JP4712297B2 - Method for reducing excess sludge - Google Patents

Method for reducing excess sludge Download PDF

Info

Publication number
JP4712297B2
JP4712297B2 JP2003412756A JP2003412756A JP4712297B2 JP 4712297 B2 JP4712297 B2 JP 4712297B2 JP 2003412756 A JP2003412756 A JP 2003412756A JP 2003412756 A JP2003412756 A JP 2003412756A JP 4712297 B2 JP4712297 B2 JP 4712297B2
Authority
JP
Japan
Prior art keywords
sludge
electrode
polarity
tank
excess sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003412756A
Other languages
Japanese (ja)
Other versions
JP2005169253A (en
Inventor
和幸 染井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003412756A priority Critical patent/JP4712297B2/en
Publication of JP2005169253A publication Critical patent/JP2005169253A/en
Application granted granted Critical
Publication of JP4712297B2 publication Critical patent/JP4712297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、余剰汚泥の削減システムに関し、さらに詳しくは、有機性汚水の微生物処理によって生じる余剰汚泥を電解(「電気分解」を簡略化して「電解」で表す)により削減する方法であって、電解時の電極への不導体化物の析出を防止して、効率よく余剰汚泥を削減することができる、余剰汚泥の削減方法に関する。   The present invention relates to a surplus sludge reduction system, more specifically, a method for reducing surplus sludge generated by microbial treatment of organic wastewater by electrolysis (represented by “electrolysis” by simplifying “electrolysis”), The present invention relates to a method for reducing excess sludge, which can prevent the precipitation of non-conductors on an electrode during electrolysis and efficiently reduce excess sludge.

有機性汚水の微生物処理では、汚水中に存在する可溶性有機物を微生物が消化処理する一方で微生物の増殖を引き起こす。この増殖した微生物を含む汚泥はいわゆる余剰汚泥として排出する必要がある。この余剰汚泥は脱水処理した後にそのまま埋立処分されるか、または焼却処分されているが、余剰汚泥が難脱水性であるため、脱水処理した後でも70〜80質量%の水分を有するのが通常である。従って、これをそのまま埋立処分するにしても固形分20〜30質量%程度のものを運搬し埋め立てることになり、その質量および体積の大半が大部分を占める水分の搬送費および埋立費として費やされているのが現状である。また、焼却処分するにしても同様で余剰汚泥中に多量に存在する水分のためにその乾燥および蒸発潜熱にエネルギーの大半が費やされているのが現状であって、その費用は高額なものとなっている。   In microbial treatment of organic sewage, the microorganisms digest the soluble organic matter present in the sewage while causing microbial growth. The sludge containing the grown microorganisms needs to be discharged as so-called surplus sludge. This surplus sludge is either landfilled or incinerated after being dehydrated, but the surplus sludge is difficult to dehydrate, so it usually has 70 to 80% by mass of water even after dehydration. It is. Therefore, even if this is landfilled as it is, it will be transported and landfilled with a solid content of about 20 to 30% by mass, and the mass and volume of the majority will be spent as moisture transportation and landfill costs. This is the current situation. In addition, even if it is incinerated, most of the energy is spent on drying and latent heat of evaporation due to the large amount of moisture in the excess sludge, and the cost is high. It has become.

これら余剰汚泥の量は年々増加の一途をたどっており、前記埋立処分するにしても焼却処分にしてもいずれも処理費用の占める割合が高く、また埋立場所の確保や焼却残さの処理など、経済面および環境面の両面において問題が顕在化している。   The amount of excess sludge has been increasing year by year, and the disposal cost is high for both landfill disposal and incineration. The problem has become obvious in both environmental and environmental aspects.

こうした背景の下で、この余剰汚泥の処理に微生物処理を有効に活用することが検討されている。余剰汚泥はその中に含まれている微生物を一旦死滅させて可溶性の有機物にすれば有機物の消化処理同様に活性汚泥により消化処理されることはよく知られている。可溶性有機物の消化処理により増殖した余剰汚泥を死滅させて可溶性有機物にした後、活性汚泥槽に返送することで微生物が可溶性有機物の消化処理を行い、余剰汚泥を減量化(または減容化)する。すなわち、余剰汚泥中の可溶性有機物を微生物に消化処理させることによって、余剰汚泥中の微生物は可溶性有機物を経てCO2 とH2 Oとに分解されて減量化される。 Under such a background, effective utilization of microbial treatment for the treatment of surplus sludge has been studied. It is well known that surplus sludge is digested with activated sludge in the same way as digestion of organic matter once the microorganisms contained therein are killed to form soluble organic matter. After surplus sludge grown by digestion of soluble organic matter is killed and converted to soluble organic matter, the microorganisms digest the soluble organic matter by returning it to the activated sludge tank, reducing the excess sludge (or reducing the volume). . That is, by digesting the soluble organic matter in the excess sludge with microorganisms, the microorganisms in the excess sludge are decomposed into CO 2 and H 2 O via the soluble organic matter, and the amount is reduced.

余剰汚泥を減量化させる手段としては、種々の方法が提案されており、例えば、余剰汚泥に塩化物を添加して電解(電気分解)することによって余剰汚泥中の微生物を死滅させ、それを活性汚泥槽に返送することで余剰汚泥を減量化する方法が提案されている(例えば、特許文献1参照)。
特開2002−126782号公報
Various methods have been proposed for reducing the amount of excess sludge. For example, by adding chloride to the excess sludge and electrolyzing it, the microorganisms in the excess sludge are killed and activated. A method of reducing excess sludge by returning it to the sludge tank has been proposed (see, for example, Patent Document 1).
JP 2002-126782 A

この方法によれば、電解処理時に電極で次亜塩素酸(HClO)を発生させ、その電極で発生した次亜塩素酸による酸化力を利用して余剰汚泥中の微生物を死滅させ、死滅した微生物を活性汚泥槽中に戻すことにより、微生物を可溶性の有機物として消化処理させることができる。   According to this method, hypochlorous acid (HClO) is generated at the electrode during electrolytic treatment, and microorganisms in excess sludge are killed using the oxidizing power of hypochlorous acid generated at the electrode, and the killed microorganisms Is returned to the activated sludge tank to digest the microorganisms as soluble organic matter.

