JPH03131018A - Supply of solid organic metal material and container for supply - Google Patents

Supply of solid organic metal material and container for supply

Info

Publication number
JPH03131018A
JPH03131018A JP26991689A JP26991689A JPH03131018A JP H03131018 A JPH03131018 A JP H03131018A JP 26991689 A JP26991689 A JP 26991689A JP 26991689 A JP26991689 A JP 26991689A JP H03131018 A JPH03131018 A JP H03131018A
Authority
JP
Japan
Prior art keywords
container
supply
carrier gas
organometallic material
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26991689A
Other languages
Japanese (ja)
Inventor
Migaku Katayama
琢 片山
Hideo Tsujikawa
辻河 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP26991689A priority Critical patent/JPH03131018A/en
Publication of JPH03131018A publication Critical patent/JPH03131018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable a solid organic metal material to be supplied to a reaction pipe stably by housing a number of short pipes where a solid organic metal material is adhered to the inner wall within a container for supplying the solid organic metal material and by enabling a carrier gas which is supplied to the container for supply to pass through a hollow part of each hollow short pipe. CONSTITUTION:When a carrier gas CG is supplied to the hole of a supply part 4 or into a container for supply 1, the gas CG flows to each hollow short pipe 13, 13... which are housed within the container for supply 1 and then are sent to a reaction pipe by a pipe which is connected to a joint 6. When the carrier gas CG passes the inside of the hollow part in each hollow short pipe 13, 13... which are housed within the container for supply 1, it flows being in contact with the surface of organic metal materials 14, 14... which are adhered to an inner wall of each hollow short pipe 13, 13... and the carrier gas CG with is sent from the container for supply 1 to the reaction pipe can carry system pressure of the solid organic metal material corresponding to the saturation steam pressure of the solid organic metal material at the temperature within the container for supply 1 toward the reaction pipe.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体有機金属材料供給方法及び供給用容器に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a solid organometallic material supply method and a supply container.

(従来の技術) 固体の有機金属を原料としてMOCVD法によって化合
物半導体や超電導薄膜を製作する場合には、固体有機金
属材料を供給用容器内に収納して。
(Prior Art) When producing a compound semiconductor or a superconducting thin film by MOCVD using a solid organometallic material as a raw material, the solid organometallic material is stored in a supply container.

前記の固体有機金属材料の供給用容器内に供給したキャ
リアガスによって搬送される前記した固体有機金属材料
の蒸気圧分を反応管に供給するようにした固体有機金属
材料供給方法が従来がら試みられて来ている。
A method for supplying a solid organometallic material has been tried in the past, in which the vapor pressure of the solid organometallic material carried by a carrier gas supplied into a container for supplying the solid organometallic material is supplied to a reaction tube. It's coming.

第3図乃至第6図は従来の固体有機金属材料供結方法を
説明するための図であり、第3図において1は例えばス
テンレス鋼製の供給用容器であり。
3 to 6 are diagrams for explaining a conventional method for supplying solid organic metal materials. In FIG. 3, 1 is a supply container made of stainless steel, for example.

この供給用容器1内には固体有機金属材料の塊5゜5.
5・・・が収納されている。
Inside this supply container 1 is a mass of solid organometallic material 5.5.
5... is stored.

3は供給用容器1の外部から供給用容器1の内部にキャ
リアガスCGを導入するための導入管であり、この導入
管3は供給用容器1との間が高い気密性を保持できる状
態で供給用容器1内に挿入されている。
Reference numeral 3 denotes an introduction pipe for introducing carrier gas CG from the outside of the supply container 1 into the inside of the supply container 1, and this introduction pipe 3 is in a state where high airtightness can be maintained between the supply container 1 and the carrier gas CG. It is inserted into the supply container 1.

前記した導入管3における供給用容器1外の端部に設け
られた接続部2には、図示されていないキャリアガスC
Gの供給源からの配管が接続され。
A carrier gas C (not shown) is connected to the connection part 2 provided at the end of the introduction pipe 3 outside the supply container 1.
The piping from the G supply source is connected.

