JP2020125220A - Silicon nitride refractory - Google Patents

Silicon nitride refractory Download PDF

Info

Publication number
JP2020125220A
JP2020125220A JP2019018030A JP2019018030A JP2020125220A JP 2020125220 A JP2020125220 A JP 2020125220A JP 2019018030 A JP2019018030 A JP 2019018030A JP 2019018030 A JP2019018030 A JP 2019018030A JP 2020125220 A JP2020125220 A JP 2020125220A
Authority
JP
Japan
Prior art keywords
mass
refractory
silicon carbide
zirconia
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019018030A
Other languages
Japanese (ja)
Inventor
悠雅 山本
Yuga Yamamoto
悠雅 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2019018030A priority Critical patent/JP2020125220A/en
Publication of JP2020125220A publication Critical patent/JP2020125220A/en
Pending legal-status Critical Current

Links

Abstract

To provide a silicon nitride refractory for a blast furnace tuyere, which has improved spalling resistance and is excellent in flowability, and the texture of which can be elaborated.SOLUTION: The composition of a silicon nitride casting material is as follows: 70-95 mass% of silicon nitride, 2-15 mass% of zirconia, 1-5 mass% of silica ultra-fine powder, and 0.5-5 mass% of metal silicon. By this composition, the silicon nitride casting material can be obtained which is excellent in flowability and the texture of which can be elaborated; and when the casting material is molded into a refractory for a blast furnace tuyere, high spalling resistance can be obtained.SELECTED DRAWING: None

Description

本発明は、炭化けい素質耐火物に関する。 The present invention relates to silicon carbide refractories.

高炉には、高温空気を炉内に吹き込むための送風口である耐熱合金製の羽口が設けられている。羽口の周辺には高炉羽口用耐火物が配置され、羽口および炉体鉄皮を熱やスラグ、ガス等による変質から保護している。近年高炉羽口用耐火物は、築炉工期の短縮や構造的な安定性等を目的として、鋳込み成形による大型ブロックの適用が増えている。材質面からは、耐COガス性、耐アルカリ性、高熱伝導率などに優れる炭化けい素質耐火物が一般に使用されている。 The blast furnace is provided with tuyere made of a heat-resistant alloy, which is a blower opening for blowing hot air into the furnace. A refractory material for the blast furnace tuyere is placed around the tuyere to protect the tuyere and the furnace body skin from deterioration due to heat, slag, gas, etc. In recent years, for refractory materials for blast furnace tuyere, large blocks by casting have been increasingly used for the purpose of shortening the furnace construction period and structural stability. From a material standpoint, a silicon carbide refractory having excellent CO gas resistance, alkali resistance, high thermal conductivity and the like is generally used.

特許文献1には「鋳込み成形時の流動性を向上させて耐火物組織を緻密化して耐アルカリ性を向上させる」ことを目的とし、「摩耗処理によって表面の角部を滑らかにした炭化珪素を粗粒部とする炭化珪素主体の耐火骨材100質量%に対し、炭素微粉0.5〜10質量%、金属シリコン微粉1〜12質量%および結合剤を添加した配合物を鋳込み成形してなる高炉羽口用耐火物。」が開示されている。 Patent Document 1 aims to "improve fluidity during cast molding to densify a refractory structure to improve alkali resistance", and to "roughly remove silicon carbide whose surface corners are smoothed by abrasion treatment. Blast furnace formed by casting a mixture containing 0.5 to 10% by mass of carbon fine powder, 1 to 12% by mass of metal silicon fine powder and a binder with respect to 100% by mass of a refractory aggregate mainly composed of silicon carbide as a grain portion. "Refractory for tuyere."

特許文献2には、「H2ガスの発生がなく緻密質で耐食性に優れ冷間や熱間強度も大きくかつ耐熱衝撃性にも優れる」ことを目的とし、「炭化珪素5〜90重量%と、アルミナセメント0.5〜10重量%と、残部耐火原料からなる配合100重量%に対し窒化珪素鉄及び/又は鉄粉をFe換算で0.1〜5重量%添加した炭化珪素含有キャスタブル耐火物。」が開示されている。 Patent Document 2 discloses that "5 to 90% by weight of silicon carbide is used," for the purpose of "being dense with no generation of H 2 gas, excellent in corrosion resistance, large in cold and hot strength, and excellent in thermal shock resistance". , A castable refractory containing silicon carbide in which 0.5 to 10% by weight of alumina cement and 0.1 to 5% by weight of silicon iron nitride and/or iron powder in terms of Fe are added to 100% by weight of the remaining refractory raw material. ." is disclosed.