しかしながら、上記電解処理で余剰汚泥を直接電解処理した場合、余剰汚泥中に存在するミネラル成分含有物が酸化物や水酸化物などの化合物となってアノード(負極)に析出し、電極を不導体化させて導電率を低下させたり、あるいは電極を絶縁化して電解時の電流を流れにくくさせるという問題があった。   However, when the excess sludge is directly electrolytically treated by the above-mentioned electrolytic treatment, the mineral component-containing material present in the excess sludge is deposited on the anode (negative electrode) as a compound such as an oxide or hydroxide, and the electrode is not a conductor. There has been a problem that the conductivity is lowered by reducing the conductivity, or the electrode is insulated to make it difficult for current to flow during electrolysis.

この問題を解決するための方法としては、機械的なメンテナンスによる不導体化析出物の除去や電極の極性反転による不導体化析出物の除去方法が考えられる。後者の電極の極性反転による不導体化析出物の除去方法は一般に浄水器などのアルカリ成分を作るための機器に用いられており、この用途で用いる場合において、極性反転はおよそ60秒間に1秒の割合で行われるなど周期的に反転するのが一般的であり、これはアルカリ、酸などを各電極で作り出してそれぞれの配管から流すためである。   As a method for solving this problem, there can be considered a method of removing a non-conductive precipitate by mechanical maintenance or a method of removing a non-conductive precipitate by reversing the polarity of an electrode. The latter method of removing non-conductive precipitates by reversing the polarity of the electrodes is generally used in equipment for producing alkaline components such as water purifiers, and in this application, polarity reversal takes approximately 1 second every 60 seconds. In general, the inversion is periodically performed, for example, in order to produce alkali, acid, or the like at each electrode and flow from each pipe.

しかしながら、上記電極の極性反転による方法を余剰汚泥の電解処理に用いた場合、余剰汚泥は水道水よりはるかに多いミネラル成分を含有しているため、定期的な極性反転では電極への不導体化析出物を充分に除去することができなかった。   However, when the electrode polarity reversal method is used for surplus sludge electrolysis, the surplus sludge contains much more minerals than tap water, so periodic polarity reversal makes the electrode nonconductive. The precipitate could not be removed sufficiently.

本発明は、上記のように従来の余剰汚泥の削減にあたっての電解処理時における問題点を解決し、電解処理時に電極に不導体化物が析出するのを防止して、電解処理により、余剰汚泥中の微生物を効率的に死滅化させ、余剰汚泥を効率よく削減することができる方法を提供することを目的とする。   The present invention solves the problems during the electrolytic treatment in reducing the conventional excess sludge as described above, prevents the decontamination from being deposited on the electrode during the electrolytic treatment, It is an object of the present invention to provide a method capable of efficiently killing microorganisms and efficiently reducing excess sludge.

本発明は、有機性汚水の微生物処理により生じる余剰汚泥を削減するにあたり、活性汚泥槽からの活性汚泥含有液を濃縮汚泥と上澄液とに分離し、濃縮汚泥の一部を活性汚泥槽に返送する第一工程と、前記余剰汚泥を電解槽内で直流電流を通電する、材料が陰極、陽極ともグラファイトであり、そのカーボン純度が95%以上である電極を用いて電解処理を施す第二工程と、処理した余剰汚泥を再び活性汚泥槽に返送する第三工程とを有し、前記第二工程において行う電解処理時に電極の極性反転の時間比率が0%となるように周期10分ごとに極性の反転を行い、電極の極性反転時に0.1秒から1分の停止時間を設け、かつ、電極の極性反転時の電流を0%から100%まで増加または100%から0%まで減少するのに要する時間を0.01秒から1分とするように電極の極性を一定の周期で反転させることにより、電極への不導体化物の析出を防止しつつ、余剰汚泥を削減することによって、前記課題を解決したものである。 In the present invention, in reducing surplus sludge generated by microbial treatment of organic sludge, the activated sludge-containing liquid from the activated sludge tank is separated into concentrated sludge and supernatant liquid, and a part of the concentrated sludge is converted into the activated sludge tank. A first step of returning the second sludge, and applying a direct current to the surplus sludge in an electrolytic cell ; the second material is an electrolytic treatment using an electrode whose cathode and anode are both graphite and whose carbon purity is 95% or more . process and, and a third step of returning again activated sludge tank the excess sludge treatment time ratio of polarity reversal of the electrodes during the electrolysis process carried out in the second step is 50% and so as to periodically 10 minutes The polarity is reversed every time, a stop time of 0.1 second to 1 minute is provided when the polarity of the electrode is reversed, and the current when the polarity of the electrode is reversed is increased from 0% to 100% or from 100% to 0%. The time it takes to decrease By reversing the polarity of the electrode at a constant cycle from 0.01 second to 1 minute, the above problem was solved by reducing the excess sludge while preventing the deposition of the non-conductive material on the electrode. Is.

すなわち、本発明においては、前記第二程の電解処理時に、例えば、電源にスイッチ素子を設け、交互に切り替えて電極への印加電圧を逆転させるなどの方法を用いて電極を反転させることにより、余剰汚泥中に含まれるカルシウム、マグネシウムなどのミネラル成分が不導体化物として電極に析出するのを防止し、それによって、電極への不導体化析出物による電極の導電率の低下やそれに基づく電解効率の低下を防止することができる。従って、本発明によれば、電解時に生じる電極への不導体化析出物によって妨げられることなく、余剰汚泥を効率よく削減することができる。 That is, in the present invention, during the electrolytic treatment of as the second factory, for instance, a switching element provided in the power supply, by reversing the electrode using a method such as reversing the applied voltage is switched alternately to the electrode , Preventing mineral components such as calcium and magnesium contained in the excess sludge from depositing on the electrode as a deconductor, thereby reducing the conductivity of the electrode due to the non-conductive deposit on the electrode and electrolysis based on it. A decrease in efficiency can be prevented. Therefore, according to the present invention, it is possible to efficiently reduce excess sludge without being hindered by the non-conducting precipitate on the electrode generated during electrolysis.