また、導入管3における供給用容器1内の端部にはキャ
リアガスの供給部4が設けられている。
Further, a carrier gas supply section 4 is provided at the end of the introduction pipe 3 inside the supply container 1 .

6は供給用容器1から排出されるキャリアガス及びそれ
によって搬送されている固体有機金属材料の蒸気圧分と
を図示されていない反応管に供給するための配管を接続
するための接続部である。
Reference numeral 6 denotes a connection part for connecting a pipe for supplying the carrier gas discharged from the supply container 1 and the vapor pressure of the solid organometallic material carried by the carrier gas to a reaction tube (not shown). .

第3図において1図示されていないキャリアガスCGの
供給源からの配管が接続部2に接続されている導入管3
によって供給用容器1内に導入されたキャリアガスは、
キャリアガスの供給部4の多数の孔から供給用容器1内
に供給され、そのキャリアガスCGは供給用容器1内に
収納されている固体有機金属材料の塊5,5,5・・・
の間を通過して接続部6に接続されている配管によって
図示されていない反応管に送られる。
In FIG. 3, an inlet pipe 3 is connected to a connection part 2 from a supply source of carrier gas CG (not shown).
The carrier gas introduced into the supply container 1 by
The carrier gas CG is supplied into the supply container 1 from a large number of holes in the carrier gas supply section 4, and the carrier gas CG is supplied to the solid organometallic material lumps 5, 5, 5, . . . stored in the supply container 1.
It is sent to a reaction tube (not shown) by a pipe that passes through the space and is connected to the connection part 6.

第4図は供給用容器1の内部に網7〜10を張設し、そ
の網7〜10上に固体有機金属材料の塊5を載置して、
キャリアガスの流れを網7〜10によって強制的に均一
化して固体有機金属材料の塊5が大きな面積でキャリア
ガスCGと接触できるようにした従来例−で−あり、ま
た、第5図は第6図の拡大断面図によって示すように、
球体11゜11・・・の表面に固体有機金属材料12を
付着させたものを供給用容器1内に収納して、固体有機
金属材料と大きな面積でキャリアガスCGが接触できる
ようにした従来例であって、第4図及び第5図に示す従
来例においても、第3図を参照して説明した従来例の場
合と同様に、図示されていないキャリアガスCGの供給
源からの配管が接続部2に接続されている導入管3によ
って供給用容器1内に導入されたキャリアガスは、キャ
リアガスの供給部4の多数の孔から供給用容器1内に供
給されて、そのキャリアガスCGは第4図示の従来例の
場合には供給用容器1内の網7〜10上に載置された状
態で収納されている固体有機金属材料の塊5,5.5・
・・の間を通過して接続部6に接続されている配管によ
って図示されていない反応管に送られ、また、第5図示
の従来例の場合には供給用容器1内に収納されている各
球体11,11・・・の表面に付着された状態の固体有
機金属材料12゜12・・・の表面と接触しながら通過
して接続部6に接続されている配管によって図示されて
いない反応管に送られる。
FIG. 4 shows that nets 7 to 10 are stretched inside the supply container 1, and a mass of solid organometallic material 5 is placed on the nets 7 to 10.
This is a conventional example in which the flow of the carrier gas is forcibly made uniform by the nets 7 to 10 so that the lump 5 of the solid organometallic material can come into contact with the carrier gas CG over a large area, and FIG. As shown by the enlarged cross-sectional view in Figure 6,
Conventional example in which a solid organometallic material 12 is attached to the surface of a sphere 11゜11... and is housed in a supply container 1 so that a carrier gas CG can come into contact with the solid organometallic material over a large area. In the conventional example shown in FIGS. 4 and 5, as in the case of the conventional example explained with reference to FIG. The carrier gas introduced into the supply container 1 through the introduction pipe 3 connected to the carrier gas supply section 2 is supplied into the supply container 1 from a large number of holes in the carrier gas supply section 4, and the carrier gas CG is In the case of the conventional example shown in FIG. 4, lumps of solid organometallic material 5, 5.
... and is sent to a reaction tube (not shown) by a pipe connected to the connection part 6, and in the case of the conventional example shown in FIG. 5, it is stored in the supply container 1. A reaction (not shown) is carried out by a pipe that passes through the solid organometallic material 12 attached to the surface of each sphere 11, 11... while in contact with the surface and is connected to the connection part 6. sent to the tube.

