JPH03135494A - Carbonaceous electrode base material - Google Patents

Carbonaceous electrode base material

Info

Publication number
JPH03135494A
JPH03135494A JP1272478A JP27247889A JPH03135494A JP H03135494 A JPH03135494 A JP H03135494A JP 1272478 A JP1272478 A JP 1272478A JP 27247889 A JP27247889 A JP 27247889A JP H03135494 A JPH03135494 A JP H03135494A
Authority
JP
Japan
Prior art keywords
base material
carbon
electrode base
carbonaceous
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1272478A
Other languages
Japanese (ja)
Inventor
Shiro Kondo
史朗 近藤
Shigeru Sano
佐野 滋
Osamu Muroi
治 室井
Kishio Miwa
輝之男 三輪
Tamotsu Takizawa
瀧澤 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Toray Industries Inc
Original Assignee
Shinko Pantec Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd, Toray Industries Inc filed Critical Shinko Pantec Co Ltd
Priority to JP1272478A priority Critical patent/JPH03135494A/en
Publication of JPH03135494A publication Critical patent/JPH03135494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To obtain an electrode base material having a long service life, high strength, and superior electric conductivity by regulating the half-width of the <002> plane of carbon determined by a wide-angle X-ray to a specific value and also regulating the relative integrated intensity of oxygen element / carbon element determined by surface analysis by an X-ray photoelectron spectroscopic method to a specific value. CONSTITUTION:This electrode base material is the one usable for cathode as well as for anode for D.C. electrification, capable of being used by converting polarity at every prescribed amount of electrification, and consisting of carbonaceous material, and further, the half-width of the <002> plane of carbon determined by a wide-angle X-ray is regulated to 5.5-8.0 deg. and also the relative integrated intensity of oxygen element / carbon element determined by surface analysis by ESCA (X-ray photoelectron spectroscopic method) is regulated to 0.18-0.60. Since the consumption of electrification can be extremely reduced and high physical strength can be provided in this carbonaceous electrode base material, this carbonaceous electrode base material can produce useful effects for electrolysis and electroosmosis and dehydration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷却水系統の生物付着の防止あるいは殺菌の
ために海水あるいは塩を含む水溶液に直流通電して電解
する場合、あるいは汚泥を電気浸透により脱水する場合
等において陽極としても陰極としても使用することがで
きる長寿命、高強度の炭素質極基材に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to electrolyzing seawater or an aqueous solution containing salt in order to prevent biofouling or sterilization in a cooling water system, or to electrolyze sludge with electricity. The present invention relates to a long-life, high-strength carbonaceous electrode base material that can be used as both an anode and a cathode in cases such as dehydration by osmosis.

(従来の技術) 塩を含む水溶液の電流電解用の電極の極基材としては、
炭素質極基材が陽極および陰極の何れとしても使用可能
である点で優位性が認められる。なかでも熱処理温度が
3000°Cに近い黒鉛質極基材が好んで用いられてい
る。これは電解時に陽極から発生する酸素による酸化消
耗が炭素質よりも黒鉛質のほうが少ないためである。
(Prior art) As a polar base material for an electrode for current electrolysis of an aqueous solution containing salt,
The carbonaceous electrode base material is advantageous in that it can be used as either an anode or a cathode. Among these, a graphite electrode base material whose heat treatment temperature is close to 3000°C is preferably used. This is because graphite has less oxidative consumption due to oxygen generated from the anode during electrolysis than carbon.

しかし陽極のみが選択的に消耗すると、陽極と陰極との
寿命が異なり安定操業上好ましくないので、陽極と陰極
とに同一の極基材を使用することから、直流通電の途中
に反対極性に変換する操業法がとられる。
However, if only the anode is selectively consumed, the lifespan of the anode and cathode will differ and this is not desirable for stable operation. Therefore, since the same electrode base material is used for the anode and cathode, the polarity is changed to the opposite polarity during DC current flow. A method of operation will be adopted.

海水の電解用として黒鉛質電極を使用すると、海水中に
含まれるカルシウムイオンが陰極表面に炭酸カルシウム
の絶縁層を形成し通電が阻害されるようになる。そこで
通電が困難となる以前に両極を反対極性にすることによ
って絶縁層の形成を防止する。
When a graphite electrode is used for electrolysis of seawater, calcium ions contained in the seawater form an insulating layer of calcium carbonate on the cathode surface, which inhibits current flow. Therefore, the formation of an insulating layer is prevented by making the two electrodes have opposite polarities before it becomes difficult to conduct electricity.

しかし上記黒鉛質炭素電極であっても、酸化消耗の他、
各種の電気化学的腐蝕作用を受けるので、寿命が永久的
なものではない。例えば黒鉛質炭素焼結板においてはバ
インダーコークスが選択的に侵蝕され黒鉛粒子の脱落を
生ずることが問題になる。また黒鉛質炭素材電極は硫酸
イオンを含む水溶液中で使用すると、硫酸イオンが黒鉛
の結晶層間に侵入し黒鉛を破壊消耗させる問題がある。
However, even with the above-mentioned graphitic carbon electrode, in addition to oxidative consumption,
Since it is subject to various electrochemical corrosion effects, its lifespan is not permanent. For example, in graphitic carbon sintered plates, binder coke is selectively eroded, causing graphite particles to fall off, which is a problem. Furthermore, when a graphitic carbon material electrode is used in an aqueous solution containing sulfate ions, there is a problem in that the sulfate ions enter between the graphite crystal layers and destroy and consume the graphite.

さらに黒鉛質炭素とするためには非常に高温の熱処理を
必要とし製造するのに多大のエネルギーを消費するとい
う問題がある。
Furthermore, there is a problem in that graphitic carbon requires heat treatment at a very high temperature and consumes a large amount of energy to produce.

下水、上水汚泥の電気浸透脱水に使用する炭素質電極と
しては、電極の消耗が少ないことは勿論、圧搾力を加え
ながら通電するので、圧搾力に対抗する物理的強度が電
極に要求され、また汚泥中には雑多な電解質が含まれる
ので、複雑な電気化学的機構で通電が阻害されるように
なるので、条件は一層苛酷である。先願にかかる特開昭
64−30613号はこの条件に適応する電極構成を与
え、また特開昭64−30614号はこの場合に電極を
反対極性に変換する基準を与えている。
Carbonaceous electrodes used for electroosmotic dehydration of sewage and water sludge require not only low wear and tear on the electrodes, but also physical strength to withstand the squeezing force as the current is applied while applying squeezing force. Moreover, since the sludge contains miscellaneous electrolytes, current flow is inhibited by a complex electrochemical mechanism, making the conditions even more severe. The earlier application, JP-A-64-30613, provides an electrode configuration adapted to this condition, and JP-A-64-30,614 provides a standard for converting the electrodes to the opposite polarity in this case.

しかし黒鉛電橋としては前記した問題が依然として残る
ので、安価に製作でき、−層長寿命で高強度の極基材が
要望されている。
However, since the above-mentioned problems still remain in graphite bridges, there is a need for a pole base material that can be produced at low cost, has a long lifespan, and has high strength.

(発明が解決しようとする課題) 本発明は従来技術の極基材の上記諸問題を解決し、特に
海水等の塩を含む水溶液系の電解用電極や電気浸透脱水
用電極として有用な長寿命、高強度の導電性のよい極基
材を提供することを課題とする。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of the polar base material of the prior art, and has a long life useful as an electrode for electrolysis of an aqueous solution system containing salt such as seawater or an electrode for electroosmotic dehydration. The object of the present invention is to provide a polar base material with high strength and good conductivity.

(課題を解決するための手段) 前記課題を解決するため、本発明においては、電解およ
び電気浸透脱水のための陽極および陰極の何れとしても
使用可能で、一定の通電量毎に極性を変換して使用され
る、炭素質からなる極基材として、その極基材を、広角
X線で求めた炭素の<002>面の半値巾が5.5’〜
8.0”であり、かつESCA (X′!a光電子分光
法)による表面分析で求めた酸素元素/炭素元素の相対
積分強度が0.18〜0.60であることを特徴とする
炭素質極基材とすることによって達成される。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a material that can be used as either an anode or a cathode for electrolytic and electroosmotic dehydration, and that changes polarity at every fixed amount of current. The half-width of the <002> plane of carbon determined by wide-angle X-ray is 5.5'~
8.0'' and a relative integrated intensity of oxygen element/carbon element determined by surface analysis using ESCA (X'!a photoelectron spectroscopy) of 0.18 to 0.60. This is achieved by using a polar base material.

本発明では、直流通電の所定通電量毎に極性変換するこ
とを前提として炭素質極基材の広角X線で求めた炭素の
半値中が5.5°以上となるようにする。炭素材が黒鉛
質になるほど<002>面の半値巾は例えば2°以下と
小さくなるが、本発明においては、できるだけ黒鉛質構
造から離れた炭素質とするため炭素質極基材の<002
>面の半値巾は大きくなるようにし、5.5’〜8.0
°までとする。しかし、この半値巾が8@より大きけれ
ば炭素材の導電性が急速に悪化し通電困難となる。反対
にこの半値巾が5.5°より小さければ炭素質極基材の
消耗が大きくなる。
In the present invention, on the premise that the polarity is changed every predetermined amount of DC current, the half-value of carbon determined by wide-angle X-rays of the carbonaceous electrode base material is set to be 5.5° or more. The half width of the <002> plane becomes smaller, for example, 2 degrees or less, as the carbon material becomes more graphitic. However, in the present invention, in order to make the carbon material as far away from the graphite structure as possible, the <002>
>The half width of the surface should be large, 5.5' to 8.0
up to °. However, if this half width is larger than 8@, the conductivity of the carbon material deteriorates rapidly, making it difficult to conduct electricity. On the other hand, if this half width is smaller than 5.5°, the consumption of the carbonaceous electrode base material becomes large.

その理由は明確でない。The reason is not clear.

さらに本発明では、炭素質極基材ESCA表面分析で求
めた酸素元素/炭素元素の相対積分強度を0.18以上
とする。炭素質極基材の<002>面の半値巾が大きい
ほど酸素元素/炭素元素の相対積分強度は大きくなる。
Furthermore, in the present invention, the relative integrated intensity of oxygen element/carbon element determined by ESCA surface analysis of the carbonaceous electrode base material is set to 0.18 or more. The larger the half width of the <002> plane of the carbonaceous electrode base material, the larger the relative integrated intensity of oxygen element/carbon element.

適切な範囲は0.18から0.60までである。この特
性値比が0.18より小さければ炭素質極基材の消耗量
が大となり、0.60より大きければ通電が困難となる
A suitable range is from 0.18 to 0.60. If this characteristic value ratio is smaller than 0.18, the amount of consumption of the carbonaceous electrode base material becomes large, and if it is larger than 0.60, it becomes difficult to conduct electricity.

(作用) 前記用途の極基材としては消耗量の低減、寿命の向上が
基本的に重要であるが、これに関して広角X線で求めた
炭素の<002>面の半値巾とESCA表面分析で求め
た酸素元素/炭素元素の相対積分強度とが前記のように
関連性を有するため何れが優先作用する重要要件である
かは明確でないが、本発明のように所定通電量毎に反対
極性に変換することを前提とする場合には、後者が重要
であると推考される。すなわち、炭素質極基材表面の酸
素元素は炭素元素に結合してガルボニル基、カルボキシ
ル基あるいは水酸基等の官能基を形成するので、極性変
換すると、これら官能基の一部に可逆的な酸化・還元反
応を生じ、それだけ水の電解量が少なくなり、発生酸素
による極基材の酸化消耗が少なくなるので、この電気化
学機構に密接に関係する酸素元素/炭素元素の相対積分
強度が直接的に影響すると思われる。
(Function) As a polar base material for the above applications, it is fundamentally important to reduce the amount of wear and improve the lifespan, and in this regard, the half width of the <002> plane of carbon determined by wide-angle X-rays and the ESCA surface analysis. Since the determined relative integrated intensities of oxygen element/carbon element are related as described above, it is not clear which is the important factor that acts preferentially, but as in the present invention, it is possible to If conversion is assumed, the latter is considered to be important. In other words, since the oxygen element on the surface of the carbonaceous electrode base material bonds with the carbon element to form functional groups such as galvonyl groups, carboxyl groups, or hydroxyl groups, when the polarity is changed, some of these functional groups undergo reversible oxidation and As a reduction reaction occurs, the amount of electrolyzed water is reduced, and the oxidative consumption of the electrode base material by the generated oxygen is reduced, so the relative integrated intensity of oxygen element/carbon element, which is closely related to this electrochemical mechanism, is directly affected. It seems to have an impact.

なお、この機構による電極消耗に関連する極性変換する
までの通電量は、電極単位面積当たり500クーロン/
 c+fi以下が好ましく、さらに好ましくは400ク
ーロン/ ctA以下とする。同一極性の継続通電量が
500クーロン/−以上では極性変換による電極消耗量
の低減効果が顕著でなくなる。
Note that the amount of current applied until polarity change related to electrode consumption due to this mechanism is 500 coulombs/unit area of the electrode.
It is preferably less than c+fi, more preferably less than 400 coulombs/ctA. When the amount of continuous energization of the same polarity is 500 coulombs/- or more, the effect of reducing the amount of electrode consumption due to polarity conversion is not significant.

次に炭素質極基材としては、物理的強度を増大すること
が、前記消耗低減と同等に重要であるが、この点では特
開昭64−30614号に開示の炭素繊維を含有する炭
素質材料からなることが好ましい。炭素繊維はポリアク
リロニトリル系、ピッチ系、レーヨン系等その何れでも
よいが、強度的に優れるポリアクリロニトリル系炭素繊
維が好ましい。炭素繊維を含有する炭素質極基材として
は、炭素質の10〜50重量%が繊維長2〜20■の炭
素短繊維であり、かつ実質的に二次元平面内にランダム
な方向に分散され積層されており、炭素繊維がバインダ
ー炭素によって互に結着している炭素質構成であること
が望ましい、かかる極基材は、例えば、ポリアクリロニ
トリル系の単糸の径4〜15μm、長さ2〜20mmの
炭素短繊維を使用し、ポリビニルアルコール等の抄造用
バインダを水で希釈した抄造媒体と混合、撹拌してシー
ト状、板状に抄造し、乾燥して溶媒を除去して中間基材
とし、これにフェノール樹脂等の炭素化し得る樹脂の溶
液を含浸し、ホットプレス成形して樹脂を硬化させ、の
ち不活性ガス雰囲気中で熱処理し含浸樹脂を炭化させる
ことにより得られる。
Next, as for the carbonaceous electrode base material, increasing the physical strength is as important as reducing wear and tear. Preferably, it is made of a material. The carbon fibers may be polyacrylonitrile-based, pitch-based, rayon-based, etc., but polyacrylonitrile-based carbon fibers are preferred because of their superior strength. As a carbonaceous polar base material containing carbon fibers, 10 to 50% by weight of the carbonaceous material is short carbon fibers with a fiber length of 2 to 20 cm, and is substantially dispersed in random directions within a two-dimensional plane. Such a polar base material, which is preferably laminated and has a carbonaceous structure in which carbon fibers are bonded to each other by binder carbon, is made of, for example, a polyacrylonitrile single yarn with a diameter of 4 to 15 μm and a length of 2 ~20mm short carbon fibers are mixed with a papermaking medium prepared by diluting a papermaking binder such as polyvinyl alcohol with water, stirred to form a sheet or plate, and dried to remove the solvent to create an intermediate base material. This is obtained by impregnating this with a solution of a carbonizable resin such as a phenol resin, hardening the resin by hot press molding, and then heat-treating in an inert gas atmosphere to carbonize the impregnated resin.

あるいは、不織布であるフェルト状炭素繊維に上記フェ
ノール樹脂を含浸させこの樹脂を炭化させてもよい。さ
らには炭素繊維の前駆体である耐炎化繊維あるいは白糸
を用いて樹脂と同時に炭化させてもよい。あるいは炭素
繊維と固形フェノール樹脂の混合物を金型に充填して加
熱プレスするバルクモールディングコンパウンド法によ
って成形させたのち炭化させてもよい。
Alternatively, felt-like carbon fiber, which is a nonwoven fabric, may be impregnated with the phenolic resin and the resin may be carbonized. Furthermore, flame-resistant fibers or white threads, which are precursors of carbon fibers, may be used and carbonized simultaneously with the resin. Alternatively, it may be molded by a bulk molding compound method in which a mixture of carbon fibers and solid phenol resin is filled into a mold and hot pressed, and then carbonized.

炭素質極基材を、充分な物理的強度の得られる炭素繊維
を主体とする構成に上記の何れの方法によってつくる場
合においても、本発明のように広角X綿で求めた炭素の
<002>面の半値巾を5.5”〜8.0°にしESC
A表面分析で求めた酸素元素/炭素元素の相対積分強度
を0.18〜0.60にするには、上記フェノール樹脂
を炭化させる温度が重要な関係を持つ。すなわち上記本
発明要件を満足させる熱処理温度は1200°C以下、
好ましくは1000°Cから650°Cの低い温度範囲
である。熱処理温度が1200’Cより高いと、炭素質
極基材表面の酸素元素/炭素元素比が小さくなり、通電
に伴う極基材の消耗量が大きくなる。
Even when the carbonaceous polar base material is made by any of the above methods to have a structure mainly composed of carbon fibers that can obtain sufficient physical strength, the <002> of carbon determined by wide-angle X cotton as in the present invention is used. Set the half width of the surface to 5.5” to 8.0° and ESC
In order to set the relative integrated intensity of oxygen element/carbon element determined by A surface analysis to 0.18 to 0.60, the temperature at which the phenol resin is carbonized has an important relationship. That is, the heat treatment temperature that satisfies the above requirements of the present invention is 1200°C or less,
Preferably it is in the low temperature range of 1000°C to 650°C. When the heat treatment temperature is higher than 1200'C, the oxygen element/carbon element ratio on the surface of the carbonaceous electrode base material becomes small, and the amount of consumption of the electrode base material due to energization becomes large.

またこれが650°C以下では炭化した樹脂の導電性が
低いという問題が生じる。
Further, if the temperature is below 650°C, a problem arises in that the carbonized resin has low conductivity.

(実施例) 以下、本発明を実施例によりさらに具体的に説明してそ
の特質を明らかにする。なお各実施例を通じて、E S
 CA (Electron Spectrograp
hyfor Chemical Analysis :
X線光電子分光法)による炭素質極基材表面の酸素元素
/炭素元素の相対積分強度は、■島津製作所、ESCA
750を用い、励起X線としてMg Kα1.2線(h
ν=1253.6 eV)を使用して測定した。またエ
ネルギー補正としてC10のメインピークの結合エネル
ギー(B、E、)値を284.6 eVに合わせた。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples to clarify its characteristics. In addition, throughout each example, E S
CA (Electron Spectrograph
Hyfor Chemical Analysis:
The relative integrated intensity of oxygen element/carbon element on the surface of the carbonaceous electrode base material by X-ray photoelectron spectroscopy) is determined by ■ Shimadzu Corporation, ESCA
750, and Mg Kα1.2 ray (h
ν=1253.6 eV). Further, as an energy correction, the binding energy (B, E,) value of the main peak of C10 was adjusted to 284.6 eV.

また広角X線回折による炭素結晶の<002>面から得
られるピークの半値巾は、理学電機社製4032A2型
を用い、X線源としてCukα線を使用して透過法で測
定した。出力は35KV、 15mAである。
Further, the half-width of the peak obtained from the <002> plane of the carbon crystal by wide-angle X-ray diffraction was measured by a transmission method using Model 4032A2 manufactured by Rigaku Denki Co., Ltd. and using Cukα rays as the X-ray source. The output is 35KV and 15mA.

(1)実施例A 東し■製ポリアクリロニトリル系炭素繊維、トレカT−
300を長さ12mmに切断し、ポリビニールアルコー
ルの水溶液に分散させて抄造した。
(1) Example A Polyacrylonitrile carbon fiber manufactured by Toshi ■, trading card T-
300 was cut into a length of 12 mm, dispersed in an aqueous solution of polyvinyl alcohol, and made into paper.

次いで抄造紙にフェノール樹脂を含浸させ乾燥させたの
ち、ホットプレスにより樹脂を硬化させた。次いで窒素
雰囲気中にて800℃で熱処理しフェノール樹脂を炭化
して厚みが約511II11、見掛は比重が1.05g
/cnllO本発明の炭素質極基材を得た。
Next, the paper was impregnated with a phenol resin and dried, and then the resin was cured by hot pressing. The phenol resin was then heat treated at 800°C in a nitrogen atmosphere to carbonize it to a thickness of approximately 511II11 and an apparent specific gravity of 1.05g.
/cnllO A carbonaceous electrode base material of the present invention was obtained.

この炭素質極基材の広角X線で求めた炭素の<002>
面の半値巾は6.6°であり、ESCA表面分析による
酸素元素/炭素元素の相対積分強度比は0.25であっ
た。
<002> of carbon determined by wide-angle X-ray of this carbonaceous electrode base material
The half width of the surface was 6.6°, and the relative integrated intensity ratio of oxygen element/carbon element by ESCA surface analysis was 0.25.

この本発明極基材を第1図に示すように、陽極(1)お
よび陰極(2)とし、CaC1t 4g /lの水溶液
(3)中で、直流電源(4)、電圧計(5)を用いて0
.02A/ciiの電流密度で20分間隔で極性変換し
て通電し、通電消耗量を調べたところ、第2図の横軸の
通電時間(Hr)、縦軸の重量残量(%)の図上で線(
A)で示すようになる。これで電極消耗量は0.01g
/AH以下に押さえることが可能となる。
As shown in FIG. 1, the electrode base material of the present invention was used as an anode (1) and a cathode (2), and a DC power source (4) and a voltmeter (5) were connected in an aqueous solution (3) containing 4 g/l of CaClt. Use 0
.. When we investigated the current consumption by changing the polarity at 20 minute intervals at a current density of 0.02A/cii, we found that the horizontal axis in Figure 2 shows the current application time (Hr) and the vertical axis shows the remaining weight (%). Line above (
A). Now the electrode consumption is 0.01g
/AH or less.

(n)実施例B 実施例(1)でのフェノール樹脂の炭化熱処理温度を1
000℃として他の条件はすべて実施例(I)と同じに
して実施し、本発明の炭素質極基材を得た。その広角X
綿で求めた炭素の<002>面の半値巾は6.5°であ
り、ESCA表面分析で求めた酸素元素/炭素元素の特
性値は約0.25であった。実施例(1)と同様に第1
図の方法によりその電極消耗量を調べたところ、第2図
の線(B)で示す結果が得られた。
(n) Example B The carbonization heat treatment temperature of the phenol resin in Example (1) was changed to 1
The temperature was set at 000°C and all other conditions were the same as in Example (I) to obtain the carbonaceous electrode base material of the present invention. That wide angle
The half width of the <002> plane of carbon determined from cotton was 6.5°, and the characteristic value of oxygen element/carbon element determined by ESCA surface analysis was about 0.25. As in Example (1), the first
When the amount of electrode consumption was investigated using the method shown in the figure, the results shown by line (B) in FIG. 2 were obtained.

(III)比較例C 実施例(1)でのフェノール樹脂炭化熱処理温度を25
00°Cとして他の条件はすべて実施例(1)と同様に
して、比較例の炭素質極基材を得た。この極基材の広角
X線で求めた炭素の〈002〉面の半値中は約2″であ
り、ESCA表面分析の酸素元素/炭素元素の特性値は
0.1以下で本発明外である。その通電消耗量を調べた
ところ、第2図の線(C)に示すようになり、消耗量は
実施例(1)(n)よりはるかに大きい。
(III) Comparative Example C The phenol resin carbonization heat treatment temperature in Example (1) was set to 25
00°C and all other conditions were the same as in Example (1) to obtain a carbonaceous electrode base material of a comparative example. The half value of the <002> plane of carbon determined by wide-angle X-rays of this polar base material is approximately 2'', and the characteristic value of oxygen element/carbon element in ESCA surface analysis is 0.1 or less, which is outside the scope of the present invention. When the amount of current consumption was investigated, it was shown as line (C) in FIG. 2, and the amount of consumption was much larger than that of Examples (1) and (n).

(発明の効果) 以上のように極性変換を併せて通電する炭素質極基材の
広角X線で求めた炭素の<002>面の半値中を5.5
°〜8.0°とし、かつESCA表面分析で求めた酸素
元素/炭素元素の相対積分強度比を0.18〜0.60
とした本発明炭素質極基材は、通電消耗量が格段に少な
く、かつ高い物理的強度とすることができるので、電解
用および電気浸透脱水用として有用効果を発揮する。
(Effect of the invention) As described above, the half value of the <002> plane of carbon obtained by wide-angle X-ray of the carbonaceous electrode base material which is energized together with polarity conversion is 5.5.
°~8.0°, and the relative integrated intensity ratio of oxygen element/carbon element determined by ESCA surface analysis is 0.18~0.60.
The carbonaceous electrode base material of the present invention exhibits a significantly small amount of current consumption and high physical strength, and therefore exhibits useful effects for electrolysis and electroosmotic dehydration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素質極基材の通電消耗試験に用いた装置の概
略を示す図、第2図は横軸に通電時間、縦軸に重量残量
をとり本発明実施例の炭素質極基材の通電消耗試験結果
を比較例のそれと対比して示す図表である。 (])・・・陽極、(2)・・・陰極、(3)・・・水
溶液、(4)・・・直流電源、(5)・・・電圧計。 500 1000 通電時間 (1−T r )
Fig. 1 is a diagram showing the outline of the apparatus used for the current consumption test of the carbonaceous electrode substrate, and Fig. 2 shows the carbonaceous electrode substrate of the embodiment of the present invention, with the horizontal axis representing the energization time and the vertical axis representing the remaining weight. It is a chart showing the results of an energization consumption test of the material in comparison with that of a comparative example. (])... Anode, (2)... Cathode, (3)... Aqueous solution, (4)... DC power supply, (5)... Voltmeter. 500 1000 Current application time (1-Tr)

Claims (1)

【特許請求の範囲】[Claims] 電解および電気浸透脱水のための直流通電の陽極および
陰極の何れとしても使用可能で、一定の通電量毎に極性
を変換して使用される、炭素質からなる極基材であって
、その極基材は、広角X線で求めた炭素の<002>面
の半値巾が5.5゜〜8.0゜であり、かつESCA(
X線光電子分光法)による表面分析で求めた酸素元素/
炭素元素の相対積分強度が0.18〜0.60であるこ
とを特徴とする炭素質極基材。
An electrode base material made of carbonaceous material that can be used as either an anode or a cathode for direct current flow for electrolysis and electroosmotic dehydration, and is used by changing the polarity at each given amount of current. The base material has a carbon <002> plane half-width of 5.5° to 8.0° as determined by wide-angle X-ray, and an ESCA (
Oxygen element determined by surface analysis using X-ray photoelectron spectroscopy
A carbonaceous electrode base material characterized in that the relative integrated intensity of carbon element is 0.18 to 0.60.
JP1272478A 1989-10-18 1989-10-18 Carbonaceous electrode base material Pending JPH03135494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272478A JPH03135494A (en) 1989-10-18 1989-10-18 Carbonaceous electrode base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272478A JPH03135494A (en) 1989-10-18 1989-10-18 Carbonaceous electrode base material

Publications (1)

Publication Number Publication Date
JPH03135494A true JPH03135494A (en) 1991-06-10

Family

ID=17514487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272478A Pending JPH03135494A (en) 1989-10-18 1989-10-18 Carbonaceous electrode base material

Country Status (1)

Country Link
JP (1) JPH03135494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169253A (en) * 2003-12-11 2005-06-30 Hitachi Maxell Ltd Method for decreasing excess sludge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430613A (en) * 1987-07-24 1989-02-01 Shinko Pfaudler Electrode for electroendosmotic dehydration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430613A (en) * 1987-07-24 1989-02-01 Shinko Pfaudler Electrode for electroendosmotic dehydration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169253A (en) * 2003-12-11 2005-06-30 Hitachi Maxell Ltd Method for decreasing excess sludge
JP4712297B2 (en) * 2003-12-11 2011-06-29 株式会社日立プラントテクノロジー Method for reducing excess sludge

Similar Documents

Publication Publication Date Title
Jing et al. Fe3Se4/FeSe heterojunctions in cornstalk-derived N-doped carbon framework enhance charge transfer and cathodic oxygen reduction reaction to boost bio-electricity generation
Xiang et al. Cr2O3-modified graphite felt as a novel positive electrode for vanadium redox flow battery
CN111170415B (en) Titanium oxide/ruthenium oxide composite electrode and preparation method and application thereof
CN104838051B (en) A kind of oxygen and nitrogen co-doped polyacrylonitrile-based carbon fibre and preparation method thereof
Jia et al. High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash
Zhang et al. Studies on properties of rayon-and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance
JP2006156029A (en) Carbon electrode material for vanadium redox flow battery
Huang et al. Long-term electricity generation and denitrification performance of MFCs with different exchange membranes and electrode materials
Mehdinia et al. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
JPH08287938A (en) Redox battery
Wang et al. Graphene modified polyacrylonitrile fiber as high-performance cathode for marine sediment microbial fuel cells
KR20180027428A (en) Electrode for redox flow battery, and redox flow battery system
JP6728776B2 (en) Catalyst composition, electrode for organic wastewater treatment device, and organic wastewater treatment device
Kim et al. Multiwalled carbon nanotube/polyarcylonitrile composite as anode material for microbial fuel cells application
JPH03135494A (en) Carbonaceous electrode base material
CA3011898C (en) Carbon catalyst for redox flow battery electrodes
Floner et al. Homogeneous coating of graphite felt by nickel electrodeposition to achieve light nickel felts with high surface area
Hosseini et al. RuO 2 modification of graphene oxide-multiwalled carbon nanotubes as excellent positive electrode for vanadium redox flow battery
JPS60253163A (en) Laminated electrolytic cell
JP6557824B2 (en) Carbon electrode and carbon electrode manufacturing method
KR101969140B1 (en) An improved electrode for Vanadium Flow Battery and the Vanadium Flow Battery comprising the same
CA3012340C (en) Carbon catalyst for redox flow battery electrodes
JPH11267651A (en) Porous carbon electrode for water treatment
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
CN107785587A (en) Improve functional vanadium flow battery electrode and use its vanadium flow battery