本発明によれば、有機性汚水の微生物処理により生じる余剰汚泥を効率よく削減することができる。   According to the present invention, it is possible to efficiently reduce excess sludge generated by microbial treatment of organic wastewater.

すなわち、本発明においては、前記のように、活性汚泥槽からの活性汚泥含有液を濃縮汚泥と上澄液とに分離し、濃縮汚泥の一部を活性汚泥槽に返送する第一工程と、前記余剰汚泥を電解槽内で直流電流を通電する、材料が陰極、陽極ともグラファイトであり、そのカーボン純度が95%以上である電極を用いて電気分解処理を施す第二工程と、処理した余剰汚泥を再び活性汚泥槽に返送する第三工程を有する電解処理による余剰汚泥の削減システムにおいて、前記第二工程において行う電解処理時に電極の極性反転の時間比率が0%となるように周期10分ごとに極性の反転を行い、電極の極性反転時に0.1秒から1分の停止時間を設け、かつ、電極の極性反転時の電流を0%から100%まで増加または100%から0%まで減少するのに要する時間を0.01秒から1分とするように電極の極性を反転させることにより、電極への不導体化物の析出を防止して、電極への不導体化析出物によって余剰汚泥の電解処理が妨げられることなく、効率的な電解処理が行えるようにして、余剰汚泥を効率よく削減することができるようにしたのである。 That is, in the present invention, as described above, the activated sludge-containing liquid from the activated sludge tank is separated into concentrated sludge and supernatant liquid, and a part of the concentrated sludge is returned to the activated sludge tank; The surplus sludge is energized with a direct current in an electrolytic cell , the material is a cathode and an anode, both of which are graphite, and the carbon purity is 95% or more. in reduction system excess sludge by electrolysis with a third step for returning sludge again in the activated sludge tank, wherein the second period so that the time ratio of the polarity reversal of the electrodes during the electrolysis process carried out in step is 50% 10 The polarity is reversed every minute, and when the polarity of the electrode is reversed, a stop time of 0.1 second to 1 minute is provided, and the current when the polarity of the electrode is reversed is increased from 0% to 100% or from 100% to 0%. Decrease to By reversing the polarity of the electrode so that the time required for the treatment is from 0.01 second to 1 minute, it is possible to prevent the deposition of the non-conductive material on the electrode, and the excess sludge is generated by the non-conductive material on the electrode. Thus, it is possible to efficiently reduce the excess sludge so that the electrolytic treatment can be performed efficiently without being hindered.

本発明において、前記第二工程の電解処理に用いる電極の材料は、陰極、陽極ともにグラファイト使用することができる。その他の材料を用いた場合、反転を周期的に行うことによって電極が溶解するか、あるいは、不導体化するなどの問題が生じるようになる。また、前記グラファイトのカーボン純度は95%以上であることが好ましい。カーボン純度が低い場合、電位が安定しないことや、消耗が激しいなどの問題が生じるようになる。 In the present invention, the electrode material used for the electrolytic treatment in the second step may be graphite for both the cathode and the anode. When other materials are used, problems such as electrode dissolution or non-conductivity occur due to periodic inversion. The carbon purity of the graphite is preferably 95% or more. When the carbon purity is low, problems such as unstable electric potential and severe exhaustion occur.

電極の極性反転の時間比率(すなわち、一方の電極を陰極としているときと陽極としているときとの時間比率)は、電極への不導体化物の析出除去と電極の消耗を考え合わせると50%が好ましい。これを詳しく説明すると、陽極は電解時に酸化されるため、電極材料としてグラファイトなどの炭素を用いていると、炭素が二酸化炭素になる反応が生じ陽極が消耗する。そのため、対となって存在する陽極と陰極を均一に消耗させるには電極の極性反転の時間比率は50%が好ましい。極性反転の時間比率を50%に近付けることで、電極への不導体化物の析出を防止することができるとともに、電極の消耗の均一化も図れるのである。また、この電極の極性反転の切替時には0.01秒から1分間の電解の休止時間を設けることが好ましい。すなわち、極性反転時に過渡的に電極にストレスが加わり消耗が加速するが、休止を設けることにより、極性反転の際に生じるストレスを緩和することができ消耗を抑えることができるからである。 Time ratio of the polarity reversal of the electrodes (i.e., the time ratio of the time you are an anode while the one electrode and the cathode) is Taken together exhaustion of precipitation removal and electrodes nonconductor product to the electrode, 50% Is preferred. More specifically, since the anode is oxidized during electrolysis, if carbon such as graphite is used as an electrode material, the reaction of carbon into carbon dioxide occurs and the anode is consumed. Therefore, in order to uniformly consume the anode and cathode present in pairs the time ratio of the electrode polarity reversal, preferably 50%. By bringing the time ratio of polarity reversal closer to 50%, it is possible to prevent the deposition of non-conductors on the electrode and to make the electrode wear even. Further, it is preferable to provide an electrolysis rest period of 0.01 second to 1 minute when switching the polarity inversion of the electrode. That is, stress is applied to the electrode transiently during polarity reversal and wear is accelerated, but by providing a pause, stress generated during polarity reversal can be mitigated and wear can be suppressed.

また、極性反転時の電流は0%から100%まで増加または100%から0%まで減少するのに要する時間は0.1秒から1分間とすることが好ましい。そうすることによって、極性反転時に過渡的に電極に与えられるストレスを緩和できる。   Further, the time required for the current during polarity reversal to increase from 0% to 100% or decrease from 100% to 0% is preferably from 0.1 second to 1 minute. By doing so, the stress transiently given to an electrode at the time of polarity reversal can be relieved.

次に、本発明の有機性汚水の微生物処理により生じる余剰汚泥の削減方法の実施の形態を図1および図2を用いて説明する。   Next, an embodiment of a method for reducing excess sludge generated by microbial treatment of organic wastewater according to the present invention will be described with reference to FIGS.