そして、前記した第3図〜第6図を参照して説明した従
来の何れの固体有機金属材料供給方法においても、供給
用容器1から反応管に送られるキャリアガスCGによっ
て、供給用容器1内の温度における固体有機金属材料の
飽和蒸気圧と対応している固体有機金属材料の蒸気圧分
がキャリアガスによって反応管の方に搬送されることを
期待しているものである。
In any of the conventional solid organometallic material supply methods described above with reference to FIGS. 3 to 6, the interior of the supply container 1 is It is expected that the vapor pressure of the solid organometallic material corresponding to the saturated vapor pressure of the solid organometallic material at the temperature of 200 nm will be carried toward the reaction tube by the carrier gas.

(発明が解決しようとする課題) 第3図乃至第6図を参照して説明した固体有機金属材料
供給方法をも含めて、固体有機金属材料を供給用容器内
に収納し、前記の固体有機金属材料の供給用容器内に供
給したキャリアガスによって搬送される前記した固体有
機金属材料の蒸気圧分を反応管に供給するようにした固
体有機金属材料供給方法においては、供給用容器内に収
納した固体有機金属材料が供給用容器内の温度における
飽和蒸気圧で飽和していると仮定して、キャリアガスの
流量の調節により固体有機金属材料の反応管への供給量
のwRWIを行うようにしているものであるから、供給
用容器内に収納した固体有機金属材料に接触して通過し
たキャリアガスが、供給用容器内の温度における固体有
機金属材料の飽和蒸気圧と対応している固体有機金属材
料の蒸気圧分を搬送している状態にあることを前提にし
ている。
(Problems to be Solved by the Invention) Including the solid organic metal material supply method explained with reference to FIGS. 3 to 6, the solid organic metal material is stored in a supply container, and the solid organic metal material is In the solid organometallic material supply method in which the vapor pressure of the solid organometallic material transported by the carrier gas supplied into the metal material supply container is supplied to the reaction tube, the solid organometallic material stored in the supply container is Assuming that the solid organometallic material is saturated at the saturated vapor pressure at the temperature in the supply container, wRWI of the amount of solid organometallic material supplied to the reaction tube is performed by adjusting the flow rate of the carrier gas. Since the carrier gas that has passed through contact with the solid organometallic material contained in the supply container is a solid organic material that corresponds to the saturated vapor pressure of the solid organometallic material at the temperature in the supply container It is assumed that the vapor pressure of the metal material is being transported.

前記した前提が成立するためには、キャリアガスと固体
有機金属材料の表面との接触面積を大にし、かつ、その
状態が供給用容器中に収納されている固体有機金属材料
が多い状態から固体有機金属材料の残量が少なくなった
状態にまで一定であることが必要とされる。
In order for the above premise to hold, it is necessary to increase the contact area between the carrier gas and the surface of the solid organometallic material, and to change the state from a state in which there is a large amount of solid organometallic material stored in the supply container to a solid state. It is necessary that the remaining amount of the organometallic material remains constant even when the remaining amount is small.