特許文献3には高耐酸化性の高炉内張用炭化珪素質耐火物として、「重量で、炭化珪素75〜95%、金属珪素3〜10%、炭化硼素0.3〜5%を加えて配合粉体とし、これに有機質結合剤を添加して混練し、成形焼成したことを特徴とする高耐酸化性の高炉内張り用炭化珪素質耐火物。」が開示されている。 In Patent Document 3, as a silicon oxide refractory for blast furnace lining having high oxidation resistance, "addition of 75 to 95% by weight of silicon carbide, 3 to 10% of metallic silicon, and 0.3 to 5% of boron carbide is added. A high-oxidation-resistant silicon carbide refractory for a blast furnace lining, which is characterized in that it is made into a compounded powder, an organic binder is added thereto, and the mixture is kneaded and molded and fired."

特開2002−195761号公報JP 2002-195761A 特開平2−221164号公報JP-A-2-221164 特開昭60−51667号公報JP-A-60-51667

羽口は耐熱合金等で作られているが、熱風の高温に耐えるには水冷が必須である。そのため高炉羽口用耐火物は羽口に接する部分とその反対側で大きな温度差を生じ、スポーリングによる亀裂が発生しやすい。また、耐アルカリ性向上や熱伝導を高める目的で炭化けい素を多量に使用すると鋳込み成形時の流動性が不足し、加圧成形品に比べて組織の緻密化に劣る。 The tuyere is made of heat-resistant alloy, etc., but water cooling is essential to withstand the high temperature of hot air. Therefore, the refractory for the tuyere of the blast furnace causes a large temperature difference between the portion in contact with the tuyere and the opposite side, and cracks due to spalling are likely to occur. Further, when a large amount of silicon carbide is used for the purpose of improving alkali resistance and heat conduction, the fluidity at the time of cast molding is insufficient, and the structure is inferior in densification as compared with the pressure molded product.

本発明は、上記従来の事情に鑑みて、提案されたものであって、耐スポーリング性を向上させるとともに、流動性に優れ組織の緻密化が可能な炭化けい素質流し込み材および高炉羽口用耐火物を提供することを目的とする。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and is a silicon carbide casting material and a blast furnace tuyere capable of improving spalling resistance and excellent in fluidity and capable of densifying the structure. The purpose is to provide refractory materials.

本発明は、炭化けい素70〜95質量%、ジルコニア2〜15質量%、シリカ超微粉1〜5質量%、金属シリコン0.5〜5質量%を含む炭化けい素質流し込み材である。 The present invention is a silicon carbide casting material containing 70 to 95 mass% silicon carbide, 2 to 15 mass% zirconia, 1 to 5 mass% ultrafine silica powder, and 0.5 to 5 mass% metallic silicon.

前記ジルコニア(a)は、シリカ超微粉と金属シリコンの合量(b)に対して(a/b)0.5〜2.5の質量比が好ましい。 The zirconia (a) preferably has a mass ratio (a/b) of 0.5 to 2.5 with respect to the total amount (b) of ultrafine silica powder and metallic silicon.

前記炭化けい素質流し込み材は結合剤とともに鋳込むことによって、プレキャスト耐火物とすることができる。 The silicon carbide casting material may be cast with a binder to form a precast refractory material.

本発明によれば、流動性に優れ組織の緻密化が可能な炭化けい素質流し込み材を得ることができ、高炉羽口用耐火物に成形したとき高い耐スポーリング性を得ることがでる。 According to the present invention, it is possible to obtain a silicon carbide casting material having excellent fluidity and capable of densifying the structure, and it is possible to obtain high spalling resistance when formed into a blast furnace tuyere refractory.