図1は本発明の有機性汚水の微生物処理により生じる余剰汚泥の削減方法を実施するための処理プロセスの概要を示す図であり、図2はその要部と電解処理に用いる電解装置を示す図である。   FIG. 1 is a diagram showing an outline of a treatment process for carrying out the method for reducing excess sludge generated by microbial treatment of organic wastewater of the present invention, and FIG. 2 is a diagram showing an essential part thereof and an electrolyzer used for electrolytic treatment. It is.

上記処理プロセスにおいて、まず、有機性汚水1は活性汚泥槽(曝気槽)2に導入され、その活性汚泥槽2中で微生物によって消化処理される。そして、その活性汚泥槽2から排出された活性汚泥含有液3は沈殿槽4に導入され、その沈殿槽4中で重力沈降法により活性汚泥を沈殿させ、濃縮汚泥と上澄液とに分離される。沈殿槽4中の上澄液は処理済水5として沈殿槽4から排出され、この処理済水5は殺菌して処理プロセス系外に放出される。   In the above treatment process, the organic sewage 1 is first introduced into an activated sludge tank (aeration tank) 2 and digested by microorganisms in the activated sludge tank 2. And the activated sludge containing liquid 3 discharged | emitted from the activated sludge tank 2 is introduce | transduced into the sedimentation tank 4, and activated sludge is settled by the gravity sedimentation method in the sedimentation tank 4, and it isolate | separates into a concentrated sludge and a supernatant liquid. The The supernatant liquid in the settling tank 4 is discharged from the settling tank 4 as treated water 5, and the treated water 5 is sterilized and discharged out of the treatment process system.

そして、沈殿槽4の底部に沈殿して濃度が高くなった活性汚泥は濃縮汚泥6として沈殿槽4から取り出され、そのうちの一部が返送汚泥7として前記活性汚泥槽2に戻される。ここまでのプロセスは従来の有機性汚水の微生物処理の場合と同様であるが、本発明では、この従来プロセスにおける濃縮汚泥の一部を余剰汚泥として引き抜き、後記のように、その余剰汚泥に特定の態様で電解を施し、余剰汚泥中の微生物を死滅させ、溶解性有機物に変えて微生物による消化処理を容易にさせる。   Then, the activated sludge precipitated at the bottom of the sedimentation tank 4 and having a high concentration is taken out from the sedimentation tank 4 as concentrated sludge 6, and a part of the sludge is returned to the activated sludge tank 2 as return sludge 7. The process so far is the same as in the case of conventional microbial treatment of organic wastewater, but in the present invention, a part of the concentrated sludge in this conventional process is extracted as excess sludge and specified as the excess sludge as described below. In this embodiment, electrolysis is performed to kill the microorganisms in the excess sludge and change to soluble organic substances to facilitate digestion with microorganisms.

そして、前記残りの濃縮汚泥6は余剰汚泥8として薬剤混合槽9に送られ、通常、その薬剤混合槽9中で上記余剰汚泥8に塩化物が添加され、かつ酸が添加されてpHが2〜6に調整されるとともに固形分濃度が0.2〜3質量%に調整される。   The remaining concentrated sludge 6 is sent to the chemical mixing tank 9 as surplus sludge 8, and usually chloride is added to the surplus sludge 8 in the chemical mixing tank 9 and an acid is added to adjust the pH to 2. The solid content concentration is adjusted to 0.2 to 3% by mass.

上記塩化物としては、例えば、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウムなどが好ましい。これは、それらの塩化物が後の電解処理工程において殺菌作用の高い次亜塩素酸を発生させやすいからである。そして、この余剰汚泥8への塩化物の添加量は0.1〜3.5質量%が好ましい。   As said chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride etc. are preferable, for example. This is because those chlorides tend to generate hypochlorous acid having a high bactericidal action in the subsequent electrolytic treatment process. And the addition amount of the chloride to this excess sludge 8 is preferably 0.1 to 3.5% by mass.

薬剤混合槽9において、余剰汚泥8に添加する酸は、殺菌作用(微生物の死滅化作用)を高めるために添加するものであるが、この酸としては、例えば、塩酸や硫酸などの強酸が好ましく、特に塩酸は次亜塩素酸の供給源にもなることから好ましい。   In the chemical mixing tank 9, the acid added to the excess sludge 8 is added to enhance the bactericidal action (microbe killing action). As this acid, for example, a strong acid such as hydrochloric acid or sulfuric acid is preferable. In particular, hydrochloric acid is preferable because it also serves as a source of hypochlorous acid.

本発明においては、上記のように余剰汚泥に酸を添加してpH2〜6に調整することによって、電解時に上記塩化物から効率よく次亜塩素酸を発生させ、殺菌作用を向上させることができるが、このpHとしては特にpH4〜6が好ましい。pHが2より低い場合は有害な塩素ガスが発生し、pHが6より高い場合は殺菌作用が低下するおそれがある。また、アルカリ性にすると、殺菌作用が低下するだけでなく、微生物の細胞壁が傷つけられやすく、プロテアーゼにより微生物内部から細胞壁を溶解させることができなくなり、不溶解性有機物を溶解性有機物に効率よく変えることができなくなるおそれがある。ただし、前記のような塩化物の添加や酸化によるpH調整、余剰汚泥の固形分濃度などは必ずしも上記例示の場合のみに限られることはない。   In the present invention, by adding acid to excess sludge as described above and adjusting to pH 2-6, hypochlorous acid can be efficiently generated from the chloride during electrolysis, and the bactericidal action can be improved. However, this pH is particularly preferably pH 4-6. When the pH is lower than 2, harmful chlorine gas is generated, and when the pH is higher than 6, the bactericidal action may be lowered. In addition, when alkaline, not only the bactericidal action is reduced, but also the cell wall of the microorganism is easily damaged, and it becomes impossible to dissolve the cell wall from inside the microorganism by protease, and the insoluble organic substance can be efficiently converted into the soluble organic substance. There is a risk that it will not be possible. However, pH adjustment by addition of chloride and oxidation as described above, solid content concentration of excess sludge, and the like are not necessarily limited to the above examples.