ところが、第3図を参照して説明した従来の固体有機金
属材料供給方法の場合には、供給用容器中に収納されて
いる固体有機金属材料の40%〜50%程度が使用され
た状態になると、供給用容器から反応管に供給される固
体有機金属材料の供給状態が不安定になり1反応管で作
られる結晶の組成が、結晶の成長に従って異なるという
現象の生じることが認められた。
However, in the case of the conventional solid organometallic material supply method explained with reference to FIG. 3, about 40% to 50% of the solid organometallic material stored in the supply container is used. In this case, it was observed that the supply state of the solid organometallic material supplied from the supply container to the reaction tube became unstable, and a phenomenon occurred in which the composition of the crystals produced in one reaction tube varied as the crystals grew.

前記の現象はキャリアガスの通路が固定化してしまって
大きなキャリアガスの通路が生じ、キャリアガスの全部
が必らずしも固体有機金属材料の表面と接触しなくなる
ものと考えられており、それを解決するための手段とし
て第4図及び第5図。
It is thought that the above phenomenon is caused by the carrier gas passage being fixed, creating a large carrier gas passage, and not all of the carrier gas necessarily coming into contact with the surface of the solid organometallic material. 4 and 5 as a means to solve the problem.

第6図を参照して説明したような固体有機金属材料供給
方法が提案されたが、この方法によっても前記した現象
の起きることを完全に防止することができない。
Although a method for supplying a solid organometallic material as described with reference to FIG. 6 has been proposed, even this method cannot completely prevent the above-mentioned phenomenon from occurring.

(課題を解決するための手段) 本発明は内壁に固体有機金属材料を付着させてある多数
の中空の短管を固体有機金属材料の供給用容器内に収納
し、前記の固体有機金属材料の供給用容器内に供給した
キャリアガスによって搬送される前記した固体有機金属
材料の蒸気圧分を反応管に供給できるようにした固体有
機金属材料供給方法、及び内壁に固体有機金属材料を付
着させてある多数の中空の短管を器内に収納するととも
に、器内にキャリアガスを放出供給する手段と、器内か
らキャリアガスによって搬送される固体有機金属材料の
蒸気圧分を反応管に供給するための手段とを備えてなる
固体有機金属材料の供給用容器を提供する。
(Means for Solving the Problems) The present invention stores a large number of short hollow tubes, each of which has a solid organometallic material adhered to its inner wall, in a container for supplying the solid organometallic material. A method for supplying a solid organometallic material in which the vapor pressure of the solid organometallic material carried by a carrier gas supplied in a supply container can be supplied to a reaction tube, and a solid organometallic material attached to an inner wall thereof. A certain number of hollow short tubes are housed in a vessel, and a means for discharging and supplying a carrier gas into the vessel, and a vapor pressure portion of a solid organometallic material carried by the carrier gas from inside the vessel is supplied to a reaction tube. and means for supplying solid organometallic material.

(作用) 内壁に固体有機金属材料を付着させてある多数の中空の
短管を固体有機金属材料の供給用容器内に収納し、前記
の固体有機金属材料の供給用容器内に供給したキャリア
ガスが、前記した各中空短管の中空部分を通過して流れ
るようにする。
(Function) A large number of short hollow tubes each having a solid organometallic material adhered to the inner wall thereof are housed in a container for supplying the solid organometallic material, and a carrier gas is supplied into the container for supplying the solid organometallic material. is made to flow through the hollow portion of each of the hollow short tubes described above.

それによりキャリアガスが常に中空の短管の内壁に付着
されている固体有機金属材料と接触して流れるから反応
管には常に安定に固体有機金属材料を供給できる。
As a result, the carrier gas always flows in contact with the solid organometallic material attached to the inner wall of the short hollow tube, so that the solid organometallic material can always be stably supplied to the reaction tube.

(実施例) 以下、添付図面を参照して本発明の固体有機金属材料供
給方法及び供給用容器の具体的な内容を詳細に説明する
。第1図及び第2図は本発明の固体有機金属材料供給方
法及び供給用容器を説明するための斜視図である。
(Example) Hereinafter, specific contents of the solid organic metal material supply method and supply container of the present invention will be explained in detail with reference to the accompanying drawings. FIGS. 1 and 2 are perspective views for explaining the solid organic metal material supply method and supply container of the present invention.

