refractory for blast furnaces that has improved corrosion resistance, spalling resistance, and alkali resistance by adding metallic silicon to create silicon carbide bonds or carbon bonds between particles. .

しかし前記耐火物は多くの物性を向上させている反面、
熱伝導率が高く、高温で酸化消耗し易い欠点がある。
However, while the above-mentioned refractories have improved many physical properties,
It has a high thermal conductivity and has the disadvantage of being easily consumed by oxidation at high temperatures.

それ故高炉炉壁に使用した場合、炉外への熱損失が多く
、高炉操業の熱経済性の向上が望まれている。
Therefore, when used on the walls of a blast furnace, there is a large amount of heat loss to the outside of the furnace, and it is desired to improve the thermal economy of blast furnace operation.

また耐火物の酸化損傷により、高炉炉壁の保護も十分と
は言えなかった。
Furthermore, the protection of the blast furnace walls was not sufficient due to oxidation damage to the refractories.

[発明が解決しようとする課題] 最近、高炉は操炉技術、補修技術および鉄皮からの冷却
方式の改善等により長寿命になっている。
[Problems to be Solved by the Invention] Blast furnaces have recently become longer-lived due to improvements in operating technology, repair technology, and cooling methods from the shell.

それにともない耐火物の高耐用性が要求されるとともに
耐火物を保護し延命を図るため鉄皮からの冷却が実施さ
れている。
Accordingly, high durability of refractories is required, and cooling from the steel shell is being implemented to protect the refractories and extend their lifespan.

この冷却に適した材質として高熱伝導性のカーボン含有
耐火物が多用されている。
Carbon-containing refractories with high thermal conductivity are often used as materials suitable for this cooling.

このような冷却による炉体保護は炉外に放出する熱損失
が極めて多く、熱経済面から好ましいことではない。
Protecting the furnace body by cooling in this way causes an extremely large amount of heat loss to be released to the outside of the furnace, which is not desirable from a thermoeconomic standpoint.

本発明者等は冷却による炉体保護にたよらず熱経済面に
優れる耐火物すなわちアルカリアタック、熱衝撃、装入
物による摩耗および水蒸気酸化等の損傷作用に強い低熱
伝導性の耐火物に着目し、実験を重ねた。
The present inventors focused on refractories with excellent thermoeconomics without relying on the protection of the furnace body through cooling, that is, refractories with low thermal conductivity that are resistant to damaging effects such as alkali attack, thermal shock, abrasion due to charges, and steam oxidation. , repeated experiments.

[課題を解決するための手段コ 前記問題点を解決するため種々実験を重ねた結果、β−
アルミナ−炭化珪素−カーボン系の材質を選び、この系
において特に黒鉛化度の低いカーボンの場合が熱伝導率
が小さくまた、緻密な組織を有する原料がアルカリアタ
ック、熱衝享および装入物による摩耗に対する耐用性に
優れることを見い出し本発明を完成させたものである。
[Means for solving the problem] As a result of various experiments to solve the above problem, β-
Select alumina-silicon carbide-carbon based materials, and in this system, carbon with a low degree of graphitization has a low thermal conductivity, and raw materials with a dense structure are susceptible to alkali attack, heat impact and charging. It was discovered that this material has excellent durability against wear, and the present invention was completed.

すなわち本発明の特徴とするところはβ−アルミナ10
〜80wt%、カーボン5〜25wt%および炭化珪素
15〜85wt%からなる混合物LQQ it%に対し
、外掛けで焼結剤2〜10wt%と酸化防止剤1〜5w
t%添加し、これに結合剤を加えて混練後、成形、焼成
したことを特徴とする低熱伝導性高炉用耐火物である。
In other words, the feature of the present invention is that β-alumina 10
~80wt%, carbon 5~25wt%, and silicon carbide 15~85wt% mixture LQQ it%, externally sintering agent 2~10wt% and antioxidant 1~5w
This is a low thermal conductivity refractory for blast furnaces, which is characterized in that it is made by adding a binder to this, kneading it, shaping it, and firing it.

従来よりカーボンを含有する耐火物はカーボンが酸化さ
れ、組織が脆弱化し、該耐火物の使用時にカーボンが溶
銑中へ溶解して消失するので耐用性が不十分であった。
Conventionally, carbon-containing refractories have had insufficient durability because the carbon is oxidized, the structure becomes brittle, and when the refractory is used, the carbon dissolves into hot metal and disappears.

このため該耐火物に耐酸化性を付与すべく、超微粉の炭
化珪素を少4i添加する方法が特開昭58−11507
3号公報により提案されている。
For this reason, in order to impart oxidation resistance to the refractory, a method of adding a small amount of ultrafine silicon carbide to the refractory was disclosed in JP-A-58-11507.
This is proposed by Publication No. 3.

他の文献にもいくつか提案されているが、いずれもその
耐用性において改善の余地が残されている。
Although several proposals have been made in other literature, there is still room for improvement in their durability.

本発明においては緻密な組織を有するカーボンを用い、
更に焼結剤および酸化防止剤を添加し、焼成することに
より耐火物の気孔径を小さくし、かつ開口気孔を密封気
孔とする。その上カーボンの使用量を最小限に止めるこ
とにより、酸化損耗を抑制するものである。
In the present invention, carbon having a dense structure is used,
Further, a sintering agent and an antioxidant are added and fired to reduce the pore diameter of the refractory and turn the open pores into sealed pores. Furthermore, by minimizing the amount of carbon used, oxidative wear is suppressed.

本発明で用いるカーボンは適度の黒鉛化度を有する仮焼
無煙炭、石炭ピッチコークス、石油ピッチコークス、土
状黒鉛等であって、特に仮焼無煙炭が好ましい。その純
度は80wt%以上のものが好ましく、90wt%以上
のものがより好ましい。
The carbon used in the present invention includes calcined anthracite coal, coal pitch coke, petroleum pitch coke, earthy graphite, etc. having an appropriate degree of graphitization, and calcined anthracite coal is particularly preferred. Its purity is preferably 80 wt% or more, more preferably 90 wt% or more.

またフランクリン(Franklin)のP値から求め
た黒鉛化度60%以下の緻密な組織を有するカーボンを
使用する。
Further, carbon having a dense structure with a degree of graphitization of 60% or less as determined from Franklin's P value is used.

黒鉛化度が60%を超えると熱伝導率が高くなり好まし
くなし1゜カーボンを5〜25宵t%の範囲に限定した
理由は25*t%を越えると耐酸化性が低下し、熱伝導
率が高くなる。
If the degree of graphitization exceeds 60%, the thermal conductivity will increase, which is not desirable.The reason why we limited the amount of 1° carbon to the range of 5 to 25 t% is that if the degree of graphitization exceeds 25*t%, the oxidation resistance will decrease, and the thermal conductivity will increase. rate becomes higher.

また5wt%未満では熱間線膨張率が大きくなり、耐ス
ポール性が低下する。
Moreover, if it is less than 5 wt%, the coefficient of hot linear expansion becomes large and the spalling resistance decreases.

β−アルミナはAl2O3をNa、Oまたはに20で安
定化させたβ−アルミナ相を主体とするものでα−アル
ミナ相に比べ格段にアルカリ性に優れた材質である。
β-alumina is a material mainly composed of a β-alumina phase obtained by stabilizing Al2O3 with Na, O, or 20, and is a material with much better alkalinity than the α-alumina phase.

このβ−アルミナを10〜80+vt%の範囲に限定し
たのは10wt%以下では熱伝導率が8kcal/m、
hr、を以上と高くなり、耐酸化性が低下する。
The reason why β-alumina is limited to the range of 10 to 80+vt% is that below 10 wt%, the thermal conductivity is 8 kcal/m.
hr becomes higher and the oxidation resistance decreases.

80wt%以上では炭化珪素、カーボン屋が少なく、耐
スポール性が低下する。
If it exceeds 80 wt%, there will be less silicon carbide and carbon, and the spall resistance will decrease.

β−アルミナ粉は0.3mm以上を使用するのが好まし
く、0.3mm以下では焼成によりα−アルミナ化し易
い。
It is preferable to use β-alumina powder with a thickness of 0.3 mm or more, and if it is 0.3 mm or less, it is easy to turn into α-alumina by firing.

炭化珪素の純度は80wt%以上のものが良く、90w
t%以上のものがより好ましい。純度が低下すると耐食
性および耐アルカリ性が低下する。
The purity of silicon carbide is preferably 80wt% or higher, and 90w
More preferably, it is t% or more. Corrosion resistance and alkali resistance decrease as purity decreases.

炭化珪素を15〜85wt%使用する理由は85wt%
を越えると熱伝導率が高くなり、耐スポール性が悪くな
る。15wt%未満であると耐アルカリ性および強度が
低下する。
The reason why silicon carbide is used at 15 to 85 wt% is 85 wt%.
If it exceeds this, the thermal conductivity will increase and the spall resistance will deteriorate. If it is less than 15 wt%, alkali resistance and strength will decrease.