本発明の第二工程においては、薬剤混合槽9で薬剤(すなわち、塩化物と酸)が混合された余剰汚泥は薬剤混合汚泥10として電解槽11に導入され、その電解槽11において電解されることで、電極表面で生じる次亜塩素酸による殺菌(微生物の死滅化)が行われる。上記電解時の電流密度は大きいほど、電解時間が短くて済むが、電極間の電圧が上昇して水の分解も起こり殺菌効率を低下させるため、電流密度は1〜100mA/cm2 が好ましく、特に2〜50mA/cm2 が好ましい。 In the second step of the present invention, surplus sludge mixed with the chemical (that is, chloride and acid) in the chemical mixing tank 9 is introduced into the electrolytic tank 11 as the chemical mixed sludge 10 and electrolyzed in the electrolytic tank 11. Thus, sterilization (determination of microorganisms) by hypochlorous acid generated on the electrode surface is performed. The larger the current density during the electrolysis, the shorter the electrolysis time, but the voltage between the electrodes rises and water is decomposed to reduce the sterilization efficiency. Therefore, the current density is preferably 1 to 100 mA / cm 2 , 2-50 mA / cm < 2 > is especially preferable.

ここで、この電解処理の詳細およびその電解処理における電極の極性反転を図2を参照しつつ説明する。まず、図2中の参照符号とその対象物について説明すると、21は電解槽であって、図1の電解槽11に対応するものである。22は塩化ナトリウムと塩酸が添加された余剰汚泥で、図1の薬液混合汚泥10に相当するものであり、電解処理では、いわば電解液に相当するものである。そして、23と24はそれぞれ電極Aと電極Bであって、これらの電極A、Bはその表面がいずれもカーボン純度95%以上のグラファイトで構成され、図2では1枚ずつしか示していないものの、実際には、それぞれ複数枚が並列に接続されている。25は電解用の電源であって、この電源25はタイミング発回路26からの指令で出力のオン・オフ、1秒から1分の漸増、漸減の立ち上がり、立下りができる特性を有している。27はスイッチの駆動回路であり、4個のスイッチ(スイッチング素子)28〜31は図2中においてSW1、SW2、SW3、SW4で表示されている。電解処理のための動作は、タイミング発回路26の作り出すタイミングで進行する。例えば、休止時間から説明を始めると、電源25の出力は最初はオフで、28〜31のスイッチ(SW1〜SW4)のいずれも開放である。この期間が1秒から1分持続した後、次の期間は、28のスイッチ(SW1)と31のスイッチ(SW4)が閉じ、電源25の出力は1秒から1分で0%から100%に立ち上がり、次の期間は100%の出力が電極A、Bに印加され続け、電解処理が行われる。この期間が1秒から10時間続いた後、電源25は1秒から1分で100%から0%に立ち下がる。   Here, details of the electrolytic treatment and polarity inversion of the electrodes in the electrolytic treatment will be described with reference to FIG. First, reference numerals and objects in FIG. 2 will be described. 21 is an electrolytic cell, which corresponds to the electrolytic cell 11 in FIG. Reference numeral 22 denotes an excess sludge to which sodium chloride and hydrochloric acid are added, which corresponds to the chemical liquid mixed sludge 10 in FIG. 1, and corresponds to an electrolytic solution in an electrolytic process. Reference numerals 23 and 24 denote an electrode A and an electrode B, respectively, and the surfaces of these electrodes A and B are both composed of graphite having a carbon purity of 95% or more, although only one sheet is shown in FIG. Actually, a plurality of each is connected in parallel. Reference numeral 25 denotes a power source for electrolysis, and this power source 25 has a characteristic capable of turning on / off the output, gradually increasing from 1 second to 1 minute, gradually rising and falling by a command from the timing generation circuit. . Reference numeral 27 denotes a switch drive circuit, and the four switches (switching elements) 28 to 31 are represented by SW1, SW2, SW3, and SW4 in FIG. The operation for the electrolytic process proceeds at a timing generated by the timing generation circuit 26. For example, when the description starts from the downtime, the output of the power supply 25 is initially off, and all the switches 28 to 31 (SW1 to SW4) are open. After this period lasts from 1 second to 1 minute, in the next period, 28 switches (SW1) and 31 switch (SW4) are closed, and the output of the power supply 25 is changed from 0% to 100% in 1 second to 1 minute. In the next period, a 100% output is continuously applied to the electrodes A and B, and the electrolytic treatment is performed. After this period lasts from 1 second to 10 hours, the power supply 25 falls from 100% to 0% in 1 second to 1 minute.

電源25がオフの後、28〜31のスイッチ(SW1〜SW4)はすべて開放で、この状態が0.01秒から1分続き、その後、29のスイッチ(SW2)との30のスイッチ(SW3)が閉じ、これで電極A、Bのアノードとカソードが入れ替わる。ついで電源25の出力は1秒から1分で0%から100%に立ち上がる、次の期間は100%の出力が電極に印加され続け、逆方向の電解が行われる。   After the power supply 25 is turned off, the switches 28 to 31 (SW1 to SW4) are all open, and this state lasts from 0.01 second to 1 minute, and then 30 switches (SW3) with 29 switches (SW2). Is closed, and the anodes and cathodes of the electrodes A and B are exchanged. Next, the output of the power source 25 rises from 0% to 100% in 1 second to 1 minute. In the next period, 100% output is continuously applied to the electrodes, and reverse electrolysis is performed.

