JPS6360523A - Oxygen removing device - Google Patents

Oxygen removing device

Info

Publication number
JPS6360523A
JPS6360523A JP20541186A JP20541186A JPS6360523A JP S6360523 A JPS6360523 A JP S6360523A JP 20541186 A JP20541186 A JP 20541186A JP 20541186 A JP20541186 A JP 20541186A JP S6360523 A JPS6360523 A JP S6360523A
Authority
JP
Japan
Prior art keywords
gas
oxygen
moisture
gases
purity aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20541186A
Other languages
Japanese (ja)
Inventor
Nobuyasu Hase
長谷 亘康
Masaaki Oshima
大島 正晃
Yoshinori Takeuchi
喜則 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20541186A priority Critical patent/JPS6360523A/en
Publication of JPS6360523A publication Critical patent/JPS6360523A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove small amount of remaining moisture and oxygen by mounting a material having a shape which can pass gas in contact with the surface, being reactive sensitively with the oxygen and easily oxidized in a gas passage. CONSTITUTION:An aluminum structure having many through holes 3 of about 1mm in diameter of columnar high purity aluminum 2 is disposed at a point A, small amounts of oxygen, hydrogen gas including moisture, AsH3 gas, TMG gas, TMA gas introduced from group III element gas supply port 16 and group V element gas supply port 20 are supplied through an oxygen removing unit mounted in a suitable temperature region in a reaction tube onto a substrate 24. In this case, when the gases pass the unit, the small amounts of oxygen and moisture contained in the gases react with high purity aluminum to be removed from the gases as oxides. When the unit is mounted in the tube 21, arbitrary temperature region near the room temperature from the temperature of the substrate 24 can be selected in the tube 21. Thus, the small amounts of oxygen and moisture can be extremely simply removed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体製造プロセスを始めとした各種のプロ
セス途上に用いられる各種ガスの精製に係るものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the purification of various gases used during various processes including semiconductor manufacturing processes.

従来の技術 Si f始めとして各種の化合物等の半導体素子の製造
プロセスでは、不純物のドーピング用ガス。
Conventional technology In the manufacturing process of semiconductor devices such as various compounds such as SiF, impurity doping gases are used.

エピタキシャルの成長用ガス、ドライエツチング用のガ
ス、雰囲気制御用のガス等々と実に様々なガスが数多く
用いられている。これらのガスは、あらかじめ充分に精
製され、一般的には5−6ninθと純度の高いもので
あり、特に酸素に対して極度な配慮が不要な場合には、
原料ガス自体としては問題はないが、ガス配管系やボン
ベの内部に吸着した酸素、水分等は依然として残存し、
例えば、半導体レーザの重要な素材として良く知られて
いるA7!GaAs等の結晶成長プロセスにおいては、
これらの残存酸素、或は水分の存在は、デバイス特性に
深刻な影響を与えることは衆知である。
A wide variety of gases are used, including epitaxial growth gases, dry etching gases, and atmosphere control gases. These gases are sufficiently purified in advance and generally have a high purity of 5-6 ninθ, especially when extreme considerations regarding oxygen are not required.
There is no problem with the raw material gas itself, but oxygen, moisture, etc. adsorbed in the gas piping system and inside the cylinder still remain.
For example, A7! is well known as an important material for semiconductor lasers! In the crystal growth process of GaAs etc.
It is well known that the presence of residual oxygen or moisture seriously affects device characteristics.

以下では、半導体レーザ製造において広く用いられてい
るAdGaAs / GaAsのMOCVD エピタキ
シャル成長を例にとって従来法を説明する。
The conventional method will be explained below by taking as an example the MOCVD epitaxial growth of AdGaAs/GaAs, which is widely used in the manufacture of semiconductor lasers.