焼結剤は金属珪素、金属アルミニウム、フェロシリコン
およびそれらの合金並びに炭化硼素、窒化硼素等の硼化
物であり、これらが焼成中成化物、酸窒化物等に変化し
、気孔径を小さくすると同時に粒子間を結合させ高強度
になる。
Sintering agents are metallic silicon, metallic aluminum, ferrosilicon, and their alloys, as well as borides such as boron carbide and boron nitride, which transform into oxides, oxynitrides, etc. during firing, and reduce the pore diameter. Bonds between particles to create high strength.

その量を2〜10*t%としたのは10wt%を越える
と添加量に比例した効果の増大が望めず、不経済である
とともに対スポール性が低下する。2wt%未満では粒
子間結合数が少なく、組織の強化が認められない。
The reason why the amount is 2 to 10*t% is because if it exceeds 10 wt%, the effect cannot be expected to increase in proportion to the amount added, which is uneconomical and the anti-spall property decreases. If it is less than 2 wt%, the number of interparticle bonds is small and no strengthening of the structure is observed.

酸化防止剤はに、0.Na、0,820..510.、
CaO等を主成分とする低融点のゆう薬、ガラスの粉末
、長石、硼砂および粘土等である。
The antioxidant is 0. Na, 0,820. .. 510. ,
These include low-melting point powders containing CaO and the like as main components, glass powder, feldspar, borax, and clay.

これらが焼成中粒子表面および粒子間隙をコーティング
し、密封気孔とするとともに外気と遮断する。
These coat the particle surfaces and the interparticle spaces during firing, sealing the pores and blocking them from the outside air.

その添加量を1〜5wt%とじたのは5wt%を越える
と耐火物の耐火性が低下し、耐用性が向下する。1wt
%未満では酸化防止の効果が十分得られないからである
The amount added is limited to 1 to 5 wt%; if it exceeds 5 wt%, the fire resistance of the refractory will decrease and its durability will decrease. 1wt
This is because if the amount is less than %, a sufficient antioxidant effect cannot be obtained.

なお、本発明における結合剤を加えての混練、成形、焼
成等については、この種の耐火物を製造する場合の一般
的な条件を用いてほぼ充分であり、したがってここでは
その詳しい条件記載は省略するが、結合剤は有機系のも
ので、焼成は還元雰囲気下で1000〜1600℃の範
囲で行なうことが望ましい。
In addition, for the kneading, molding, firing, etc. with the addition of a binder in the present invention, it is almost sufficient to use the general conditions for manufacturing this type of refractory, so detailed descriptions of the conditions will not be given here. Although omitted, it is preferable that the binder is organic and that the firing is performed in a reducing atmosphere at a temperature of 1,000 to 1,600°C.

[実 施 例] 以下実施例について説明する。[Example] Examples will be described below.

実施例(A−F)および比較例(イ〜ト)の配合割合を
第1表に示す。
Table 1 shows the blending ratios of Examples (A-F) and Comparative Examples (I-I).

その各配合物にピッチ、アントラセン、合成樹脂等の有
機結合剤を加えて、混練、成形後還元;囲気下1000
〜1400℃の温度で焼成した。
An organic binder such as pitch, anthracene, or synthetic resin is added to each of the mixtures, kneaded, and reduced after molding;
It was fired at a temperature of ~1400°C.

ここに用いたβ−アルミナはβ−アルミナ化率90%以
上の電融品である。
The β-alumina used here is an electrically fused product with a β-alumina conversion rate of 90% or more.

カーボンは仮焼無煙炭、ピッチコークス、比較例に天然
リン状黒鉛を使用した。炭化珪素、金属珪素および金属
アルミニウムの純度はそれぞれ91.4.97.5およ
び98.5%のものを用いた。
The carbon used was calcined anthracite, pitch coke, and natural phosphorous graphite was used in the comparative example. The purity of silicon carbide, metallic silicon, and metallic aluminum was 91.4%, 97.5%, and 98.5%, respectively.

使用した各原料の化学成分を第2表に示す。The chemical components of each raw material used are shown in Table 2.

実施例A、B、D、Eは配合物にフェノール樹脂を加え
、混練、成形後還元雰囲気下において1350℃の焼成
を行った。
In Examples A, B, D, and E, a phenolic resin was added to the mixture, and after kneading and molding, baking was performed at 1350° C. in a reducing atmosphere.

実施例C,Fは配合物にアントラセン8%を加えた硬ピ
ツチを4wt%加えて、130℃の加熱混練を行い、成
形後還元雰囲気下において1100℃の焼成を行った。
In Examples C and F, 4 wt % of hard pitch containing 8% anthracene was added to the mixture, heated and kneaded at 130°C, and after molding, baked at 1100°C in a reducing atmosphere.

また比較例イ〜トは実施例A、B、D、Eと同様に製造
した。
Moreover, Comparative Examples I to I were produced in the same manner as Examples A, B, D, and E.

以上の如く製造した各供試体について熱伝導率、耐酸化
性、耐アルカリ性、耐スポール性および耐侵食性につい
て測定し、その結果を第3表に示す。
Thermal conductivity, oxidation resistance, alkali resistance, spalling resistance and erosion resistance of each of the specimens produced as described above were measured, and the results are shown in Table 3.

熱伝導率は各供試体を20φx 150mmの円柱に切
りだし、直接熱流法により測定し、600℃での値で表
示した。
Thermal conductivity was measured by cutting each specimen into a cylinder of 20φ x 150mm by direct heat flow method, and expressed as a value at 600°C.

耐酸化性については各供試体を1辺40mmの立方体に
切りだし、電気炉で1400℃X30分間保定後取り出
し、切断面観察より比較評価した。
Regarding oxidation resistance, each specimen was cut into a cube of 40 mm on a side, kept in an electric furnace at 1400° C. for 30 minutes, taken out, and comparatively evaluated by observing the cut surfaces.

耐アルカリ性は各供試体を20x 20x 80mmの
角柱に切りだし、試薬炭酸カリとコークス粉20 : 
80の混合物を詰めた容器内に埋め込み、その容器を密
封し、電気炉で1300℃×5時間保定する。これを5
回繰り返した後供試体を取り出し、寸法変化率により比
較した。
For alkali resistance, each specimen was cut into a 20 x 20 x 80 mm square column, and the reagents potassium carbonate and coke powder 20:
80 in a container filled with the mixture, the container is sealed, and kept in an electric furnace at 1300° C. for 5 hours. This is 5
After repeating the test several times, the specimens were taken out and compared based on the dimensional change rate.

耐スポール性は各供試体を40x 50X 180mm
の角柱に切りだし、誘導炉にて1500℃の溶銑中に9
0秒間浸漬後水冷した供試体の外観および切断面観察よ
り比較評価した。
For spall resistance, each specimen was measured at 40x 50x 180mm.
It was cut into square columns and placed in hot metal at 1500℃ in an induction furnace.
Comparative evaluations were made by observing the external appearance and cut surface of the specimens which had been immersed for 0 seconds and then cooled in water.

耐侵食性については各供試体を台形状(上辺70mmx
底辺150mm x高さ70mmx長さt:+omm)
に切りだし、比較量と張り合わせて、酸素プロパンガス
バーナーにて1500℃まで昇温し、その中に銑鉄と高
炉スラグを50:50の割合で投入し、回転しつつその
温度に3時間保定した後、解体して溶損された量を比較
評価した。
Regarding erosion resistance, each specimen was shaped like a trapezoid (upper side 70mm x
Base 150mm x Height 70mm x Length t: +omm)
It was cut into pieces, laminated with a comparative amount, and heated to 1500°C using an oxygen-propane gas burner. Pig iron and blast furnace slag were put into it at a ratio of 50:50, and the temperature was kept at that temperature for 3 hours while rotating. After that, it was dismantled and the amount of damage was compared and evaluated.

第3表から明らかなように実施例A−Fのものは黒鉛化
度の低いカーボンを所定量使用したものなので、熱伝導
率において比較例へ、トに比べ低く3〜7 kcal/
m、h乙℃の範囲にある。
As is clear from Table 3, Examples A to F use a predetermined amount of carbon with a low degree of graphitization, so their thermal conductivity is 3 to 7 kcal/low compared to Comparative Example G.
It is in the range of m, h o ℃.

耐酸化性は比較例口、ハ、へおよびトに比べ優れている
The oxidation resistance is superior to Comparative Examples A, C, H, and G.

耐アルカリ性において、比較例口、二およびホに比べ優
れている。
In terms of alkali resistance, it is superior to Comparative Examples 1, 2, and 5.

耐スポール性において、比較例二およびホに比べ優れて
いる。
In terms of spall resistance, it is superior to Comparative Examples 2 and E.

耐侵食性において、比較例イ、ハ、二、ポ、へおよびト
に比べ優れている。
In terms of erosion resistance, it is superior to Comparative Examples A, C, II, Po, H, and G.

このように本発明の実施例A〜Fのものは低熱伝導率か
つ耐酸化性に優れ、しかも耐アルカリ性、耐スポール性
および耐侵食性(耐摩耗性)を兼ね備える新規な耐火物
である。
As described above, Examples A to F of the present invention are novel refractories that have low thermal conductivity and excellent oxidation resistance, and also have alkali resistance, spall resistance, and erosion resistance (wear resistance).

[発明の効果] 本発明の耐火物は、熱伝導率が低く、熱損失が小さく、
加えて耐酸性、耐アルカリ性ともに優れ、更に耐スポー
ル性、耐侵食性(耐摩耗性)をも兼ね備えたものであり
、多くの用途があるが、特に高炉の炉壁並びにステーブ
クーラー用埋込み耐火物として、炉壁保護および熱経済
性のいずれの面でも適性の高いものである。
[Effect of the invention] The refractory of the invention has low thermal conductivity, low heat loss,
In addition, it has excellent acid resistance and alkali resistance, as well as spall resistance and erosion resistance (wear resistance), and has many uses, especially as embedded refractories for blast furnace walls and stave coolers. As such, it is highly suitable in terms of both furnace wall protection and thermoeconomic efficiency.

3030

Claims (1)

【特許請求の範囲】[Claims] 1 β−アルミナ10〜80wt%、カーボン5〜25
wt%および炭化珪素15〜85wt%からなる混合物
100wt%に対し、外掛けで焼結剤2〜10wt%と
酸化防止剤1〜51%添加し、これに結合剤を加えて混
練後、成形、焼成したことを特徴とする低熱伝導性高炉
用耐火物。
1 β-alumina 10-80wt%, carbon 5-25
2 to 10 wt% of a sintering agent and 1 to 51% of an antioxidant are added to 100 wt% of a mixture consisting of 15 to 85 wt% of silicon carbide, a binder is added thereto, and after kneading, molding, A refractory for blast furnaces with low thermal conductivity characterized by being fired.
JP1277989A 1989-10-25 1989-10-25 Low thermal conductivity blast furnace refractories Expired - Lifetime JP2783433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277989A JP2783433B2 (en) 1989-10-25 1989-10-25 Low thermal conductivity blast furnace refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277989A JP2783433B2 (en) 1989-10-25 1989-10-25 Low thermal conductivity blast furnace refractories

Publications (2)

Publication Number Publication Date
JPH03141157A true JPH03141157A (en) 1991-06-17
JP2783433B2 JP2783433B2 (en) 1998-08-06

Family

ID=17591078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277989A Expired - Lifetime JP2783433B2 (en) 1989-10-25 1989-10-25 Low thermal conductivity blast furnace refractories

Country Status (1)

Country Link
JP (1) JP2783433B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276313A (en) * 1975-12-22 1977-06-27 Nippon Steel Corp Refractories for blast furnaces

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276313A (en) * 1975-12-22 1977-06-27 Nippon Steel Corp Refractories for blast furnaces

Also Published As

Publication number Publication date
JP2783433B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
US5283215A (en) Refractories for casting process
US5559064A (en) Chrome-free brick
US5686028A (en) Process for forming a coherent refractory mass on a surface
JP2545307B2 (en) Blast furnace refractory manufacturing method
CN109776079A (en) High temperature resistant heat insulation refractory clay
JPH03141158A (en) Refractory for blast furnace having low heat conductivity
JPH03141157A (en) Refractory for blast furnace having low heat conductivity
US2567088A (en) Refractory material and method of making
JP6266968B2 (en) Blast furnace hearth lining structure
CN109776076A (en) High-strength corundum refractory clay
CN109776072A (en) Fire-resistant slurry powder
JPS608989B2 (en) Refractories for blast furnaces
JP3009084B2 (en) Magnesia-alumina spray material
JPS6243948B2 (en)
JPH046150A (en) Magnesia-chrome refractories
JP3703104B2 (en) Magnesia-chromic unfired brick
JPS62260768A (en) Refractories for blast furnace basin
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
JPH0676252B2 (en) Unfired alumina / magnesia brick
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same
JP2020125220A (en) Silicon nitride refractory
CN109776080A (en) High chromium fire-resistant slurry powder
Ko Wear of refractories in the iron and steel industry
US3410930A (en) Method of improving the operation of a cupola
JPS62212259A (en) Blast furnace lining refractories

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12