次に、実施例を挙げて本発明をより具体的に説明するが、本発明はそれらの実施例に限定されるものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例1
図1に示す処理プロセスに基づき、次の(i)、(ii)、(iii)の条件で余剰汚泥の電解処理による削減を行った。なお、以下において、濃度を示す%は、特に基準を付記しないかぎり、質量%である。
(i) 余剰汚泥8として固形分濃度が0. 95%の余剰汚泥200mlを準備し、薬剤混合槽9としての200mlビーカーに投入した。なお、この余剰汚泥は、図2に示すように、有機性汚水1を活性汚泥槽2に導入し、その活性汚泥槽2で微生物により消化処理させ、その活性汚泥槽2から活性汚泥含有液3として排出し、その活性汚泥含有液3を沈殿槽4に導入し、その沈殿槽4で活性汚泥を沈殿させ、上澄液を処理済水5として沈殿槽4から放出し(この処理済水5は殺菌処理して処理系外に放出される)、沈殿して濃度が高くなった汚泥を濃縮汚泥6として沈殿槽4から取り出し、その濃縮汚泥6の一部を返送汚泥7として活性汚泥槽2に戻し、その際に残ったものを余剰汚泥8としたものである。
Example 1
Based on the treatment process shown in FIG. 1, the excess sludge was reduced by electrolytic treatment under the following conditions (i), (ii), and (iii). In the following, “%” indicating concentration is “% by mass” unless otherwise specified.
(I) As surplus sludge 8, 200 ml of surplus sludge having a solid content concentration of 0.95% was prepared and put into a 200 ml beaker as the chemical mixing tank 9. In addition, as shown in FIG. 2, this excess sludge introduce | transduces the organic sludge 1 into the activated sludge tank 2, is digested with the microorganisms in the activated sludge tank 2, and the activated sludge containing liquid 3 from the activated sludge tank 2 is shown. The activated sludge-containing liquid 3 is introduced into the sedimentation tank 4, the activated sludge is precipitated in the sedimentation tank 4, and the supernatant is discharged from the sedimentation tank 4 as treated water 5 (this treated water 5 Is discharged to the outside of the treatment system), and the sludge having a high concentration after precipitation is taken out from the sedimentation tank 4 as the concentrated sludge 6 and a part of the concentrated sludge 6 is returned as the sludge 7 to the activated sludge tank 2. In this case, surplus sludge 8 is obtained from the remaining portion.

(ii) 薬剤としては1.0gの塩化ナトリウムと、pH調整のための塩酸を用い、余剰汚泥8中に添加してpH約5に調整して薬剤混合汚泥10とした。この薬剤混合汚泥10中の塩化ナトリウムの濃度は0.5%であった。 (Ii) 1.0 g of sodium chloride and hydrochloric acid for pH adjustment were used as the chemicals, which were added to the excess sludge 8 to adjust the pH to about 5 to obtain a chemical mixed sludge 10. The concentration of sodium chloride in the drug mixed sludge 10 was 0.5%.

(iii) この薬剤混合汚泥10が入ったビーカーを電解槽11とし、電解用の正極および負極としてそれぞれ有効電極面積が25cm2 のアモルファスカーボン電極(乾燥時の質量:8.0g)を電極間距離15mmで薬剤混合汚泥中に差し込み、攪拌を行いながら図2に示す電解装置を用いて直流電流100mAで、周期10分ごとに極性の反転を行い、その際の停止(休止)時間は1秒とし、0mAから100mAおよび100mAから0mAまでの電流変化時間をそれぞれ0. 5秒として1時間通電した。このときの電圧は4.2Vで、汚泥の温度は25℃であった。 (Iii) The beaker containing the drug-mixed sludge 10 is used as an electrolytic cell 11, and an amorphous carbon electrode (mass when dried: 8.0 g) having an effective electrode area of 25 cm 2 is used as a positive electrode and a negative electrode for electrolysis. At 15 mm, it is inserted into the chemical mixed sludge, and while stirring, the polarity is reversed every 10 minutes with a direct current of 100 mA using the electrolysis apparatus shown in FIG. 2, and the stop (rest) time is 1 second. The current change time from 0 mA to 100 mA and 100 mA to 0 mA was 0.5 seconds, respectively, and the current was applied for 1 hour. The voltage at this time was 4.2 V, and the temperature of the sludge was 25 ° C.

上記処理の結果、薬剤混合時には多量の微生物が生存していたが、それに続く電解処理により殺菌され(殺菌率を溶存酸素の減少率から求めたところ95%であった。)、電解後の電極表面には析出物が見られなかった。   As a result of the above treatment, a large amount of microorganisms survived at the time of mixing the chemicals, but were sterilized by the subsequent electrolytic treatment (the sterilization rate was 95% as determined from the decrease rate of dissolved oxygen), and the electrode after electrolysis. No precipitate was observed on the surface.

上記殺菌率(微生物の死滅率)は、次のようにして求めた。すなわち、電解処理後の余剰汚泥に空気を10分間バブリングを行った後、溶存酸素の減少率を測定した。その溶存酸素の減少率の測定に先立ち、原液(固形分濃度が0. 95%の余剰汚泥)の溶存酸素の減少率から求めた殺菌率を0%とし、蒸留水の溶存酸素の減少率から求めた殺菌率を100%とし、上記原液に対して、その20%を蒸留水で希釈した余剰汚泥(活性汚泥)の殺菌率を20%とし、50%を蒸留水で希釈した余剰汚泥(活性汚泥)の殺菌率を50%とし、70%を蒸留水で希釈した余剰汚泥(活性汚泥)の殺菌率を70%として検量線を引き、この検量線を用いて溶存酸素の減少率の測定結果を殺菌率(微生物の死滅率)として求めた。その結果、前記のように、殺菌率(微生物の死滅率)は95%であった。また、前記(i)〜(iii)の程を10回繰り返した後の電解処理時の電位は4.2Vであり、電極の不導体化が生じていないことを示していた。また、電極の乾燥質量を測定したところ、電極の乾燥質量は7.7gと7.6gであって、もとより、不導体化析出物による電極の質量増加はなく、電極の質量減少はほぼ均等であり、かつ電極の消耗が少ないことを示していた。 The sterilization rate (microbe kill rate) was determined as follows. That is, the excess sludge after electrolytic treatment was bubbled with air for 10 minutes, and then the reduction rate of dissolved oxygen was measured. Prior to the measurement of the rate of decrease in dissolved oxygen, the sterilization rate obtained from the rate of decrease in dissolved oxygen in the stock solution (excess sludge with a solid content of 0.95%) was set to 0%, and the rate of decrease in dissolved oxygen from distilled water was The obtained sterilization rate is set to 100%, and the sterilization rate of 20% of excess sludge (activated sludge) diluted with distilled water is set to 20% and 50% of excess sludge diluted with distilled water (active) The sterilization rate of sludge) is 50%, 70% is diluted with distilled water, the sterilization rate of surplus sludge (activated sludge) is 70%, a calibration curve is drawn, and the measurement result of the decrease rate of dissolved oxygen using this calibration curve Was determined as the sterilization rate (microbe kill rate). As a result, as described above, the sterilization rate (microbe kill rate) was 95%. Further, the (i) ~ potential during electrolysis Engineering as an after repeating 10 times of (iii) is 4.2 V, showed that passivated electrodes does not occur. Moreover, when the dry mass of the electrode was measured, the dry mass of the electrode was 7.7 g and 7.6 g. Of course, there was no increase in the mass of the electrode due to the non-conductive precipitate, and the mass decrease in the electrode was almost uniform. And there was little consumption of the electrode.