第2図ばム7!GaAs/GaAs (7) M OC
V D エピタキシャル成長装置の基本部の概要図であ
る。水素ボンベ11から供給された水素ガスは、その一
部がマスフローメータ12によって流量制御され定径、
GaおよびA7!の原料となるトリメチルガリウム(T
MG )およびトリメチルアルミ(TMA)のバブリン
グガスとしてTMGボンベ13 、 TMAボンベ14
に導入され、TMGおよびTM人ノ蒸気を含んだ水素ガ
スは、夫々図のA点、8点でガス管16を通って来た水
素ガスと合流して■原ガス導入口16に導かれる。一方
、人Sの原料は、水素ガスになって希釈されたアルシン
(ムsH,)がAsH,ボンベ17から出て、マスフロ
ーメータ18によって供給量が制御された後、ガス管1
9を通じて来た水素ガスと0点で合流した後V原ガス導
入口20に導かれる。このようにして反応管21にキャ
リアガス(水素ガス)と共に到達したTMG。
2nd figure bam 7! GaAs/GaAs (7) MOC
FIG. 1 is a schematic diagram of the basic part of a V D epitaxial growth apparatus. A portion of the hydrogen gas supplied from the hydrogen cylinder 11 is flow-controlled by the mass flow meter 12 and has a constant diameter.
Ga and A7! Trimethylgallium (T
MG) and trimethylaluminum (TMA) bubbling gas: TMG cylinder 13, TMA cylinder 14
The hydrogen gas containing TMG and TM steam is combined with the hydrogen gas that has passed through the gas pipe 16 at points A and 8 in the figure, respectively, and is led to the source gas inlet 16. On the other hand, the raw material for the person S is arsine (MusH,) diluted into hydrogen gas, which comes out of the cylinder 17, and after the supply amount is controlled by the mass flow meter 18, the gas pipe 1
After joining with the hydrogen gas coming through 9 at point 0, it is led to the V raw gas inlet 20. The TMG thus arrived at the reaction tube 21 together with the carrier gas (hydrogen gas).

T M A 、 AsH3ガスは反応管21の内部で互
ンこ混合されながら、高周波コイル22によって加熱さ
れたサセプター23上に設置されているGaAS基板2
4上で熱分解反応を起し、上記GaAs基板24上に所
定の混合比xlもったAlxGa、−xAs f堆積せ
しむることになる。A7!xGa、−xAsの堆積に寄
与しない残りのガスは排出口25を通じて外部に排出さ
れる。GaAsの堆積はTMAボンベ14へのバブリン
グ用水素ガスの供給をバルブ26によって停止すること
で容易に行うことが出来る。
TMA, AsH3 gas is mutually mixed inside the reaction tube 21 while the GaAS substrate 2 placed on the susceptor 23 heated by the high frequency coil 22 is heated.
A thermal decomposition reaction occurs on the GaAs substrate 24, and AlxGa, -xAsf having a predetermined mixing ratio xl is deposited on the GaAs substrate 24. A7! The remaining gases that do not contribute to the deposition of xGa and -xAs are exhausted to the outside through the exhaust port 25. The deposition of GaAs can be easily performed by stopping the supply of bubbling hydrogen gas to the TMA cylinder 14 using the valve 26.

発明が解決しようとする問題点 以上のような系においては、通常の場合、各原料ガスお
よび水素ガスは充分な純度をもったガスが用いられてい
るが、例えば使用しているボンベ内壁、或はガス管のパ
イプ内壁等に耐着した水分。
Problems to be Solved by the Invention In the above-mentioned systems, gases with sufficient purity are normally used as each raw material gas and hydrogen gas, but for example, the inner wall of the cylinder used, is moisture that adheres to the inner walls of gas pipes.

酸素等を完全に除去することは極めて困難であり、本発
明は、こういった微量の残留水分や酸素除去の一つの手
段を提供することを主たる目的としている。
It is extremely difficult to completely remove oxygen and the like, and the main purpose of the present invention is to provide a means for removing such trace amounts of residual moisture and oxygen.

問題点を解決するための手段 本発明は前記の問題点を解決するため、反応管中のサセ
プターとガス導入口の中間部の適当な温度領域の点に酸
素と敏感に反応し、酸化物を形成するような素材、例え
ばムAMで通過ガスとの接触面を犬きくするような構造
をもった酸素除去用の構造物を設置することにより、上
記目的を達成するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a method of forming oxides by sensitively reacting with oxygen at a point in a suitable temperature range between the susceptor and the gas inlet in the reaction tube. The above object is achieved by installing a structure for removing oxygen that has a structure in which the contact surface with the passing gas is made of a material such as AM, for example, and has a hard surface.

作用 本発明は上記の構成により、各種供給ガスがAβ製の構
造物と接触しながら通過する際、供給ガス中に含まれて
いる微量の酸素、水分は上記の人lと反応して 2人7!十丁0□→A l 203 2人β+3H20−+Ag2O3+3H2となり、酸素
、水分の除去が行なわれる。
Effect of the present invention With the above configuration, when various supply gases pass through while contacting the structure made of Aβ, trace amounts of oxygen and moisture contained in the supply gas react with the above-mentioned human body and cause the two people to react. 7! Jucho0□→A l 203 2 people β+3H20−+Ag2O3+3H2, and oxygen and moisture are removed.

実施例 第1図は、本発明のAd構造物(酸素除去装置)1の実
施例で、(&)は円柱状の高純度アルミ2に1Uφ程度
の貫通孔3を多数もうけたもの、(′b)(i石英管4
中に高純度アルミの研削片5を入れ、1uφ程度の多数
の貫通孔をもった石英製のフタロで前後を封じたもの、
(C)は高純度アルミのメツシュアを用いたものであり
、第2図において入点に第1図に示す酸素除去装置を配
する従来例で述べたと同様に、第2図の■原ガス供給口
16およびV原ガス供給口20から導入された微量の酸
素、水分等を含んだ水素ガス、 AsH3ガス、TMG
ガス。
Embodiment FIG. 1 shows an embodiment of the Ad structure (oxygen removal device) 1 of the present invention, (&) is a cylindrical high-purity aluminum 2 with many through holes 3 of about 1Uφ, (' b) (i Quartz tube 4
A high-purity aluminum grinding piece 5 is placed inside, and the front and back are sealed with quartz phthalo having many through holes of about 1uφ.
(C) uses a meshure made of high-purity aluminum, and in the same way as described in the conventional example in which the oxygen removal device shown in Figure 1 is placed at the entry point in Figure 2, the raw gas supply shown in Figure 2 is used. Hydrogen gas, AsH3 gas, TMG containing trace amounts of oxygen, moisture, etc. introduced from the port 16 and the V raw gas supply port 20
gas.

TM人ガスといったガスid、反応管中の適当な温度領
域部に設置された酸素除去装置1全通して基板24面上
に供給されることになる。この際、酸素除去装置1内を
ガスが通過するとき、前記作用の項で述べた如く、ガス
中に含まれている微量の酸素、水分は高純度アルミと反
応し、酸化物としてガス中より除去されることになる。
A gas such as TM gas is supplied onto the surface of the substrate 24 through the entire oxygen removal device 1 installed in a suitable temperature region in the reaction tube. At this time, when the gas passes through the oxygen removal device 1, trace amounts of oxygen and moisture contained in the gas react with high-purity aluminum and are released as oxides in the gas, as described in the section of the operation above. It will be removed.

酸素除去装置1の反応管21内への設置は、通常の場合
、前記のAsH,、TMG 、TMA等のガスの分解を
防ぐ上で、3o○°C以下が望ましい。第2図の如く酸
素除去装置1を反応管21内に設置すると、−般的には
、基板24の温度から室温近傍迄の任意の温度領域を反
応管21内部で選ぶことが可能であり、従って使用ガス
によって適宜良好な温度領域に前記酸素除去装置を設置
すれば良い。なお、本発明の酸素除去装置1を第2図に
示した如く反応管21内のサセプター23とガス導入口
16゜2oの間に設置することによって供給ガス中の微
量酸素、水分の除去は勿論のことながら、その他にガス
の混合効果、即ち、ガス導入口16.20より供給され
た各種ガスは、酸素除去装置1の前面で抵抗を受け、酸
素除去装置1とガス導入口16.20の間の空間は、1
種のガスミキサーとしての役割を果す。そして、酸素除
去装置1を通過して来たガスは、−様に混合分布され、
且つ、酸素除去装置1のガス出口は、反応管21の断面
に対して一様に分布しているため、キレイな層流を形成
し易いといった長所も兼ね備えている。
In normal cases, the oxygen removal device 1 is preferably installed in the reaction tube 21 at a temperature of 3°C or lower in order to prevent the decomposition of the gases such as AsH, TMG, TMA, etc. When the oxygen removal device 1 is installed inside the reaction tube 21 as shown in FIG. 2, it is generally possible to select any temperature range inside the reaction tube 21 from the temperature of the substrate 24 to around room temperature. Therefore, the oxygen removal device may be installed in an appropriate temperature range depending on the gas used. By installing the oxygen removing device 1 of the present invention between the susceptor 23 in the reaction tube 21 and the gas inlet 16°2o as shown in FIG. 2, trace amounts of oxygen and moisture in the supplied gas can of course be removed. However, there is also the effect of gas mixing, that is, the various gases supplied from the gas inlet 16.20 encounter resistance at the front of the oxygen removal device 1, and the resistance between the oxygen removal device 1 and the gas inlet 16.20 increases. The space between is 1
Acts as a gas mixer for seeds. Then, the gas that has passed through the oxygen removal device 1 is mixed and distributed in a - manner,
In addition, since the gas outlets of the oxygen removing device 1 are uniformly distributed with respect to the cross section of the reaction tube 21, it also has the advantage of easily forming a clean laminar flow.

発明の効果 本発明の酸素除去装置の使用により、ガス中に含まれる
微量の酸素、水分、或はボンベ、ガス供給管の内壁等に
晴着してガス流と共に運ばれてくる微量の酸素、水分の
除去が極めて簡単な装置で容易且つ簡便に行うことが可
能となる。
Effects of the Invention By using the oxygen removal device of the present invention, trace amounts of oxygen and moisture contained in gas, or trace amounts of oxygen and moisture deposited on the inner walls of cylinders and gas supply pipes, etc., and carried along with the gas flow can be removed. can be easily and conveniently removed using an extremely simple device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる酸素除去装置の構成図、第2図
はMOCVDエピタキシャル成長装置の構成図である。 1・・・・・・酸素除去装置、2・・・・・・高純度ア
ルミ、3・・・・・・貫通孔、4・・・・・・石英管、
5・旧・・高純度アルミ研削片、6”・・・・・石英製
のフタ、7・・・・・高純度アルミメツシュ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名5P
J1図 11−水車ボンベ 12−−マスフローメータ 13−T n Crボレベ 14−−〜TnAボンベ 15−−ガ  ヌ  管 /6−M族ガス4入口 1’l −−−A s Hsボンへ 18−−マスフローメータ 19−ガ ス 音 2θ−V族ガス4入管 窮2図    21−反応管 22−、%用液コイル 23−  サセプター ?4−−−6I2AS基叔 ?5−−−俳  出  口
FIG. 1 is a block diagram of an oxygen removal apparatus according to the present invention, and FIG. 2 is a block diagram of an MOCVD epitaxial growth apparatus. 1...Oxygen removal device, 2...High purity aluminum, 3...Through hole, 4...Quartz tube,
5. Old: High-purity aluminum ground piece, 6”: Quartz lid, 7: High-purity aluminum mesh. Name of agent: Patent attorney Toshio Nakao and 1 other person 5P
J1 Figure 11 - Water turbine cylinder 12 - Mass flow meter 13 - T n Cr cylinder 14 - - TnA cylinder 15 - Gas tube / 6 - M group gas 4 inlet 1'l - - To A s Hs cylinder 18 - -Mass flow meter 19-Gas sound 2θ-V group gas 4 inlet tube Figure 2 21-Reaction tube 22-, % liquid coil 23- Susceptor? 4---6I2AS Kishu? 5---Hai Exit

Claims (4)

【特許請求の範囲】[Claims] (1)ガスを利用した半導体を始めとした各種のプロセ
ス装置において、ガスがその表面と接しながら通り抜け
可能な形状を有し、酸素に敏感に反応し、容易に酸化さ
れる素材をガス通路に設置することを特徴とする酸素除
去装置。
(1) In various process equipment such as semiconductors that use gas, the gas passages are made of materials that have a shape that allows gas to pass through while in contact with the surface, that react sensitively to oxygen, and that are easily oxidized. An oxygen removal device characterized by being installed.
(2)高純度アルミ円柱の軸方向に沿つて多数の細い貫
通孔を設けた特許請求の範囲第1項記載の酸素除去装置
(2) The oxygen removal device according to claim 1, wherein a large number of thin through holes are provided along the axial direction of the high-purity aluminum cylinder.
(3)石英管の両端を多数の細孔をもった石英板で封止
し、且つ石英管内部に高純度アルミの研削片を充填した
特許請求の範囲第1項記載の酸素除去装置。
(3) The oxygen removal device according to claim 1, wherein both ends of the quartz tube are sealed with quartz plates having a large number of pores, and the inside of the quartz tube is filled with ground pieces of high-purity aluminum.
(4)高純度アルミ製のメッシュを少なくとも1枚以上
重ねて、ガスの流れに垂直に設置することを特徴とした
特許請求の範囲第1項記載の酸素除去装置。
(4) The oxygen removal device according to claim 1, characterized in that at least one mesh made of high-purity aluminum is stacked and installed perpendicular to the gas flow.
JP20541186A 1986-09-01 1986-09-01 Oxygen removing device Pending JPS6360523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20541186A JPS6360523A (en) 1986-09-01 1986-09-01 Oxygen removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20541186A JPS6360523A (en) 1986-09-01 1986-09-01 Oxygen removing device

Publications (1)

Publication Number Publication Date
JPS6360523A true JPS6360523A (en) 1988-03-16

Family

ID=16506399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20541186A Pending JPS6360523A (en) 1986-09-01 1986-09-01 Oxygen removing device

Country Status (1)

Country Link
JP (1) JPS6360523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042854A (en) * 2005-08-03 2007-02-15 Tokyo Univ Of Agriculture & Technology Process for producing aluminium based iii nitride crystal and crystal multilayer substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042854A (en) * 2005-08-03 2007-02-15 Tokyo Univ Of Agriculture & Technology Process for producing aluminium based iii nitride crystal and crystal multilayer substrate
JP4749792B2 (en) * 2005-08-03 2011-08-17 国立大学法人東京農工大学 Method for producing aluminum group III nitride crystal and crystal laminated substrate

Similar Documents

Publication Publication Date Title
JP3131005B2 (en) Compound semiconductor vapor deposition equipment
EP0537854B1 (en) Method of manufacturing a semiconductor device whereby a layer of material is deposited on the surface of a semiconductor wafer from a process gas
JP3360539B2 (en) Gas supply device and equipment for vapor phase growth
KR100767798B1 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JPH04175294A (en) Vapor growth equipment
US3484311A (en) Silicon deposition process
JPS6360523A (en) Oxygen removing device
MY132166A (en) Method for tuning barrel reactor purge system
JPH04279022A (en) Semiconductor manufacturing device
JP3090145B2 (en) Compound semiconductor vapor deposition equipment
JPH08104984A (en) Device and method for introducing gas and formation of tungsten thin film
JPH0323624A (en) Method and apparatus for vapor growth
JPH03248415A (en) Manufacturing device of semiconductor device
JPS60254610A (en) Manufacturing equipment of semiconductor
JPS5493357A (en) Growing method of polycrystal silicon
JPS6369975A (en) Film growth device in vapor phase
JPS6126217A (en) Vapor growth apparatus
JPH01168023A (en) Semiconductor manufacturing equipment
JP2596693Y2 (en) Vapor phase growth equipment
JPH01319929A (en) Crystal growth apparatus
JPH03151629A (en) Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film
JPS62247521A (en) Organic metal compound accommodating unit
DE19839023A1 (en) Protected epitaxially coated semiconductor wafers are produced using a central clean room chamber for integration of epitaxial layer and protective layer forming operations
JPH04267925A (en) Exhaust gas treatment apparatus
JPS58115816A (en) Vapor growing device for compound semiconductor