<検証>
炭化けい素質流し込み材の耐スポーリング性と流動性を両立させるため、各種原料を添加してその効果を検証したところ、炭化けい素質材にジルコニアを添加した流し込み材とすることによって熱間強度が向上し、大幅に耐スポーリング性が向上することの認識を得た。また、流し込み材としての流動性を確保するためのシリカ超微粉と熱間強度の更なる向上のため金属Siシリコンを特定の比率で配合する。これにより、組織脆化が抑制されるとの認識を得た。その理由は必ずしも明らかではないが、ジルコニアとシリカ超微粉、金属シリコンが反応しジルコンを生成して緻密化するためと推定される。
<Verification>
In order to make both the spalling resistance and fluidity of the silicon carbide casting material compatible, we verified the effect by adding various raw materials, and found that the hot strength of the casting material was zirconia added to the silicon carbide material. It has been recognized that the spalling resistance is improved and the spalling resistance is significantly improved. Further, ultrafine silica powder for ensuring fluidity as a pouring material and metallic Si silicon are blended in a specific ratio for further improvement of hot strength. This has led to the recognition that tissue embrittlement is suppressed. The reason for this is not clear, but it is presumed that zirconia reacts with ultrafine silica powder and metallic silicon to form zircon and densify.

<組成>
上記流し込み材の各組成について以下に検討する。
<Composition>
Each composition of the above casting material will be examined below.

[炭化けい素]
前記炭化けい素は主原料であり、結合剤を含む耐火性粉体100質量%に対し70〜95質量%とする。炭化けい素が70質量%未満では耐スラグ性が低下し、95質量%を超えると流動性が低下する。より好ましくは80〜90質量%の範囲である。また、炭化けい素の純度は80質量%以上であることが好ましく、90質量%以上であることがより好ましい。炭化けい素の純度が80質量%未満では耐スラグ性が低下する。
[Silicon Carbide]
The silicon carbide is a main raw material, and is 70 to 95 mass% with respect to 100 mass% of the refractory powder containing a binder. If the silicon carbide content is less than 70% by mass, the slag resistance will decrease, and if it exceeds 95% by mass, the fluidity will decrease. More preferably, it is in the range of 80 to 90 mass %. The purity of silicon carbide is preferably 80% by mass or more, more preferably 90% by mass or more. If the purity of silicon carbide is less than 80% by mass, the slag resistance decreases.

[ジルコニア]
前記ジルコニア原料はシリカ超微粉や金属シリコン等と反応して熱間強度向上に寄与する。ジルコニア原料としては、純度95質量%以上であれば電融原料、焼結原料、天然原料のいずれであっても使用できる。例えば安定化ジルコニア、部分安定化ジルコニア、未安定化ジルコニア、天然バデライト等が使用できる。
[Zirconia]
The zirconia raw material reacts with ultrafine silica powder, metallic silicon, etc. to contribute to the improvement of hot strength. As the zirconia raw material, any of a fusion raw material, a sintering raw material and a natural raw material can be used as long as the purity is 95% by mass or more. For example, stabilized zirconia, partially stabilized zirconia, unstabilized zirconia, natural baddelite, etc. can be used.

ジルコニア原料の添加量は結合剤を含む耐火性粉体100質量%に対し2〜15質量%とする。2質量%未満では熱間強度向上効果が得られず、15質量%を超えるとジルコニアの相変態に伴う体積変化により組織が脆化し、熱間強度が低下する。より好ましくは6〜9質量%の範囲である。 The amount of the zirconia raw material added is 2 to 15% by mass based on 100% by mass of the refractory powder containing the binder. If it is less than 2% by mass, the effect of improving the hot strength cannot be obtained, and if it exceeds 15% by mass, the structure becomes brittle due to the volume change accompanying the phase transformation of zirconia, and the hot strength is lowered. More preferably, it is in the range of 6 to 9 mass %.

[シリカ超微粉]
前記シリカ超微粉は流動性向上効果により施工体を緻密化し、熱間強度向上にも寄与する。SiO2純度は90質量%以上とする。90質量%未満では不純物の影響により流動性が低下する。シリカ超微粉として、金属シリコン製造時や、ジルコニア製造時に発生するヒューム等が使用できるが高純度合成品ももちろん使用できる。シリカ超微粉の添加量は結合剤を含む耐火性粉体100質量%に対し1〜5質量%とする。1質量%未満では流動性が不十分となり、5質量%を超えると十分な熱間強度が得られない。より好ましくは3〜4質量%の範囲である。
[Ultra fine silica powder]
The ultrafine silica powder densifies the work body due to the effect of improving the fluidity and also contributes to the improvement of the hot strength. The SiO 2 purity is 90% by mass or more. If it is less than 90% by mass, the fluidity is lowered due to the influence of impurities. As the ultrafine silica powder, fumes generated during the production of metallic silicon or during the production of zirconia can be used, but of course high-purity synthetic products can also be used. The addition amount of the ultrafine silica powder is 1 to 5 mass% with respect to 100 mass% of the refractory powder containing the binder. If it is less than 1% by mass, fluidity is insufficient, and if it exceeds 5% by mass, sufficient hot strength cannot be obtained. It is more preferably in the range of 3 to 4% by mass.

[金属シリコン]
前記金属シリコンの添加量は結合剤を含む耐火性粉体100質量%に対し0.5〜5質量%とする。0.5質量%未満では熱間強度が発現せず、5質量%を超えると施工体の膨れ及び亀裂が生じる。より好ましくは1〜3質量%の範囲である。
[Metallic silicon]
The amount of the metallic silicon added is 0.5 to 5 mass% with respect to 100 mass% of the refractory powder containing the binder. If it is less than 0.5% by mass, hot strength will not be exhibited, and if it exceeds 5% by mass, swelling and cracking of the construction product will occur. More preferably, it is in the range of 1 to 3 mass %.

[ジルコニア原料とシリカ超微粉+金属シリコンの質量比]
前記ジルコニア原料(a)と(シリカ超微粉+金属シリコン)(b)の質量比a/bは0.5〜2.5の範囲とすることでジルコン生成反応が最適化し、さらに熱間強度を向上させることができる。
[Mass ratio of zirconia raw material and ultrafine silica powder + metallic silicon]
By setting the mass ratio a/b of the zirconia raw material (a) and (silica ultrafine powder + metallic silicon) (b) to be in the range of 0.5 to 2.5, the zircon formation reaction is optimized and the hot strength is further improved. Can be improved.

[仮焼アルミナ]
本発明では更に、流動性の付与および焼結助剤として仮焼アルミナを使用することができる。純度は95質量%以上が好ましい。仮焼アルミナの含有量は結合剤を含む耐火性粉体100質量%に対し10質量%以下(ゼロを除く)が好ましい。10質量%を超えると、ムライトがジルコンに先行して生成し、本発明の作用を妨害するため好ましくない。
[Calcined alumina]
Further, in the present invention, calcined alumina can be used as a fluidity imparting agent and a sintering aid. The purity is preferably 95% by mass or more. The content of calcined alumina is preferably 10% by mass or less (excluding zero) with respect to 100% by mass of the refractory powder containing a binder. If it exceeds 10% by mass, mullite is formed prior to zircon and interferes with the action of the present invention, which is not preferable.

[炭素原料]
耐スラグ性向上などを目的に炭素原料を使用することができる。炭素原料としては、例えば、鱗状黒鉛、土壌黒鉛、コークス、カーボンブラック、ピッチなどが使用できる。なお、炭素原料は焼結を阻害するため、結合剤を含む耐火性粉体100質量%に対し5質量%以下が好ましい。
[Carbon raw material]
A carbon raw material can be used for the purpose of improving slag resistance. As the carbon raw material, for example, scaly graphite, soil graphite, coke, carbon black, pitch and the like can be used. Since the carbon raw material inhibits sintering, it is preferably 5% by mass or less with respect to 100% by mass of the refractory powder containing a binder.

[分散剤]
本発明では更に、流動性を付与するため分散剤を含有させることができる。分散剤としては特に限定されず、トリポリリン酸塩、ヘキサメタリン酸塩、ウルトラポリリン酸塩、スルホン酸塩などの無機系分散剤やポリカルボン酸塩、ポリアクリル酸塩などの有機系分散剤などを使用することができる。また、複数種の分散剤を併用してもよい。なお、分散剤の添加量は、結合剤を含む耐火性粉体100質量%に対し外掛けで0.5質量%以下、好ましくは0.05〜0.3質量%の範囲内である。
[Dispersant]
In the present invention, a dispersant may be added to impart fluidity. The dispersant is not particularly limited, and inorganic dispersants such as tripolyphosphate, hexametaphosphate, ultrapolyphosphate, and sulfonate, and organic dispersants such as polycarboxylate and polyacrylate are used. can do. Further, plural kinds of dispersants may be used in combination. The amount of the dispersant added is 0.5% by mass or less, preferably 0.05 to 0.3% by mass, based on 100% by mass of the refractory powder containing the binder.

[硬化促進剤、硬化遅延材]
本発明において、必要に応じ硬化促進剤や硬化遅延剤を添加することができる。硬化促進剤には、例えば、消石灰、塩化カルシウム、アルミン酸ソーダ、炭酸リチウムなどを使用することができ、複数種の硬化促進剤を併用することもできる。硬化遅延剤には、例えば、ホウ酸塩、酒石酸塩、クエン酸塩、シュウ酸塩、グルコン酸塩、炭酸塩、砂糖などを使用することができ、複数種の硬化遅延剤を併用することもできる。なお、硬化調整剤の添加量は、結合剤を含む耐火性粉体100質量%に対し外掛けで0.5質量%以下が好ましい。
[Curing accelerator, curing retardant]
In the present invention, a curing accelerator or a curing retarder can be added if necessary. As the curing accelerator, for example, slaked lime, calcium chloride, sodium aluminate, lithium carbonate or the like can be used, and a plurality of types of curing accelerators can be used in combination. As the setting retarder, for example, borate, tartrate, citrate, oxalate, gluconate, carbonate, sugar or the like can be used, and plural kinds of setting retarders can be used together. it can. The addition amount of the curing modifier is preferably 0.5% by mass or less by external multiplication with respect to 100% by mass of the refractory powder containing the binder.

[爆裂防止剤]
流し込み材は乾燥中に爆裂を起こすことがある。そこで爆裂防止材が添加されることがあり、爆裂防止剤として、例えば、金属アルミニウム、乳酸アルミニウム、有機繊維などを使用することができる。なお、爆裂防止剤の添加量は、結合剤を含む耐火性粉体100質量%に対し外掛けで5質量%以下が好ましい。
[Explosion prevention agent]
The cast material may explode during drying. Therefore, a blast preventing material may be added, and as the blast preventing agent, for example, metal aluminum, aluminum lactate, organic fiber or the like can be used. The amount of the explosion-proof agent added is preferably 5% by mass or less by external multiplication with respect to 100% by mass of the refractory powder containing the binder.

[酸化防止剤]
酸化防止剤として、例えば炭化ほう素を使用することができる。なお、酸化防止剤の添加量は、結合剤を含む耐火性粉体100質量%に対し外掛けで5質量%以下が好ましい。
[Antioxidant]
Boron carbide, for example, can be used as the antioxidant. The antioxidant is preferably added in an amount of 5% by mass or less, based on 100% by mass of the refractory powder containing a binder.

上記の炭化けい素質流し込み材は、水等の液体で混練し、型枠に流し込むことで成形することができる。また、あらかじめプレキャストブロックに成形して使用することもできる。 The above-mentioned silicon carbide casting material can be molded by kneading with a liquid such as water and pouring it into a mold. It can also be used by molding it into a precast block in advance.

以下に実施例、比較例を用いて本発明を詳細に説明する。本発明は、実施例に示される形態に限定されない。各特性は下記の方法に従って評価した。 The present invention will be described in detail below with reference to examples and comparative examples. The present invention is not limited to the forms shown in the examples. Each property was evaluated according to the following methods.

<試験配合>
表1〜5に実施例、比較例の配合比率を示す。実施例1〜36は、本発明の範囲内で炭化けい素量、ジルコニア量、金属シリコン量、シリカ微粉量を変動させたものである。実施例1〜9はジルコニア微粉を2質量%とした例、実施例10〜18はジルコニア微粉を6質量%とした例、実施例19〜27はジルコニア微粉を9質量%とした例、実施例28〜36はジルコニア微粉を15質量%とした例であり、ジルコニア微粉の量に応じて炭化けい素(1mm以下)の量を調整している。
<Test formulation>
Tables 1 to 5 show the compounding ratios of Examples and Comparative Examples. In Examples 1 to 36, the amounts of silicon carbide, zirconia, metallic silicon, and fine silica powder were varied within the scope of the present invention. Examples 1 to 9 are examples in which the zirconia fine powder is 2% by mass, Examples 10 to 18 are examples in which the zirconia fine powder is 6% by mass, and Examples 19 to 27 are examples in which the zirconia fine powder is 9% by mass, and Examples. Nos. 28 to 36 are examples in which the zirconia fine powder is 15% by mass, and the amount of silicon carbide (1 mm or less) is adjusted according to the amount of the zirconia fine powder.

これに対して、比較例1は炭化けい素量が本発明の下限を外れる例、比較例2、3はジルコニア量が本発明の範囲を外れる例、比較例4、5、6はシリカ超微粉量が本発明の範囲を外れる例、比較例7、8、9は金属シリコン量が本発明の範囲を外れる例である。 On the other hand, Comparative Example 1 is an example in which the amount of silicon carbide is outside the lower limit of the present invention, Comparative Examples 2 and 3 are examples in which the amount of zirconia is outside the range of the present invention, and Comparative Examples 4, 5 and 6 are ultrafine silica powders. Examples in which the amount is out of the range of the present invention and Comparative Examples 7, 8 and 9 are examples in which the amount of metallic silicon is out of the range of the present invention.

なお、各表において添加剤とは、上記[分散剤][硬化促進剤、硬化遅延材][爆裂防止剤][酸化防止剤]である。 In addition, in each table, the additive is the above-mentioned [dispersant] [curing accelerator, curing retarder] [explosion preventing agent] [antioxidant].

<添加水分量>
添加水分量はJIS R2521(耐火物用アルミナセメントの物理試験方法)に規定されるフロー試験で、フロー値が135〜145となる水分量で表した。添加水分量が少ない程、流動性が良好な配合である。
<Amount of added water>
The amount of added water was represented by the amount of water which gives a flow value of 135 to 145 in a flow test specified by JIS R2521 (physical test method for alumina cement for refractories). The smaller the amount of added water, the better the fluidity of the composition.

<試験片の作成>
混練物を型枠に流し込み、硬化後脱枠して成形体を得た。得られた成形体を110℃で24h乾燥後、コークスブリーズを充填したさや中に入れ1500℃で3h還元焼成した。焼成後研削加工して試験に供した。
<Creation of test pieces>
The kneaded product was poured into a mold, and after curing, the frame was removed to obtain a molded body. The obtained molded body was dried at 110° C. for 24 hours, put in a pod filled with coke breeze, and reduction-baked at 1500° C. for 3 hours. After firing, it was ground and subjected to a test.

<見掛気孔率>
見掛気孔率は、JIS R2205(耐火れんがの見掛気孔率・吸水率・比重の測定方法)に準じて測定した。
<Apparent porosity>
The apparent porosity was measured according to JIS R2205 (Method for measuring apparent porosity/water absorption/specific gravity of refractory bricks).

<耐熱スポール性>
耐熱スポール性は熱衝撃前後の弾性率低下率によって評価し、弾性率低下率が小さいほど耐スポール性が高いとした。
<Heat resistant spall resistance>
The heat-resistant spall resistance was evaluated by the elastic modulus decrease rate before and after thermal shock, and the smaller the elastic modulus decrease rate, the higher the spall resistance.

(弾性率低下率)
試験片を1500℃に加熱した溶銑に3min浸漬し、その後7min空冷するサイクルを2回繰り返し、試験前後の弾性率を測定した。弾性率は超音波伝播速度と試料密度から求めた。
(Rate of elasticity decrease)
The test piece was dipped in hot metal heated to 1500° C. for 3 minutes, and then air-cooled for 7 minutes. This cycle was repeated twice, and the elastic modulus before and after the test was measured. The elastic modulus was calculated from the ultrasonic wave propagation velocity and the sample density.

弾性率低下率は以下の式により指数で表示した。この指数の値が小さい程、耐熱スポール性が良好である。弾性率低下率が50以下を〇として表した。 The elastic modulus decrease rate was expressed as an index by the following formula. The smaller the value of this index, the better the heat resistant spalling property. The elastic modulus decrease rate of 50 or less was expressed as ◯.

弾性率低下率={(試験前の弾性率―試験後の弾性率)/(試験前の弾性率)}×100
<熱間曲げ強さ>
熱間曲げ強さは、JIS R2656(耐火れんが及び耐火断熱れんがの熱間曲げ強さ試験方法)に準じ、窒素雰囲気下、1500℃で測定した。熱間曲げ強さが2MPa以上あるものを〇とした。
Elastic modulus decrease rate={(Elastic modulus before test-Elastic modulus after test)/(Elastic modulus before test)}×100
<Hot bending strength>
The hot bending strength was measured at 1500° C. in a nitrogen atmosphere according to JIS R2656 (testing method for hot bending strength of refractory bricks and refractory insulating bricks). A sample having a hot bending strength of 2 MPa or more was rated as ◯.

本発明の実施例は、比較例に比べて熱間強度が向上するとともに、流動性が良好で、緻密な施工体が得られることが明らかである。 It is apparent that the working examples of the present invention have improved hot strength as compared with the comparative examples, have good fluidity, and are dense construction bodies.

Figure 2020125220
Figure 2020125220

Figure 2020125220
Figure 2020125220

Figure 2020125220
Figure 2020125220

Figure 2020125220
Figure 2020125220

Figure 2020125220
Figure 2020125220

以上説明したように、本発明は炭化けい素に炭化けい素にジルコニアとシリカ超微粉および金属シリコンを添加することによって、流動性に優れ組織の緻密化が可能な流し込み材を得ることができ、高炉羽口用耐火物に成形したとき高い耐スポーリング性を得ることがでる。 As described above, the present invention, by adding zirconia and silica ultrafine powder and metallic silicon to silicon carbide in silicon carbide, it is possible to obtain a casting material having excellent fluidity and capable of densifying the structure, High spalling resistance can be obtained when molded into a blast furnace tuyere refractory.

Claims (4)

炭化けい素70〜95質量%、ジルコニア2〜15質量%、シリカ超微粉1〜5質量%、金属シリコン0.5〜5質量%を含むことを特徴とする炭化けい素質流し込み材。 70-95% by mass of silicon carbide, 2-15% by mass of zirconia, 1-5% by mass of ultrafine silica powder, and 0.5-5% by mass of metallic silicon. 仮焼アルミナを10質量%以下(ゼロを除く)含む請求項1に記載の炭化けい素質流し込み材。 The silicon carbide casting material according to claim 1, which contains 10% by mass or less (excluding zero) of calcined alumina. ジルコニア原料/(シリカ超微粉+金属シリコン)(質量比)は0.5〜2.5の範囲である請求項1または2に記載の炭化けい素質流し込み材。 The silicon carbide casting material according to claim 1 or 2, wherein the zirconia raw material/(silica ultrafine powder+metal silicon) (mass ratio) is in the range of 0.5 to 2.5. 請求項1〜3のいずれかに記載の炭化けい素質流し込み材を成形したプレキャスト耐火物。 A precast refractory formed by molding the silicon carbide casting material according to claim 1.
JP2019018030A 2019-02-04 2019-02-04 Silicon nitride refractory Pending JP2020125220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019018030A JP2020125220A (en) 2019-02-04 2019-02-04 Silicon nitride refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019018030A JP2020125220A (en) 2019-02-04 2019-02-04 Silicon nitride refractory

Publications (1)

Publication Number Publication Date
JP2020125220A true JP2020125220A (en) 2020-08-20

Family

ID=72083467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019018030A Pending JP2020125220A (en) 2019-02-04 2019-02-04 Silicon nitride refractory

Country Status (1)

Country Link
JP (1) JP2020125220A (en)

Similar Documents

Publication Publication Date Title
KR100297091B1 (en) Chrome-free brick
CN103880448A (en) Large casting-molding self-combined silicon carbide product
CN104355630A (en) Wear-resistant and thermal shock-resistant lining for air supply branch pipe of iron-making blast furnace and preparation method thereof
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
CN110818437A (en) Preparation method of silicon carbide-oxide composite refractory product
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
CN111517815A (en) Silicon nitride composite high-thermal conductivity castable
Shan et al. Influences of novel Si2BC3N antioxidant on the structure and properties of Al2O3-SiC-C castables: in air and coke bedded atmosphere
JP2015081225A (en) High-chromia-enriched castable refractory, precast block using the refractory and waste melting furnace lined with the refractory and/or the block
CN112645698A (en) Aluminum titanium silicon carbide composite refractory castable for iron-making blast furnace
JP4220131B2 (en) Amorphous refractory composition for ladle
JP2020125220A (en) Silicon nitride refractory
CN105254317A (en) Magnesium-iron-aluminum spinel coal injection pipe
JP2020055726A (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus, and vacuum degassing apparatus having the same lined on sidewall of lower vessel thereof
CN101402527A (en) Compact aluminum silicon carbide composite material and method of manufacturing the same
JPH04310570A (en) Production of refractory for blast furnace
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
CN113979761A (en) Ternary composite self-repairing baking-free sliding plate brick and preparation method thereof
JP6620954B2 (en) Castable refractories for blast furnace firewood
CN108249900B (en) High performance Al2O3Additive for-SiC-C castable and preparation method thereof
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP2960631B2 (en) Irregular refractories for lining molten metal containers
KR101262077B1 (en) Low Cement Corrosion-Resistive Unshaped Refractories
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JP4245122B2 (en) Method for producing aluminum nitride bonded refractory brick