第1図において1は例えばステンレス鋼製の供給用容器
であり、この供給用容器1内には内壁に例えばトリメチ
ルインジウム(TMI)のような固体有機金属材料14
を付着させてある多数の中空の短管13,13・・・が
ランダムな配列状態で収納されている。
In FIG. 1, reference numeral 1 denotes a supply container made of stainless steel, for example, and a solid organometallic material 14 such as trimethylindium (TMI) is provided on the inner wall of the supply container 1.
A large number of short hollow tubes 13, 13, .

3は供給用容器1の外部から供給用容器1の内部にキャ
リアガスCGを導入するための導入管であり、この導入
管3は供給用容器1との間が高い気密性を保持できる状
態で供給用容器1内に挿入されている。前記した導入管
3における供給用容器1外の端部に設けられた接続部2
には、図示されていないキャリアガスCGの供給源から
の配管が接続され、また、導入管3における供給用容器
1内の端部にはキャリアガスの供給部4が設けられてい
る。
Reference numeral 3 denotes an introduction pipe for introducing carrier gas CG from the outside of the supply container 1 into the inside of the supply container 1, and this introduction pipe 3 is in a state where high airtightness can be maintained between the supply container 1 and the carrier gas CG. It is inserted into the supply container 1. A connection part 2 provided at the end of the introduction pipe 3 outside the supply container 1
A pipe from a carrier gas CG supply source (not shown) is connected to the carrier gas CG, and a carrier gas supply section 4 is provided at the end of the introduction pipe 3 inside the supply container 1 .

6は供給用容器1から排出されるキャリアガス及びそれ
によって搬送されている固体有機金属材料の蒸気圧分と
を図示されていない反応管に供給するための配管を接続
するための接続部である。
Reference numeral 6 denotes a connection part for connecting a pipe for supplying the carrier gas discharged from the supply container 1 and the vapor pressure of the solid organometallic material carried by the carrier gas to a reaction tube (not shown). .

第1図において1図示されていないキャリアガスCGの
供給源からの配管が接続部2に接続されている導入管3
によって供給用容器1内に導入された例えば高純度の水
素ガスのようなキャリアガスCGが、キャリアガスの供
給部4の多数の孔から供給用容器1内に供給されると、
そのキャリアガスCGは供給用容器1内に収納されてい
る各中空の短管13,13・・・における中空部分内を
流れた後に、接続部6に接続されている配管によって図
示されていない反応管に送られる。
In FIG. 1, an inlet pipe 3 to which a pipe from a carrier gas CG supply source (not shown) is connected to a connecting part 2.
When the carrier gas CG, such as high-purity hydrogen gas, introduced into the supply container 1 by the carrier gas is supplied into the supply container 1 from the numerous holes of the carrier gas supply section 4,
After the carrier gas CG flows through the hollow portions of the respective hollow short pipes 13, 13... housed in the supply container 1, a reaction (not shown) is carried out by piping connected to the connection part 6. sent to the tube.

ところで、前記したキャリアガスCGが、供給用容器1
内に収納されている各中空の短管13゜13・・・にお
ける中空部分内を通過する際には、第2図に拡大して例
示しであるように、必らず各中空の短管13,13・・
・の内壁に付着されている有機金属材料14.14・・
・の表面と接触して流れることになるから、供給用容器
1から反応管に送られるキャリアガスCGは供給用容器
1内の温度における固体有機金属材料の飽和蒸気圧と対
応している固体有機金属材料の蒸気圧分を反応管の方に
搬送できることになる。
By the way, the carrier gas CG described above is supplied to the supply container 1.
When passing through the hollow portion of each hollow short tube 13, 13... stored in the interior, it is necessary to pass through each hollow short tube as shown in the enlarged example in FIG. 13,13...
An organometallic material attached to the inner wall of 14.14.
The carrier gas CG sent from the supply container 1 to the reaction tube is a solid organic material whose temperature corresponds to the saturated vapor pressure of the solid organometallic material at the temperature inside the supply container 1. This means that the vapor pressure of the metal material can be transported toward the reaction tube.

なお、前記した中空の短管としては1例えば石英、また
はステンレス鋼を用いて作られたものを用いることがで
き、それの内壁には固体有機金属材料14を付着させて
おくのである。また、前記した中空の短管はその断面形
状が円でも三角形でも多角形で、その他任意の形状のも
のとなされてもよい。
The short hollow tube mentioned above may be made of, for example, quartz or stainless steel, and the solid organic metal material 14 is adhered to its inner wall. Further, the above-mentioned hollow short tube may have a circular, triangular, polygonal, or other arbitrary cross-sectional shape.

(発明の効果) 以上、詳細に説明したところから明らかなように1本発
明の固体有機金属材料供給方法では内壁に固体有機金属
材料を付着させてある多数の中空の短管を固体有機金属
材料の供給用容器内に収納し、前記の固体有機金属材料
の供給用容器内に供給したキャリアガスが、常に前記し
た各中空短管の中空部分を通過して流れるようにされる
ためにキャリアガスの通路が分散され、またキャリアガ
スは中空の短管の内壁に付着されている固体有機金属材
料と常に広い面積で接触しながら流れるから、固体有機
金属材料の供給用容器から反応管には常に安定に固体有
機金属材料を供給することができるのであり1本発明に
よれば既述した従来の問題点は良好に解決できる。
(Effects of the Invention) As is clear from the above detailed explanation, in the solid organometallic material supplying method of the present invention, a large number of hollow short tubes having the solid organometallic material attached to the inner wall are connected to the solid organometallic material. The carrier gas stored in the supply container of the solid organometallic material and supplied into the supply container of the solid organometallic material always flows through the hollow portion of each of the hollow short tubes. Since the carrier gas flows in contact with the solid organometallic material attached to the inner wall of the hollow short tube over a wide area, there is always a flow from the supply container of the solid organometallic material to the reaction tube. Since a solid organic metal material can be stably supplied, the above-mentioned conventional problems can be satisfactorily solved according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の固体有機金属材料供給方法
及び供給用容器を説明するための斜視図、第3図乃至第
6図は従来例を説明するための側断面図である。 1・・・供給用容器、2,6・・・接続部、3・・・導
入管、4・・・キャリアガスの供給部、5,12,14
・・・固体有機金属材料、7〜10・・・網、13・・
・中空の短管。
1 and 2 are perspective views for explaining the solid organic metal material supply method and supply container of the present invention, and FIGS. 3 to 6 are side sectional views for explaining a conventional example. DESCRIPTION OF SYMBOLS 1... Supply container, 2, 6... Connection part, 3... Introducing pipe, 4... Carrier gas supply part, 5, 12, 14
...Solid organometallic material, 7-10...Mesh, 13...
・Hollow short tube.

Claims (1)

【特許請求の範囲】 1.内壁に固体有機金属材料を付着させてある多数の中
空の短管を固体有機金属材料の供給用容器内に収納し、
前記の固体有機金属材料の供給用容器内に供給したキャ
リアガスによって搬送される前記した固体有機金属材料
の蒸気圧分を反応管に供給できるようにした固体有機金
属材料供給方法 2.内壁に固体有機金属材料を付着させてある多数の中
空の短管を器内に収納するとともに、器内にキャリアガ
スを放出供給する手段と、器内からキャリアガスによっ
て搬送される固体有機金属材料の蒸気圧分を反応管に供
給するための手段とを備えてなる固体有機金属材料の供
給用容器3.固体有機金属材料の供給用容器としてステ
ンレス鋼製のものを用いた請求項2に記載の固体有機金
属材料の供給用容器 4.内壁に固体有機金属材料を付着させてある中空の短
管として石英製のものを用いた請求項2に記載の固体有
機金属材料の供給用容器 5.内壁に固体有機金属材料を付着させてある中空の短
管としてステンレス鋼製のものを用いた請求項2に記載
の固体有機金属材料の供給用容器
[Claims] 1. A number of short hollow tubes having a solid organometallic material adhered to the inner wall thereof are housed in a container for supplying the solid organometallic material,
2. A method for supplying a solid organometallic material in which the vapor pressure of the solid organometallic material carried by the carrier gas supplied into the container for supplying the solid organometallic material can be supplied to the reaction tube. A number of hollow short tubes having solid organic metal materials attached to the inner walls are housed in the vessel, and a means for releasing and supplying a carrier gas into the vessel, and a solid organic metal material transported from the vessel by the carrier gas. 2. A container for supplying a solid organometallic material, comprising means for supplying a vapor pressure of 3. 4. A container for supplying solid organic metal material according to claim 2, wherein the container for supplying solid organic metal material is made of stainless steel. 5. A container for supplying a solid organometallic material according to claim 2, wherein the short hollow tube having the solid organometallic material adhered to the inner wall is made of quartz. 3. The solid organometallic material supply container according to claim 2, wherein the short hollow tube having the solid organometallic material adhered to its inner wall is made of stainless steel.
JP26991689A 1989-10-17 1989-10-17 Supply of solid organic metal material and container for supply Pending JPH03131018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26991689A JPH03131018A (en) 1989-10-17 1989-10-17 Supply of solid organic metal material and container for supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26991689A JPH03131018A (en) 1989-10-17 1989-10-17 Supply of solid organic metal material and container for supply

Publications (1)

Publication Number Publication Date
JPH03131018A true JPH03131018A (en) 1991-06-04

Family

ID=17479004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26991689A Pending JPH03131018A (en) 1989-10-17 1989-10-17 Supply of solid organic metal material and container for supply

Country Status (1)

Country Link
JP (1) JPH03131018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509736A (en) * 2009-11-02 2013-03-14 シグマ−アルドリッチ・カンパニー、エルエルシー Evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509736A (en) * 2009-11-02 2013-03-14 シグマ−アルドリッチ・カンパニー、エルエルシー Evaporator
US9297071B2 (en) 2009-11-02 2016-03-29 Sigma-Aldrich Co. Llc Solid precursor delivery assemblies and related methods

Similar Documents

Publication Publication Date Title
US7294208B2 (en) Apparatus for providing gas to a processing chamber
JP2001323374A (en) Method and device for feeding vapor phase reactant into reaction chamber
KR20010050136A (en) Dual fritted bubbler
JPS6311598A (en) Cylinder for organometal vapor growth
JPH03131018A (en) Supply of solid organic metal material and container for supply
JP5747647B2 (en) Barrel type vapor phase growth system
JPS62113419A (en) Vapor phase epitaxial growth equipment
JPH01286306A (en) Crystal growth device
CN218404394U (en) Precursor source bottle
JPH03223465A (en) Production of adapter nozzle for packing in container of solid organic metallic material
JPH02172889A (en) Cylinder for vapor growth
JPS60116776A (en) Cvd apparatus
JPS6319812A (en) Liquid evaporator
KR100407363B1 (en) chamber for manufacturing semiconductor device
JPH0226017A (en) Method of producing saturated vapor of organometal compound in organometallic vapor growth
JP2998158B2 (en) Semiconductor substrate vapor phase growth equipment
JPS6283400A (en) Method of improving cylinder for vapor growth of organometallic compound
JPH02306619A (en) Impurity diffusing equipment
JPH03188622A (en) Method for diffusing impurity into semiconductor crystal
JPH02196091A (en) Horizontal vapor phase epitaxial growth device
JPH0618176B2 (en) Semiconductor manufacturing equipment
JPS62116768A (en) Treatment device
JPS6360523A (en) Oxygen removing device
JPS62108518A (en) Reaction gas supplying apparatus
JPS59119826A (en) Vapor growth apparatus