比較例1
通常の直流電源を用いて直流電流100mAで、極性反転および停止(休止)を行わずに1時間通電した以外は、実施例1と同様に処理し、それらの場合における電解後の電極への析出物の付着状態および殺菌率を調べた。その結果、殺菌率は64%で、電解後のカソードの表面全体が白色析出物で覆われた状態になっていた。この白色析出物を分析した結果、表1に示すように余剰汚泥中に含まれている、カルシウムなどのミネラルを主成分とする析出物であった。また、(i)〜(iii)の程(ただし、極性反転を行わない)を10回繰り返した後の電解処理時の電位は5.2Vとなり、電極の不導体化が生じていることを示していた。また、電極の乾燥重量を測定したところ、陽極が7.1gであるのに対して陰極が8.1gになっていて、陽極は質量減少を起こし、陰極は不導体化物の析出により質量増加を起こしていた。
Comparative Example 1
The treatment was the same as in Example 1 except that the current was supplied for 1 hour without polarity reversal and stop (pause) at a DC current of 100 mA using a normal DC power supply, and deposition on the electrode after electrolysis in those cases The adhesion state and sterilization rate of the object were investigated. As a result, the sterilization rate was 64%, and the entire surface of the cathode after electrolysis was covered with white precipitates. As a result of analysis of the white precipitate, as shown in Table 1, it was a precipitate containing, as a main component, a mineral such as calcium contained in excess sludge. Further, that has arisen Engineering more (however, the polarity reversal is not performed) electrolytic treatment when the potential 5.2V next after repeated 10 times, passivated electrode of (i) ~ (iii) Was showing. Further, when the dry weight of the electrode was measured, the anode was 7.1 g while the cathode was 8.1 g, the anode caused a decrease in mass, and the cathode increased in mass due to the deposition of a non-conductor. I was waking up.

Figure 0004712297
Figure 0004712297

上記実施例1と比較例1との対比から明らかなように、電解処理時に電極の表面への不導体化物の析出を防止して、効率的な電解処理を行い、かつ電極の消耗を防止するためには、電解処理時に電極の極性反転を行うことが必要であることがわかる。   As is clear from the comparison between Example 1 and Comparative Example 1, the deposition of non-conductors on the surface of the electrode during electrolytic treatment is prevented, efficient electrolytic treatment is performed, and consumption of the electrode is prevented. For this purpose, it is understood that it is necessary to reverse the polarity of the electrode during the electrolytic treatment.

図1は本発明の有機性汚水の微生物処理により生じる余剰汚泥の削減方法を実施するための処理プロセスの概要を示す図である。FIG. 1 is a diagram showing an outline of a treatment process for carrying out a method for reducing excess sludge generated by microbial treatment of organic wastewater according to the present invention. 図1の要部と電解処理に用いる電解装置の概略を示す図である。It is a figure which shows the outline of the electrolysis apparatus used for the principal part and electrolytic treatment of FIG.

符号の説明Explanation of symbols

1 有機性汚水
2 活性汚泥槽
3 活性汚泥含有液
4 沈殿槽
5 処理済水
6 濃縮汚泥
7 返送汚泥
8 余剰汚泥
9 薬剤混合槽
10 薬剤混合汚泥
11 電解槽
21 電解槽
22 余剰汚泥(薬剤混合汚泥)
23 電極A
24 電極B
25 電源
26 タイミング発回路
27 スイッチの駆動回路
28 スイッチ(SW1)
29 スイッチ(SW2)
30 スイッチ(SW3)
31 スイッチ(SW4)
DESCRIPTION OF SYMBOLS 1 Organic sludge 2 Activated sludge tank 3 Activated sludge containing liquid 4 Precipitation tank 5 Treated water 6 Concentrated sludge 7 Return sludge 8 Surplus sludge 9 Chemical mixing tank 10 Chemical mixing sludge 11 Electrolytic tank 21 Electrolytic tank 22 Surplus sludge (chemical mixed sludge )
23 Electrode A
24 Electrode B
25 Power supply 26 Timing generator circuit 27 Switch drive circuit 28 Switch (SW1)
29 switch (SW2)
30 switch (SW3)
31 switch (SW4)

Claims (1)

有機性汚水の微生物処理により生じる余剰汚泥を削減する方法であって、活性汚泥槽からの活性汚泥含有液を濃縮汚泥と上澄液とに分離し、その濃縮汚泥の一部を活性汚泥槽に返送する第一工程と、前記余剰汚泥を電解槽内で直流電流を通電する、材料が陰極、陽極ともグラファイトであり、そのカーボン純度が95%以上である電極を用いて電解処理を施す第二工程と、処理した余剰汚泥を再び活性汚泥槽に返送する第三工程とを有し、前記第二工程において行う電解処理時に電極の極性反転の時間比率が0%となるように周期10分ごとに極性の反転を行い、電極の極性反転時に0.1秒から1分の停止時間を設け、かつ、電極の極性反転時の電流を0%から100%まで増加または100%から0%まで減少するのに要する時間を0.01秒から1分とするように電極の極性を反転させることにより、電極への不導体化物の析出を防止しつつ、余剰汚泥の削減を行うことを特徴とする余剰汚泥の削減方法。 A method of reducing excess sludge generated by microbial treatment of organic sludge, separating the activated sludge-containing liquid from the activated sludge tank into concentrated sludge and supernatant liquid, and a part of the concentrated sludge into the activated sludge tank A first step of returning the second sludge, and applying a direct current to the surplus sludge in an electrolytic cell ; the second material is an electrolytic treatment using an electrode whose cathode and anode are both graphite and whose carbon purity is 95% or more . process and, and a third step of returning again activated sludge tank the excess sludge treatment time ratio of polarity reversal of the electrodes during the electrolysis process carried out in the second step is 50% and so as to periodically 10 minutes The polarity is reversed every time, a stop time of 0.1 second to 1 minute is provided when the polarity of the electrode is reversed, and the current when the polarity of the electrode is reversed is increased from 0% to 100% or from 100% to 0%. 0 time to decrease A method for reducing excess sludge, wherein the polarity of the electrode is reversed so as to be from 1 second to 1 minute, thereby preventing excess sludge from being reduced while preventing deposition of a non-conductive material on the electrode.
JP2003412756A 2003-12-11 2003-12-11 Method for reducing excess sludge Expired - Fee Related JP4712297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412756A JP4712297B2 (en) 2003-12-11 2003-12-11 Method for reducing excess sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412756A JP4712297B2 (en) 2003-12-11 2003-12-11 Method for reducing excess sludge

Publications (2)

Publication Number Publication Date
JP2005169253A JP2005169253A (en) 2005-06-30
JP4712297B2 true JP4712297B2 (en) 2011-06-29

Family

ID=34733065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412756A Expired - Fee Related JP4712297B2 (en) 2003-12-11 2003-12-11 Method for reducing excess sludge

Country Status (1)

Country Link
JP (1) JP4712297B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6220809B2 (en) * 2015-04-10 2017-10-25 株式会社テクノラボ Sludge volume reduction method and equipment by swirling electrolytic treatment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135494A (en) * 1989-10-18 1991-06-10 Shinko Pantec Co Ltd Carbonaceous electrode base material
JP2001149998A (en) * 1999-11-30 2001-06-05 Nissin Electric Co Ltd Sludge treating method and sludge treating device
JP2001246382A (en) * 2000-03-06 2001-09-11 Kyushu Hitachi Maxell Ltd Water treatment device
JP2002126782A (en) * 2000-08-17 2002-05-08 Sadaaki Murakami Method for cleaning organic sewage using electrolytic method
JP2002126781A (en) * 2000-10-26 2002-05-08 Mitsui Eng & Shipbuild Co Ltd Method for electrolytic treatment of sludge in organic wastewater treatment equipment and sludge treatment equipment
JP2002126798A (en) * 2000-10-25 2002-05-08 Kanta Ishii Electrolytic processing method and electrolytic processing device of sludge
JP2003062592A (en) * 2001-08-27 2003-03-04 Sadaaki Murakami Method for treating organic waste water containing chloride ion
JP2003071454A (en) * 2001-09-04 2003-03-11 Sanyo Electric Co Ltd Water treatment apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278400A (en) * 1985-06-03 1986-12-09 Ishigaki Kiko Kk Method for dehydrating sewage sludge without injection of chemical
JPH06170374A (en) * 1992-12-01 1994-06-21 Matsushita Electric Works Ltd Ion water production device with water purification function
JP2002239552A (en) * 2001-02-20 2002-08-27 Inax Corp Reclaimed water facility

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135494A (en) * 1989-10-18 1991-06-10 Shinko Pantec Co Ltd Carbonaceous electrode base material
JP2001149998A (en) * 1999-11-30 2001-06-05 Nissin Electric Co Ltd Sludge treating method and sludge treating device
JP2001246382A (en) * 2000-03-06 2001-09-11 Kyushu Hitachi Maxell Ltd Water treatment device
JP2002126782A (en) * 2000-08-17 2002-05-08 Sadaaki Murakami Method for cleaning organic sewage using electrolytic method
JP2002126798A (en) * 2000-10-25 2002-05-08 Kanta Ishii Electrolytic processing method and electrolytic processing device of sludge
JP2002126781A (en) * 2000-10-26 2002-05-08 Mitsui Eng & Shipbuild Co Ltd Method for electrolytic treatment of sludge in organic wastewater treatment equipment and sludge treatment equipment
JP2003062592A (en) * 2001-08-27 2003-03-04 Sadaaki Murakami Method for treating organic waste water containing chloride ion
JP2003071454A (en) * 2001-09-04 2003-03-11 Sanyo Electric Co Ltd Water treatment apparatus

Also Published As

Publication number Publication date
JP2005169253A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
Alsheyab et al. On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment–A review
Mohan et al. Electrochemical treatment of simulated textile effluent
US6852226B2 (en) Waste treatment system for treatment of organic waste and digested liquid thereof
CN108314287A (en) Sludge dewatering decrement method
KR100816099B1 (en) Generation system for sodium hypochlorite
CN1332898C (en) Sludge stabilizing electrochemical treating process
JP3796416B2 (en) Purification method of organic sewage using electrolytic method
JP3825021B2 (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP4712297B2 (en) Method for reducing excess sludge
JP5122074B2 (en) Water treatment method and system
Kurt Anodic oxidation of cefaclor antibiotic in aqueous solution containing potassium chloride
JP2000126773A (en) Apparatus for producing hypochlorite solution and water treatment apparatus
JP2008114209A (en) Method for treating sludge
JP2002361282A (en) Method and apparatus for treating organic waste water
Bejan et al. Evaluation of electrolysis for oxidative deodorization of hog manure
CN109133486A (en) A kind of environment protection water closet urine high ammonia-nitrogen wastewater step recycling and qualified discharge method
JP4584173B2 (en) Method for electrolytic treatment of excess sludge
JP2007301473A (en) Sludge treatment method
JP4030533B2 (en) Hydrogen generator
JP5063854B2 (en) Method for reducing excess sludge
JP2005066566A (en) Waste sludge treatment method
JP2002126781A (en) Method for electrolytic treatment of sludge in organic wastewater treatment equipment and sludge treatment equipment
JP2005169251A (en) Treating method of excess sludge
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
JP4026464B2 (en) Treatment method for wastewater containing organic compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees