JPH03136372A - Mos control thyristor - Google Patents

Mos control thyristor

Info

Publication number
JPH03136372A
JPH03136372A JP27522089A JP27522089A JPH03136372A JP H03136372 A JPH03136372 A JP H03136372A JP 27522089 A JP27522089 A JP 27522089A JP 27522089 A JP27522089 A JP 27522089A JP H03136372 A JPH03136372 A JP H03136372A
Authority
JP
Japan
Prior art keywords
region
specific resistance
conductivity type
voltage
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27522089A
Other languages
Japanese (ja)
Other versions
JP2738071B2 (en
Inventor
Noriyuki Iwamuro
憲幸 岩室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1275220A priority Critical patent/JP2738071B2/en
Publication of JPH03136372A publication Critical patent/JPH03136372A/en
Application granted granted Critical
Publication of JP2738071B2 publication Critical patent/JP2738071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To hardly cause a turn-OFF breaking in a MOS control thyristor, in which one electrode comes into contact with a first region and other electrode comes into contact to fifth and seventh regions, by a method wherein the specific resistance of a second region is specified. CONSTITUTION:A VAKX which is needed in practical use in an MCT is 2500 V or high and the specific resistance of a second region 2 must be 0.6OMEGAcm or lower for satisfying this VAKX. On the other hand, it is desirable that an ON-state voltage VON is 3.3 V or lower in 2000 A and the specific resistance of the region 2 must be 0.03OMEGAcm or higher for satisfying this value. Whereby the ratio of an electron current to all a current which is made to flow through an element can be reduced without being accompanied by a remarkable rise of the ON-state voltage. However, as a practical ON-state voltage, it is further desirable that the ON-state voltage is 3.0 V or lower. Therefore, the specific resistance of the region 2 must be 0.05OMEGAcm or higher. When the second region 2 and a third region 3 are an N-type, the VAKX is increased compared to that at the time when they are a P-type. Therefore, the MCT, whose VAKX exceeds 2500V on the condition of this specific resistance, is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、ターンオンもターンオフも電圧駆動型であり
、電力用スイッチング素子として用いられるMOSコン
トロールサイリスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a MOS control thyristor whose turn-on and turn-off are both voltage-driven and used as a power switching element.

〔従来の技術〕[Conventional technology]

ターンオフ可能なサイリスタとしてゲートターンオフサ
イリスタ (GTO)が一般に使われている。しかし、
このGTOサイリスタは電流駆動型素子であるため、よ
り大きなゲート駆動電力を要する等の欠点がある。そこ
で、この欠点を克服するためゲートを電圧駆動型にした
MOSゲートサイリスタが発表された。これはMOSゲ
ートでワイドベースバイポーラトランジスタを駆動する
構造で、絶縁ゲート型バイポーラトランジスタ (IG
 B T)と同じである。しかし、I GBTは内部寄
生サイリスタをラッチングさせないが、MOSゲートサ
イリスクではそれをラッチングさせるため、ターンオフ
の際ゲート電圧だけでなく7ノード電圧の極性を反転さ
せなくてはならない。
A gate turn-off thyristor (GTO) is commonly used as a thyristor that can be turned off. but,
Since this GTO thyristor is a current-driven element, it has drawbacks such as requiring larger gate drive power. In order to overcome this drawback, a MOS gate thyristor with a voltage-driven gate was announced. This is a structure in which a wide base bipolar transistor is driven by a MOS gate, and an insulated gate bipolar transistor (IG
BT). However, while an IGBT does not cause the internal parasitic thyristor to latch, a MOS gate thyristor does so, so not only the gate voltage but also the polarity of the 7-node voltage must be reversed at turn-off.

最近、雑誌rlH1lfl Transactions
 of ElectronDevicesJ ED−3
3巻 (1986年’) 1609ページに、ターンオ
ンもターンオフも電圧駆動型であるMOSゲートを使っ
たサイリスタMOSコントロールサイリスタ<MQS 
Control Thyrlster)C以下MCTと
記す〉が発表された。これはp−n−p−nサイリスク
にターンオン用およびターンオフ用のMOSFETを組
み込んだ構造となっている。すなわち、第2図に示すよ
うに、低比抵抗の第一導電型、例えばn型の第一領域1
上にバッファ層としての第二導電型、すなわちp型の第
二領域2を積層し、この第二領域上にp型で高比抵抗の
第五領域3を積層し、この第三領域3の表面部に選択的
にn型の第四領域4を、さらにその第四領域4の表面部
に選択的にp型の第五領域5を形成し、最後にこの第五
領域表面部に低比抵抗のp型の第六領域6と低比抵抗の
n型の第七領域7を形成する。そして、第四領域4の第
三領域3と第五領域5ではさまれた表面領域および第五
領域5の第四領域4と第七領域7ではさまれた表面領域
をチャネル領域として、この上にゲート絶縁膜8を介し
てゲート電極9を形成する。さらに、第六領域6と第七
領域7に絶縁膜12の開口部で接触するカソードを極1
0と第一領域1の表面に接触するアノード電極11を設
ける。
Recently, the magazine rlH1lfl Transactions
of ElectronDevicesJ ED-3
Volume 3 (1986') Page 1609 describes a thyristor using a MOS gate whose turn-on and turn-off are voltage-driven.MOS control thyristor<MQS
Control Thyrlster) C (hereinafter referred to as MCT) was announced. This has a structure in which turn-on and turn-off MOSFETs are incorporated into a pn-pn silicone. That is, as shown in FIG.
A second region 2 of a second conductivity type, that is, a p-type, is laminated thereon as a buffer layer, and a fifth region 3 of a p-type and high resistivity is laminated on this second region. An n-type fourth region 4 is selectively formed on the surface portion, a p-type fifth region 5 is selectively formed on the surface portion of the fourth region 4, and finally a low ratio A resistive p-type sixth region 6 and a low resistivity n-type seventh region 7 are formed. Then, a surface region sandwiched between the third region 3 and the fifth region 5 of the fourth region 4 and a surface region sandwiched between the fourth region 4 and the seventh region 7 of the fifth region 5 are used as a channel region. A gate electrode 9 is formed with a gate insulating film 8 interposed therebetween. Furthermore, the cathode that contacts the sixth region 6 and the seventh region 7 at the opening of the insulating film 12 is connected to the electrode 1.
An anode electrode 11 is provided in contact with the surfaces of the first region 1 and the first region 1 .

この素子は、カソード電極10を接地し、ゲート電極9
とアノード電極11に電圧を加えることにより動作する
。ターンオン時、ゲート電極9に負の電圧を印加すると
、p領域5とp−91域3ではさまれた表面領域にpチ
ャネルが形成される。そこで、アノード電8i10に負
の電圧を印加すると、形成されたpチャネルから正孔が
アノードへ向かって流れ出し、n″領域1とp″領域2
の間の接合n 4 / p−をオンする。これにより、
n0層1からp−fil域3へ電子の注入が生じる。こ
の電子は、p−層3 +  n tri域4を通ッテ、
ntl14とp″6161域6接合n/p’をオンする
。それにより、p″領域6から正孔の注入が生じ、n−
p−n−pサイリスタがオンする9以上より、p゛層2
p−層3.n領域4で伝導度変調が生じオン抵抗が低く
なる。
This element has a cathode electrode 10 grounded and a gate electrode 9
It operates by applying a voltage to the anode electrode 11. When a negative voltage is applied to gate electrode 9 during turn-on, a p channel is formed in the surface region sandwiched between p region 5 and p-91 region 3. Therefore, when a negative voltage is applied to the anode electrode 8i10, holes flow out from the formed p channel toward the anode, and the n'' region 1 and the p'' region 2
Turn on the junction n4/p- between. This results in
Electron injection occurs from the n0 layer 1 to the p-fil region 3. This electron passes through the p- layer 3 + n tri region 4,
ntl14 and p''6161 region 6 junction n/p' are turned on. As a result, holes are injected from p'' region 6, and n-
From 9 or more where the p-n-p thyristor turns on, the p layer 2
p-layer 3. Conductivity modulation occurs in the n-region 4 and the on-resistance decreases.

領域にnチャネルが形成される。これによりn eff
域4とp″領域6は同電位になる。そのため、n゛領域
1から注入された電子がn95域4とp″領域6の接合
n/ p+に到達しても、形成されたnチャネルを通っ
てカソードへ流れ出るため、p’all域6からの正孔
の注入が生じず、オフが完了することになる。
An n-channel is formed in the region. This results in n eff
Region 4 and p'' region 6 have the same potential. Therefore, even if electrons injected from n95 region 1 reach the junction n/p+ between n95 region 4 and p'' region 6, they will not be able to penetrate the formed n channel. Since the holes flow through the p'all region 6 and flow out to the cathode, hole injection from the p'all region 6 does not occur, and OFF is completed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようなMCTを誘導負荷(L負荷)でターンオフす
る際、L負荷逆起電力骨の電圧が第三領域と第四領域の
間の接合部に逆バイアスの形で加わる。そのため、上記
接合部には大きな電界が発生する。特に、第2図に示し
たように第一導電型がn型、第二導電型がp型の場合、
第一、二、三および第四領域で構成されるnpn)ラン
リスクで一定電流を流し続けようとするため、その主電
流は電子電流となる。高電界(〜I X 10’V/ 
cl(1)印加時の電子の衝撃イオン化率は、正孔のそ
れに比べ約100倍〜1000倍大きいため、アバラン
シェ破壊を起こしやすい。
When turning off such an MCT with an inductive load (L load), the voltage of the L load back emf bone is applied to the junction between the third region and the fourth region in the form of a reverse bias. Therefore, a large electric field is generated at the junction. In particular, when the first conductivity type is n type and the second conductivity type is p type as shown in FIG.
Since the npn (npn) run risk, which consists of the first, second, third, and fourth regions, attempts to keep a constant current flowing, the main current is an electron current. High electric field (~I x 10'V/
Since the impact ionization rate of electrons when cl(1) is applied is about 100 to 1000 times higher than that of holes, avalanche destruction is likely to occur.

本発明の目的は、上記欠点を解消して、L負荷ターンオ
フ用にターンオフ破壊を起こしにくいMOSコントロー
ルサイリスタを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a MOS control thyristor for L load turn-off that is less likely to cause turn-off damage.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、高不純物濃度
で第一導電型の第一領域、その領域上に順に積層された
第二導電型の第二領域および低不純物濃度で第二導電型
の第三領域、その第三領域の表面部に選択的に形成され
た第一導電型の第四領域、その第四領域の表面部に選択
的に形成された第二導電型の第五領域、その第五領域の
表面部にそれぞれ形成された第二導電型の第六領域およ
び第一導電型の第七領域、第四領域の第三領域および第
五領域ではさまれた表面領域ならびに第五領域の第四領
域および第七領域にはさまれた表面領域上にゲート絶縁
膜を介して設けられたゲート電極を備え、一つのiiが
第一領域に、他の電極が第五および第七領域にそれぞれ
接触するMOSコントロールサイリスタにおいて、第二
領域の比抵抗が0,03n口以上、066Ω値以下であ
るものとする。
To achieve the above object, the present invention provides a first region of a first conductivity type with a high impurity concentration, a second region of a second conductivity type laminated in order on the region, and a second region of a second conductivity type with a low impurity concentration. a third region of the mold; a fourth region of the first conductivity type selectively formed on the surface of the third region; and a fifth region of the second conductivity type selectively formed on the surface of the fourth region. a sixth region of the second conductivity type formed on the surface of the fifth region, a seventh region of the first conductivity type, a surface region sandwiched between the third region of the fourth region and the fifth region; A gate electrode is provided through a gate insulating film on the surface region sandwiched between the fourth region and the seventh region of the fifth region, one electrode ii is in the first region and the other electrode is in the fifth and seventh region. In the MOS control thyristors each in contact with the seventh region, the specific resistance of the second region is 0.03n or more and 0.66Ω or less.

〔作用〕[Effect]

第二領域の比抵抗を大きくすれば、L負荷でターンオフ
時に第三領域と第四領域の間の接合部に逆バイアスが加
わった時の第一領域から第三領域へのキャリアの注入に
対する障壁が低くなり、アバライシェ破壊が起こりやす
く、ターンオフ破壊電圧vaxxが低下する。一方、素
子のオン電圧は、第二領域の比抵抗を大きくすれば第三
領域へのキャリアの注入が増えるため低(なる、このト
レードオフ関係は、第二、第三領域がp型の場合、第1
図に示す通りである。MCTで実用上必要とされるV、
BBは2500 V以上であり、これを満足するために
は第二領域の比抵抗は0.6Ωcm以下でなければなら
ぬ、一方、オン電圧V eaは20GOAで3.3v以
下であることが望ましく、これを満足するためには第二
領域の比抵抗は0.03V以上でなければならぬ、これ
により、素子内を流れる全電流に対する電子電流の比率
を、オン電圧の著しい上昇を伴うことなく低減できる。
If the resistivity of the second region is increased, it becomes a barrier to carrier injection from the first region to the third region when a reverse bias is applied to the junction between the third and fourth regions at turn-off with an L load. becomes low, avalaiche breakdown is likely to occur, and the turn-off breakdown voltage vaxx decreases. On the other hand, the on-voltage of the device decreases because increasing the specific resistance of the second region increases the injection of carriers into the third region (this trade-off relationship is true when the second and third regions are p-type , 1st
As shown in the figure. V, which is practically required for MCT,
BB is 2500 V or more, and to satisfy this, the specific resistance of the second region must be 0.6 Ωcm or less, while the on-voltage V ea is preferably 3.3 V or less at 20 GOA. , in order to satisfy this, the resistivity of the second region must be 0.03V or more.This allows the ratio of electron current to the total current flowing in the device to be increased without a significant increase in the on-voltage. Can be reduced.

しかし、実用的なオン電圧としては、3.0v以下であ
ることがさらに望ましく、そのためには第二領域の比抵
抗は0.05n備以上でなければならぬ、第二、第三領
域がn型のときは、p型のときにくらべてvhmxが高
くなるため、上記の比抵抗の条件でvatxが2500
 Vを上回るMCTが得られる。従って、第二領域のn
゛層の比抵抗を0.6Ω個以上にすることもできる。
However, as a practical on-voltage, it is more desirable that it is 3.0V or less, and for that purpose, the specific resistance of the second region must be 0.05n or more, and the second and third regions must be n When it is a type, vhmx is higher than when it is a p-type, so vhmx is 2500 under the above resistivity condition.
An MCT greater than V is obtained. Therefore, n of the second region
It is also possible to make the specific resistance of the layer 0.6Ω or more.

〔実施例〕〔Example〕

以下、第2図に示した構造をもつMCTでの本発明の実
施例および比較例について述べる。
Examples and comparative examples of the present invention using an MCT having the structure shown in FIG. 2 will be described below.

実施例: 耐圧2.5kV、電流容量200OA(7)定格のMC
Tを次の工程で製作した。n゛基板lの表面に厚さ10
nのp′″層2を積層し、さらにその上にp−層3を積
層した0次に、p−層3の上面にゲート酸化膜8を被着
し、その上に多結晶シリコン層の積層およびパターニン
グによりゲート電極9を形成した。
Example: MC with withstand voltage 2.5kV and current capacity 200OA (7) rating
T was manufactured using the following steps. Thickness 10 on the surface of the n゛substrate l
Next, a gate oxide film 8 is deposited on the upper surface of the p- layer 3, and a polycrystalline silicon layer is formed on it. Gate electrode 9 was formed by lamination and patterning.

このゲート電極9をマスクとしてnSlS電域形成する
ためのイオン注入を行い、熱拡散をした。残ったp−層
の厚さは130pであつた。このあと、同じくゲート電
極をマスクとしてのイオン注入と熱拡散によりp 8N
域5.p″領域6およびn″領域7を形成した。最後に
絶縁膜12を形成し、カソード電極lOとアノード電極
11を被着して素子を完成した。p−層3の比抵抗は2
50Ωam、nl域4のためのイオン注入のドーズ量は
?、OxlG”/j、90層2の比抵抗は0.1Ωcm
であった。オン電圧は20GOAで2.8vであり、こ
の素子をL負荷でターンオフする場合、アノード電圧2
500 Vでは破壊せずターンオフでき、そのときのタ
ーンオフ時間は12μsecと十分実用的な範囲であっ
た。この素子のターンオフ破壊電圧V□は3000 V
であった。
Using this gate electrode 9 as a mask, ion implantation was performed to form an nSlS region, and thermal diffusion was performed. The thickness of the remaining p-layer was 130p. After this, p 8N was obtained by ion implantation and thermal diffusion using the gate electrode as a mask.
Area 5. A p'' region 6 and an n'' region 7 were formed. Finally, an insulating film 12 was formed, and a cathode electrode 10 and an anode electrode 11 were attached to complete the device. The specific resistance of p-layer 3 is 2
What is the ion implantation dose for 50Ωam, nl region 4? , OxlG"/j, the specific resistance of 90 layer 2 is 0.1 Ωcm
Met. The on-voltage is 2.8V at 20GOA, and when turning off this device with L load, the anode voltage is 2.8V.
At 500 V, the device could be turned off without being destroyed, and the turn-off time at that time was 12 μsec, which was within a sufficiently practical range. The turn-off breakdown voltage V□ of this element is 3000 V
Met.

比較例1: 実施例と同様にして製作したMCTにおける厚さ130
 nのp−層3の比抵抗は250Ω値、nff域4のた
めのイオン注入ドーズ量は7.0 XIO”/jで実施
例の場合と同様であるが、厚さ10−のp。
Comparative example 1: Thickness of MCT manufactured in the same manner as in the example: 130
The specific resistance of the n p- layer 3 is 250Ω, and the ion implantation dose for the nff region 4 is 7.0

層2の比抵抗を0.7Ωcmとした。この素子のオン電
圧は20GOAで2.Ovであった。しかし、L負荷で
ターンオフする場合、アノード電圧2500 Vで素子
は破壊してしまった。この素子を詳細に調べたところ、
V&に1gは2380 Vであった。
The specific resistance of layer 2 was set to 0.7 Ωcm. The on-voltage of this element is 20GOA and 2. It was Ov. However, when turned off with an L load, the device was destroyed at an anode voltage of 2500 V. After examining this element in detail, we found that
1g of V& was 2380V.

比較例2: 実施例と同様にして製作したMCTにおけるp−層3の
比抵抗およびn領域4のためのイオン注入のドーズ量は
実施例の場合と同様であるが、90層2の比抵抗を0.
O20儂と゛した。この素子をL負荷でターンオフした
ところ、アノード電圧2500 Vて破壊せず、そのと
きのターンオフ時間は9.8μsecと十分実用的な範
囲であった。この素子のVAllllは3120Vであ
る。しかしながら、この素子のオン電圧は2000 A
で5.2vに達した。
Comparative Example 2: In an MCT manufactured in the same manner as in the example, the specific resistance of the p-layer 3 and the dose of ion implantation for the n-region 4 were the same as in the example, but the specific resistance of the 90 layer 2 0.
O20 called me. When this element was turned off with an L load, it did not break down even at an anode voltage of 2500 V, and the turn-off time at that time was 9.8 μsec, which was within a sufficiently practical range. VAllll of this element is 3120V. However, the on-voltage of this device is 2000 A
It reached 5.2v.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、本発明は一方の電極が全面的に接する
第一導電型の第一領域と低不純物濃度の第三領域の間の
バッファ層の第二導電型の第二頷域の比抵抗を0.03
Ω備以上、0.6Ωcm以下とすることで、オン電圧を
実用的な値に抑えてターンオフ時の破壊耐量の大きいM
OSコントロールサイリスタを得ることができた。
According to the present invention, the ratio of the second nodular region of the second conductivity type of the buffer layer between the first region of the first conductivity type and the third region of low impurity concentration that are in full contact with one electrode is resistance to 0.03
By setting the on-voltage to a practical value and the resistance to breakdown at turn-off is high, M
I was able to obtain an OS control thyristor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はターンオフ破壊電圧V□8およびオン電圧Vゆ
、の第二領域のp°層の比抵抗依存性を示す線図、第2
図は本発明の実施されるMCTの断面図である。 l:第一領域 (n”層)  2:第二領域(p”層)
  3:第三領域(p−層)  4:第四領域(n61
域)  5:第五領域(p領域)、6:第六領域(p″
領域  7:第七領域(n″領域、8:ゲート絶縁膜、
9:ゲート電極、10;カソード電極、11ニアノード
電極。 ρ1几8m(Ω−3) !!41図 第2図
Figure 1 is a diagram showing the dependence of the turn-off breakdown voltage V□8 and on-voltage VY on the resistivity of the p° layer in the second region;
The figure is a cross-sectional view of an MCT in which the present invention is implemented. l: First region (n” layer) 2: Second region (p” layer)
3: Third region (p-layer) 4: Fourth region (n61
area) 5: Fifth area (p area), 6: Sixth area (p''
Region 7: Seventh region (n'' region, 8: Gate insulating film,
9: gate electrode, 10: cathode electrode, 11 near anode electrode. ρ1几8m(Ω-3)! ! Figure 41 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)高不純物濃度で第一導電型の第一領域、その領域
上に順に積層された第二導電型の第二領域および低不純
物濃度で第二導電型の第三領域、その第三領域の表面部
に選択的に形成された第一導電型の第四領域、その第四
領域の表面部に選択的に形成された第二導電型の第五領
域、その第五領域の表面部にそれぞれ形成された第二導
電型の第六領域および第一導電型の第七領域、第四領域
の第三領域および第五領域ではさまれた表面領域ならび
に第五領域の第四領域および第七領域にはさまれた表面
領域上にゲート絶縁膜を介して設けられたゲート電極を
備え、一つの電極が第一領域に、他の電極が第五および
第七領域にそれぞれ接触するものにおいて、第二領域の
比抵抗が0.03Ωcm以上、0.6Ωcm以下である
ことを特徴とするMOSコントロールサイリスタ。
(1) A first region of the first conductivity type with a high impurity concentration, a second region of the second conductivity type laminated in order on the region, a third region of the second conductivity type with a low impurity concentration, and the third region a fourth region of the first conductivity type selectively formed on the surface of the fourth region; a fifth region of the second conductivity type selectively formed on the surface of the fourth region; The sixth region of the second conductivity type, the seventh region of the first conductivity type, the surface region sandwiched between the third region and the fifth region of the fourth region, and the fourth region and the seventh region of the fifth region formed respectively. A gate electrode is provided on a surface region sandwiched between the regions via a gate insulating film, one electrode is in contact with the first region, and the other electrode is in contact with the fifth and seventh regions, A MOS control thyristor characterized in that the specific resistance of the second region is 0.03 Ωcm or more and 0.6 Ωcm or less.
JP1275220A 1989-10-23 1989-10-23 MOS control thyristor Expired - Fee Related JP2738071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275220A JP2738071B2 (en) 1989-10-23 1989-10-23 MOS control thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275220A JP2738071B2 (en) 1989-10-23 1989-10-23 MOS control thyristor

Publications (2)

Publication Number Publication Date
JPH03136372A true JPH03136372A (en) 1991-06-11
JP2738071B2 JP2738071B2 (en) 1998-04-08

Family

ID=17552378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275220A Expired - Fee Related JP2738071B2 (en) 1989-10-23 1989-10-23 MOS control thyristor

Country Status (1)

Country Link
JP (1) JP2738071B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186473A (en) * 1987-01-29 1988-08-02 Toshiba Corp Gate turn-off thyristor
JPS63209171A (en) * 1987-02-26 1988-08-30 Toshiba Corp Semiconductor element
JPS63310171A (en) * 1987-06-12 1988-12-19 Hitachi Ltd Composite semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186473A (en) * 1987-01-29 1988-08-02 Toshiba Corp Gate turn-off thyristor
JPS63209171A (en) * 1987-02-26 1988-08-30 Toshiba Corp Semiconductor element
JPS63310171A (en) * 1987-06-12 1988-12-19 Hitachi Ltd Composite semiconductor device

Also Published As

Publication number Publication date
JP2738071B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US5072268A (en) MOS gated bipolar transistor
US5105244A (en) Gate turn-off power semiconductor component
JPH08172181A (en) Bi-directional thyristor
JPH0883897A (en) Mos control type thyristor
JPH043981A (en) Conductivity-modulation mosfet
CA2134672A1 (en) Mos gated thyristor with remote turn-off electrode
JPH0851202A (en) Semiconductor bidirectional switch, and its drive method
JPH10294461A (en) Insulation gate type semiconductor element
JPH08213617A (en) Semiconductor device and its driving method
JPH0624244B2 (en) Composite semiconductor device
JPH03194974A (en) Mos type semiconductor device
JP3281194B2 (en) Power semiconductor device
JP2782638B2 (en) MOS control thyristor
Darwish A new lateral MOS-controlled thyristor
JP2536122B2 (en) p-channel insulated gate bipolar transistor
JPH0529628A (en) Insulating-gate type bipolar transistor
JP2551152B2 (en) MOS control thyristor
JPH03136372A (en) Mos control thyristor
JPS63209169A (en) Insulated-gate thyristor
JP2581233B2 (en) Horizontal conductivity modulation MOSFET
KR940008259B1 (en) Semiconductor device and manufacturing method thereof
JP3161092B2 (en) Dual gate MOS thyristor
US5412227A (en) MOS-controlled thyristor with non-planar geometry
JPH04320377A (en) Insulated gate bipolar transistor
JP2856257B2 (en) P-channel insulated gate bipolar transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees