JPH03124067A - Photovoltaic device and its manufacture - Google Patents

Photovoltaic device and its manufacture

Info

Publication number
JPH03124067A
JPH03124067A JP1262639A JP26263989A JPH03124067A JP H03124067 A JPH03124067 A JP H03124067A JP 1262639 A JP1262639 A JP 1262639A JP 26263989 A JP26263989 A JP 26263989A JP H03124067 A JPH03124067 A JP H03124067A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
conductive
laser beam
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1262639A
Other languages
Japanese (ja)
Inventor
Shitsuchiyanuritsutsu Poopon
ポーポン・シッチャヌリッツ
Hirohisa Suzuki
博久 鈴木
Hiroshi Nishi
博史 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP1262639A priority Critical patent/JPH03124067A/en
Priority to US07/593,838 priority patent/US5133809A/en
Priority to DE69016910T priority patent/DE69016910T2/en
Priority to EP90119098A priority patent/EP0422511B1/en
Publication of JPH03124067A publication Critical patent/JPH03124067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form a conductive passage without being influenced by a surface state and a film thickness of an a-Si layer by a method wherein a laser beam is irradiated through an insulating transparent substrate and the conductive passage which connects individual electricity-generating areas is formed. CONSTITUTION:A transparent electrode layer 2 (21 to 23), an a-Si layer 3 and a conductive printed electrode layer 4 (41 to 43) are laminated on a glass substrate 1; the conductive printed electrode layer 4 (41 to 43) is formed in such a way that one part is overlapped with the adjacent transparent electrode layer 2 via the a-Si layer 3. Then, a laser beam is irradiated from the side of the glass substrate 1 of overlapped parts of both electrode layers; a conductive passage 5 (51, 52) composed of an alloy layer 6 obtained after the transparent electrode layer 2 in individual electricity-generating areas, the a-Si layer 3 and the conductive printed electrode layer 4 in adjacent electricity-generating areas have been heated and melted is formed. When the laser beam is irradiated through the glass substrate 1 in this manner, the conductive passage 5 (51, 52) can be formed without being influenced by a surface state and a film thickness of the a-Si layer 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池や光センサ等に用いられる光起電力
装置に係り、特に薄いフィルム状の複数個の発電区域な
直列接続した光起電力装置およびその製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a photovoltaic device used for solar cells, optical sensors, etc. The present invention relates to a power device and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来、太陽電池や光センサ等として用いられているフィ
ルム状半導体導電性モジュールは限られたスペース内で
より多くの光線を受けて、それを電気エネルギーに変換
するために、多数の発電区域をもつ素子を平面状に配置
し、これら多数の発電区域を直列接続した薄いフィルム
状のものが利用されている。
Conventionally, film-type semiconductor conductive modules used as solar cells, optical sensors, etc. have a large number of power generation areas in order to receive as much light as possible within a limited space and convert it into electrical energy. A thin film-like device is used in which elements are arranged in a plane and a large number of power generation areas are connected in series.

第3図は、絶縁性基板上に透明電量層、非晶質半導体層
としての非晶質シリコン(以下a−3iと記す)層及び
裏面電極層としての導電性印刷電極層を積層してなる単
位太陽電池素子が直列接続されたa−3i太陽電池の構
成図である。このaSi太陽電池は、1枚のカラス基板
1上に透明電極層2(21〜23)、a−8i層3(3
1〜33)、導電性印刷電極層4(41〜43)が積層
されて複数の単位太陽電池素子が形成されており、この
単位太陽電池素子は当該素子の導電性印刷電極層を隣接
素子の透明電極層に接触するようにして直列接続されて
いる。
Figure 3 shows a structure in which a transparent coulometric layer, an amorphous silicon (hereinafter referred to as a-3i) layer as an amorphous semiconductor layer, and a conductive printed electrode layer as a back electrode layer are laminated on an insulating substrate. FIG. 2 is a configuration diagram of an a-3i solar cell in which unit solar cell elements are connected in series. This aSi solar cell has transparent electrode layers 2 (21 to 23), a-8i layer 3 (3
1 to 33), conductive printed electrode layers 4 (41 to 43) are stacked to form a plurality of unit solar cell elements, and this unit solar cell element connects the conductive printed electrode layer of the element to the adjacent element. They are connected in series so as to be in contact with the transparent electrode layer.

この種の太II%電池は、先ずガラス基板1上に■T○
(インジウムスズ酸化物)、5nOz(酸化スズ)等の
透明電導膜を電子ビーム蒸着、スパッタリングあるいは
熱CVD法で500−10000八程度の厚さに一面に
形成する。そして、透明ti層2は透明電導膜をレーザ
ビームを用いてパターニングするか、あるいはフォトリ
ングラフィ法を用いてフォトレジストパターンを形成し
、エツチングすることにより形成される。
This type of thick II% battery is manufactured by first placing ■T○ on a glass substrate 1.
A transparent conductive film of 5 nOz (indium tin oxide), 5 nOz (tin oxide), etc. is formed over one surface by electron beam evaporation, sputtering, or thermal CVD to a thickness of about 500 to 10,000 mm. The transparent Ti layer 2 is formed by patterning a transparent conductive film using a laser beam or by forming a photoresist pattern using a photolithography method and etching it.

次に、a−8i層は1、透明型(々1層2側から、例え
ばp形a−3i層を厚さ約200^、ノンドーフ゛aS
i層を厚さ0 、2−1 μm、■〕形a−8iJt4
を厚さ約50OAにシランガスのプラズマ放電分解で成
長させて形成する。なお、n形はほう素、炭素、n形は
燐をぞれぞれ添加する。このa−3i層をレーザビーム
によりパターニングして領域31.32.33に分割す
る。次いで、印刷法によりパターン化された導電性裏面
電極層4を印刷して太陽電池を形成する。
Next, the a-8i layer is 1, a transparent type (from the layer 2 side, for example, a p-type a-3i layer with a thickness of about 200^, and a non-doped aS
The thickness of the i layer is 0, 2-1 μm, ■] type a-8iJt4
is grown to a thickness of about 50 OA by plasma discharge decomposition of silane gas. Note that boron and carbon are added to the n-type, and phosphorus is added to the n-type. This a-3i layer is patterned with a laser beam and divided into regions 31, 32, and 33. Next, a patterned conductive back electrode layer 4 is printed by a printing method to form a solar cell.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

透明電導膜のパターニングの際に使用している波長1.
06μmのYAGレザービームを用いてa−3i層をパ
ターニングしようとすると、a −8i層の吸収率が低
いためレーザパワーを大きくする必要があり、このため
a−3i層がパターン化された時、第3図に示す透明電
極層のレーザ露光部26.27の部分で損傷を受ける。
Wavelengths used in patterning transparent conductive films1.
When attempting to pattern the a-3i layer using a 06 μm YAG laser beam, it is necessary to increase the laser power because the absorption rate of the a-8i layer is low, so when the a-3i layer is patterned, The laser exposed portions 26 and 27 of the transparent electrode layer shown in FIG. 3 are damaged.

これを解決するため、従来の方法ではa−3i層がよく
吸収する波長0.53μmのYAGレーザを用いていた
。したがって、従来のパターニングにおいては、透明電
導膜とa−8i層に適した波長か出力できるよう構成し
なければならず、装置が複雑化になると共に、a−3i
lの表面状態によっても反射率が異なるため、再現性が
よくないという問題があった。
To solve this problem, the conventional method uses a YAG laser with a wavelength of 0.53 μm, which is well absorbed by the a-3i layer. Therefore, in conventional patterning, a structure must be configured to output a wavelength suitable for the transparent conductive film and the A-8i layer, which complicates the equipment and also
Since the reflectance varies depending on the surface condition of l, there is a problem in that reproducibility is poor.

本発明の目的は、透明電極層と導電性印刷電極層とを接
続する導電性通路を、a−9i層の表面状態および膜厚
に影響されることなく形成することができる光起電力装
置の製造方法を提供することにある。
An object of the present invention is to provide a photovoltaic device in which a conductive path connecting a transparent electrode layer and a conductive printed electrode layer can be formed without being affected by the surface condition and film thickness of the a-9i layer. The purpose is to provide a manufacturing method.

また他の目的は、信頼性が高くかつ安定した特性をもつ
光起電力装置を提供することにある。
Another object is to provide a photovoltaic device with high reliability and stable characteristics.

〔問題点ご解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明の光起電力装置の
製造方法は、絶縁性透明基板上に間隔を介して複数の透
明電極層を設け、その上に非晶質半導体層、パターン化
された導電性印刷電極層を積層して複数の発電区域を形
成した後、レーザビームを基板側から照射して前記透明
電極層、非結晶半導体及び導電性印刷電極層を加熱溶融
して得られる合金層からなる導電性通路を形成し、前記
各発電区域を直列接続するものである。
In order to achieve the above object, the method for manufacturing a photovoltaic device of the present invention includes providing a plurality of transparent electrode layers at intervals on an insulating transparent substrate, and forming an amorphous semiconductor layer and a patterned layer on the transparent electrode layer. After laminating the conductive printed electrode layers to form a plurality of power generation areas, a laser beam is irradiated from the substrate side to heat and melt the transparent electrode layer, the amorphous semiconductor, and the conductive printed electrode layer. A conductive path made of an alloy layer is formed to connect the power generation sections in series.

上記導電性通路は、導電性印刷電極層を非貫通状態に形
成されている。
The conductive path is formed so as not to penetrate the conductive printed electrode layer.

上記透明゛電導膜のパターニングおよび導電性通路の形
成には同一波長のレーザビームを用いられる。このレー
ザビームの波長は1.0671mである。
A laser beam of the same wavelength is used for patterning the transparent conductive film and forming the conductive paths. The wavelength of this laser beam is 1.0671 m.

また本発明の光起電力装置は、絶縁性透明基板上に間隔
を介して設けられた複数の透明電極層と、透明電(支)
層を覆って設けられた非晶質半導体層と、非晶質半導体
層に積層され、かつ一部が隣接する透明電極層に非晶質
半導体層を介して重合するようにパターン化された導電
性印刷電極層とから成る複数の発電区域を有し、前記基
板側からレーザビームを照射して前記透明電極層、非結
晶半導体層および導電性印刷電極層を加熱溶融して得ら
れた合金層からなる導電性通路を、導電性印刷電極層を
非貫通状態で設け、該導電性通路により各発電区域が直
列接続されたものである。
Further, the photovoltaic device of the present invention includes a plurality of transparent electrode layers provided at intervals on an insulating transparent substrate, and a transparent electrode (support).
an amorphous semiconductor layer provided to cover the layer, and a conductive layer laminated on the amorphous semiconductor layer and patterned so as to partially overlap with the adjacent transparent electrode layer via the amorphous semiconductor layer. the transparent electrode layer, the amorphous semiconductor layer, and the conductive printed electrode layer are heated and melted by irradiating a laser beam from the substrate side; A conductive passage consisting of a conductive printed electrode layer is provided without penetrating the conductive printed electrode layer, and each power generation area is connected in series by the conductive passage.

〔fi′:  用〕[fi': for]

レーザビームを基板側から照射すると、各発電区域の透
明型tfi層、a−3i層及び隣接発電区域の導電性印
刷電極層まで加熱され、溶融した透明電極層と導電性印
刷裏面電極層から得られる合金層により導電性通路が形
成される。この導電性通路により各発電区域の透明電極
層と隣接発電区域の導電性印刷電極層とが一体的に結合
された太陽電池が構成される。上記方法でレーザビーム
を照射することにより、a−3i層の表面状態および膜
厚に影響されることなく導電性通路を形成することかで
きる。また導電性印刷型t4iMが充分な厚みをもって
いるため、導電性通路はレーザビームのパワー調節によ
って導電性印刷電極層を貫通させないで形成することで
きるから、光起電力装置が再現性よく製造することがで
きる。更にレーザビームの波長として透明電極層のパタ
ーニングに適した1、06μmのみを用いているため、
装置構成が簡単になる。
When the laser beam is irradiated from the substrate side, the transparent TFI layer and A-3I layer of each power generation area and the conductive printed electrode layer of the adjacent power generation area are heated, and the molten transparent electrode layer and the conductive printed back electrode layer are heated. A conductive path is formed by the alloy layer. This conductive path constitutes a solar cell in which the transparent electrode layer of each power generation area and the conductive printed electrode layer of the adjacent power generation area are integrally combined. By irradiating the laser beam with the above method, a conductive path can be formed without being affected by the surface condition and film thickness of the a-3i layer. Furthermore, since the conductive printed t4iM has a sufficient thickness, a conductive path can be formed without penetrating the conductive printed electrode layer by adjusting the power of the laser beam, so that the photovoltaic device can be manufactured with good reproducibility. I can do it. Furthermore, since only 1.06 μm, which is suitable for patterning the transparent electrode layer, is used as the wavelength of the laser beam,
Device configuration becomes simple.

〔実施例〕〔Example〕

第1図(a)−(d)は本発明の光起電力装置の一実施
例として非晶質シリコン太陽電池の製造に関する工程図
である。なお、第31./Iに共通の部分には同一符号
が付されている。先ず、図(a)に示すように、ガラス
基板1上には熱CVDにより厚さ800Aに形成された
Sn○2からなる透明電導膜を波長が1.06μmのY
AGレーザビームによりパターニングして透明電極層2
(21〜23)を形成する。次いで、図(b)に示すよ
うにρi n接合を有するa−9i層3をプラズマCV
D法を用いて約0.8μn1の厚さに形成し、更に図(
c)に示すように印刷法により導電性印刷電極層4(4
1〜43)を10〜30μmの厚さに形成する。この導
電性印刷電極屑4は隣接する透明電極層2に一部がa−
3i層3を介して重なるように形成されている。この重
なっている画電極層部分において単位太陽電池素子間の
接続か行われる。すなわち、この画電極層部分のガラス
基板側から1,06波長のレーザビームを照射すると、
第2図に示すように、各発電区域の透明電極層2、a−
3i層3及び隣接発電区域の導電性印刷電極層4が加熱
溶融して得られる合金層6からなる導電性通路5(51
,52)が形成される。この導電性通路5により導電性
印刷電極1141.42がそれぞれ透明電極層22.2
3と接続され、単位太陽電池素子を直列接続したa−3
i太陽電池が構成される。
FIGS. 1(a) to 1(d) are process diagrams for manufacturing an amorphous silicon solar cell as an embodiment of the photovoltaic device of the present invention. In addition, No. 31. Components common to /I are given the same reference numerals. First, as shown in FIG.
The transparent electrode layer 2 is patterned with an AG laser beam.
(21-23) are formed. Next, as shown in FIG.
It was formed to a thickness of about 0.8μn1 using the D method, and further as shown in the figure (
As shown in c), a conductive printed electrode layer 4 (4
1 to 43) to a thickness of 10 to 30 μm. A portion of this conductive printed electrode scrap 4 is attached to the adjacent transparent electrode layer 2.
They are formed so as to overlap with each other with the 3i layer 3 in between. Connections between unit solar cell elements are made in this overlapping picture electrode layer portion. That is, when a laser beam of 1.06 wavelength is irradiated from the glass substrate side of this picture electrode layer part,
As shown in FIG. 2, the transparent electrode layer 2, a-
Conductive passages 5 (51
, 52) are formed. This electrically conductive path 5 connects the electrically conductive printed electrodes 1141.42 to the transparent electrode layer 22.2, respectively.
a-3, which is connected to 3 and has unit solar cell elements connected in series.
i A solar cell is constructed.

導電性印刷電極層の材質は、Ni粒を充填材、樹脂をバ
インダーとした150〜200℃の低温で焼成できるペ
ーストが用いられる。
The material used for the conductive printed electrode layer is a paste that can be fired at a low temperature of 150 to 200° C., which contains Ni particles as a filler and a resin as a binder.

本発明の光起電力装置を応用した太陽電池では、200
1uxの入射光に対して出力が7%以上の高効率が得ら
れた。
In a solar cell to which the photovoltaic device of the present invention is applied, 200
High efficiency with an output of 7% or more was obtained for 1ux of incident light.

〔発明の効果〕〔Effect of the invention〕

上述のとおり、本発明によれば、各発電区域を接続する
導電性通路を形成するのに、レーザビームを絶縁性透明
基板を通して照射するので、レーザビームのパワーが多
少大きくしても導電性印刷電極層に悪影響を与えること
なく、a−3i層の表面状態および膜厚による反射率の
違いを解決でき、再現性よく光起電力装置を製造するこ
とができる。
As described above, according to the present invention, a laser beam is irradiated through an insulating transparent substrate to form a conductive path connecting each power generation area, so even if the power of the laser beam is increased somewhat, conductive printing will not occur. Differences in reflectance due to the surface condition and film thickness of the a-3i layer can be resolved without adversely affecting the electrode layer, and a photovoltaic device can be manufactured with good reproducibility.

また単位太陽電池素子間を接続する導電性通路が基板側
からの照射によって得られた合金層で形成され、かつ外
部と接触しないため、光起電力装置の信頼性が向上する
と共に、安定がつ高効率の出力特性が得られる。
In addition, the conductive paths connecting unit solar cell elements are formed of an alloy layer obtained by irradiation from the substrate side and do not come into contact with the outside, which improves the reliability and stability of the photovoltaic device. Highly efficient output characteristics can be obtained.

更に導電性通路の形成に透明電導膜のパターニングに適
した波長のレーザビームを使用するので、装置構成が簡
単になり、製造コストの低減が図れ第 ■ 図 る。
Furthermore, since a laser beam with a wavelength suitable for patterning the transparent conductive film is used to form the conductive paths, the device configuration is simplified and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は、本発明の光起電力装置の製造
方法の工程図、第2図は第1図(d)の導電性通路部分
を拡大した断面図、第3図は従来の太陽電池の構成図で
ある。 1・・・ガラス基板、3・・・透明電極層、2(21〜
22 ) 、、、透明電極層、3 ・a −S i層、
4(41〜43)・・・導電性印刷電極層、5(51,
52)・・導電性通路、6・・・合金層。
1(a) to 1(d) are process diagrams of the method for manufacturing a photovoltaic device of the present invention, FIG. 2 is an enlarged sectional view of the conductive passage portion of FIG. 1(d), and FIG. 3 is a configuration diagram of a conventional solar cell. DESCRIPTION OF SYMBOLS 1... Glass substrate, 3... Transparent electrode layer, 2 (21-
22) , , transparent electrode layer, 3 ・a-Si layer,
4(41-43)...Conductive printed electrode layer, 5(51,
52)... Conductive path, 6... Alloy layer.

Claims (6)

【特許請求の範囲】[Claims] (1)絶縁性透明基板上に間隔を介して複数の透明電極
層を設け、その上に非晶質半導体層、パターン化された
導電性印刷電極層を積層して複数の発電区域を形成した
後、レーザビームを基板側から照射して前記透明電極、
非結晶半導体及び導電性印刷電極を加熱溶融して得られ
る合金層からなる導電性通路を形成し、前記各発電区域
を直列接続する光起電力装置の製造方法。
(1) A plurality of transparent electrode layers are provided at intervals on an insulating transparent substrate, and an amorphous semiconductor layer and a patterned conductive printed electrode layer are laminated thereon to form a plurality of power generation areas. After that, the transparent electrode is irradiated with a laser beam from the substrate side.
A method for manufacturing a photovoltaic device, which comprises forming a conductive path made of an alloy layer obtained by heating and melting an amorphous semiconductor and a conductive printed electrode, and connecting the power generation sections in series.
(2)導電性通路は導電性印刷電極層を非貫通状態に形
成されていることを特徴とする請求項1記載の製造方法
(2) The manufacturing method according to claim 1, wherein the conductive path is formed so as not to penetrate the conductive printed electrode layer.
(3)導電性印刷電極層はNi粒を充填材、樹脂をバイ
ンダーとしたペーストにより形成されていることを特徴
とする請求項1記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the conductive printed electrode layer is formed of a paste containing Ni particles as a filler and a resin as a binder.
(4)透明電導膜のパターニングおよび導電性通路の形
成に同一波長のレーザビームを用いることを特徴とする
請求項1記載の製造方法。
(4) The manufacturing method according to claim 1, wherein a laser beam having the same wavelength is used for patterning the transparent conductive film and forming the conductive path.
(5)レーザビームの波長が1.06μmであることを
特徴とする請求項4記載の製造方法。
(5) The manufacturing method according to claim 4, wherein the wavelength of the laser beam is 1.06 μm.
(6)絶縁性透明基板上に間隔を介して設けられた複数
の透明電極層と、透明電極層を覆って設けられた非晶質
半導体層と、非晶質半導体層に積層され、かつ一部が隣
接する透明電極層に非晶質半導体層を介して重合するよ
うにパターニングされた導電性印刷電極層とから成る複
数の発電区域を有し、前記基板側からレーザビームを照
射して前記透明電極層、非結晶半導体層および導電性印
刷電極層を加熱溶融して得られた合金層からなる導電性
通路を、導電性印刷電極層を非貫通状態で設け、該導電
性通路により各発電区域が直列接続された光起電力装置
(6) a plurality of transparent electrode layers provided at intervals on an insulating transparent substrate; an amorphous semiconductor layer provided covering the transparent electrode layer; The section has a plurality of power generation areas consisting of a conductive printed electrode layer patterned so as to be polymerized with an adjacent transparent electrode layer through an amorphous semiconductor layer, and a laser beam is irradiated from the substrate side to generate the electricity. A conductive path made of an alloy layer obtained by heating and melting a transparent electrode layer, an amorphous semiconductor layer, and a conductive printed electrode layer is provided without penetrating the conductive printed electrode layer, and each power generation is performed using the conductive path. A photovoltaic device with zones connected in series.
JP1262639A 1989-10-07 1989-10-07 Photovoltaic device and its manufacture Pending JPH03124067A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1262639A JPH03124067A (en) 1989-10-07 1989-10-07 Photovoltaic device and its manufacture
US07/593,838 US5133809A (en) 1989-10-07 1990-10-05 Photovoltaic device and process for manufacturing the same
DE69016910T DE69016910T2 (en) 1989-10-07 1990-10-05 Photovoltaic device and its manufacturing process.
EP90119098A EP0422511B1 (en) 1989-10-07 1990-10-05 Photovoltaic device and process for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262639A JPH03124067A (en) 1989-10-07 1989-10-07 Photovoltaic device and its manufacture

Publications (1)

Publication Number Publication Date
JPH03124067A true JPH03124067A (en) 1991-05-27

Family

ID=17378579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262639A Pending JPH03124067A (en) 1989-10-07 1989-10-07 Photovoltaic device and its manufacture

Country Status (4)

Country Link
US (1) US5133809A (en)
EP (1) EP0422511B1 (en)
JP (1) JPH03124067A (en)
DE (1) DE69016910T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527910A (en) * 1998-10-12 2002-08-27 パシフィック ソーラー ピー ティ ワイ リミテッド Melt-through contact formation method
JP2010287800A (en) * 2009-06-12 2010-12-24 Tokki Corp Apparatus and method for manufacturing organic device

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594471A (en) * 1983-07-13 1986-06-10 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
JPH02268472A (en) * 1989-04-10 1990-11-02 Showa Shell Sekiyu Kk Photovoltaic device and its manufacture
SE501723C2 (en) * 1993-09-10 1995-05-02 Ellemtel Utvecklings Ab Optical amplification device and use of the device
SE501721C2 (en) * 1993-09-10 1995-05-02 Ellemtel Utvecklings Ab Laser device with an optical cavity connected in series laser structures
SE501722C2 (en) * 1993-09-10 1995-05-02 Ellemtel Utvecklings Ab Surface emitting laser device with vertical cavity
JPH11103079A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Manufacture of laminated photovoltaic device
US6468828B1 (en) 1998-07-14 2002-10-22 Sky Solar L.L.C. Method of manufacturing lightweight, high efficiency photovoltaic module
AU757536B2 (en) * 1998-10-12 2003-02-27 Csg Solar Ag Melt through contact formation method
NL1012961C2 (en) * 1999-09-02 2001-03-05 Stichting Energie A method of manufacturing a semiconductor device.
US20050247340A1 (en) * 2004-04-19 2005-11-10 Zeira Eitan C All printed solar cell array
CN100536148C (en) * 2004-06-04 2009-09-02 新南创新私人有限公司 Thin-film solar cell interconnection
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US9105776B2 (en) * 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8071179B2 (en) * 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US7919400B2 (en) * 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
JP5458485B2 (en) * 2007-09-25 2014-04-02 三洋電機株式会社 Method for manufacturing solar cell and method for manufacturing solar cell module
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US20090087939A1 (en) * 2007-09-28 2009-04-02 Stion Corporation Column structure thin film material using metal oxide bearing semiconductor material for solar cell devices
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8614396B2 (en) * 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US7998762B1 (en) 2007-11-14 2011-08-16 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8440903B1 (en) 2008-02-21 2013-05-14 Stion Corporation Method and structure for forming module using a powder coating and thermal treatment process
US8772078B1 (en) 2008-03-03 2014-07-08 Stion Corporation Method and system for laser separation for exclusion region of multi-junction photovoltaic materials
US8075723B1 (en) 2008-03-03 2011-12-13 Stion Corporation Laser separation method for manufacture of unit cells for thin film photovoltaic materials
US7939454B1 (en) 2008-05-31 2011-05-10 Stion Corporation Module and lamination process for multijunction cells
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US8207008B1 (en) 2008-08-01 2012-06-26 Stion Corporation Affixing method and solar decal device using a thin film photovoltaic
TWI478359B (en) * 2008-09-05 2015-03-21 Semiconductor Energy Lab Photoelectric conversion device
US7855089B2 (en) 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8008110B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8008112B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8026122B1 (en) 2008-09-29 2011-09-27 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US7910399B1 (en) 2008-09-30 2011-03-22 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US7863074B2 (en) 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US7947524B2 (en) 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110018103A1 (en) 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8003430B1 (en) 2008-10-06 2011-08-23 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
USD625695S1 (en) 2008-10-14 2010-10-19 Stion Corporation Patterned thin film photovoltaic module
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
FR2939239B1 (en) 2008-12-03 2010-12-31 Ecole Polytech PHOTOVOLTAIC MODULE COMPRISING A TRANSPARENT CONDUCTIVE ELECTRODE OF VARIABLE THICKNESS AND METHODS OF MANUFACTURING SUCH A MODULE
USD662040S1 (en) 2009-06-12 2012-06-19 Stion Corporation Pin striped thin film solar module for garden lamp
USD628332S1 (en) 2009-06-12 2010-11-30 Stion Corporation Pin striped thin film solar module for street lamp
USD632415S1 (en) 2009-06-13 2011-02-08 Stion Corporation Pin striped thin film solar module for cluster lamp
USD652262S1 (en) 2009-06-23 2012-01-17 Stion Corporation Pin striped thin film solar module for cooler
USD662041S1 (en) 2009-06-23 2012-06-19 Stion Corporation Pin striped thin film solar module for laptop personal computer
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
USD627696S1 (en) 2009-07-01 2010-11-23 Stion Corporation Pin striped thin film solar module for recreational vehicle
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
KR101807333B1 (en) 2010-05-28 2017-12-08 프리솜 에이쥐 Method and apparatus for thin film module with dotted interconnects and vias
US8563351B2 (en) * 2010-06-25 2013-10-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing photovoltaic device
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
WO2015114498A1 (en) 2014-01-31 2015-08-06 Flisom Ag Method for thin-film via segments in photovoltaic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US467567A (en) * 1892-01-26 Window-shade
JPS6289368A (en) * 1985-10-16 1987-04-23 Matsushita Electric Ind Co Ltd Manufacture of solar cell device
JPS6450476A (en) * 1987-08-20 1989-02-27 Mitsubishi Electric Corp Manufacture of thin film solar cell
JPS6454769A (en) * 1987-08-26 1989-03-02 Fuji Electric Res Manufacture of amorphous silicon solar cell
JPH01124270A (en) * 1987-11-09 1989-05-17 Fuji Electric Co Ltd Thin-film solar cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517403A (en) * 1983-05-16 1985-05-14 Atlantic Richfield Company Series connected solar cells and method of formation
US4724011A (en) * 1983-05-16 1988-02-09 Atlantic Richfield Company Solar cell interconnection by discrete conductive regions
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
JPS61280680A (en) * 1985-05-10 1986-12-11 Sanyo Electric Co Ltd Manufacture of semiconductor device
US4675467A (en) * 1986-04-05 1987-06-23 Chronar Corp. Directed energy conversion of semiconductor materials
US4936924A (en) * 1987-08-20 1990-06-26 Mitsubishi Denki Kabushiki Kaisha Thin-film solar battery and its manufacturing method
JPS6461963A (en) * 1987-09-02 1989-03-08 Fuji Electric Co Ltd Manufacture of solar cell
US4968354A (en) * 1987-11-09 1990-11-06 Fuji Electric Co., Ltd. Thin film solar cell array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US467567A (en) * 1892-01-26 Window-shade
JPS6289368A (en) * 1985-10-16 1987-04-23 Matsushita Electric Ind Co Ltd Manufacture of solar cell device
JPS6450476A (en) * 1987-08-20 1989-02-27 Mitsubishi Electric Corp Manufacture of thin film solar cell
JPS6454769A (en) * 1987-08-26 1989-03-02 Fuji Electric Res Manufacture of amorphous silicon solar cell
JPH01124270A (en) * 1987-11-09 1989-05-17 Fuji Electric Co Ltd Thin-film solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527910A (en) * 1998-10-12 2002-08-27 パシフィック ソーラー ピー ティ ワイ リミテッド Melt-through contact formation method
JP2010287800A (en) * 2009-06-12 2010-12-24 Tokki Corp Apparatus and method for manufacturing organic device

Also Published As

Publication number Publication date
DE69016910D1 (en) 1995-03-23
US5133809A (en) 1992-07-28
EP0422511A2 (en) 1991-04-17
EP0422511B1 (en) 1995-02-15
DE69016910T2 (en) 1995-07-20
EP0422511A3 (en) 1991-07-31

Similar Documents

Publication Publication Date Title
JPH03124067A (en) Photovoltaic device and its manufacture
US4517403A (en) Series connected solar cells and method of formation
US4754544A (en) Extremely lightweight, flexible semiconductor device arrays
US6011215A (en) Point contact photovoltaic module and method for its manufacture
CN102971865A (en) Solar cell module and method of manufacturing thereof
EP0201312A2 (en) Solar cell interconnection by discrete conductive regions
US20110023962A1 (en) Solar Cell Element and Solar Cell Module
WO1994027327A1 (en) Series interconnected photovoltaic cells and method for making same
EP0189976A2 (en) Extremely lightweight, flexible semiconductor device arrays and method of making same
JP5377101B2 (en) Solar cell element, solar cell module, and solar power generation device
JPH04118975A (en) Photovoltaic device and manufacture thereof
JPH0476227B2 (en)
JP2000223728A (en) Thin film solar battery module
JP2598967B2 (en) Method for manufacturing photovoltaic device
JPS62242371A (en) Manufacture of photovoltaic device
JPH03196679A (en) Manufacture of thin film solar battery
JP3573869B2 (en) Method for manufacturing photovoltaic device
JP2726045B2 (en) Light power generator
JPS6265480A (en) Thin film solar battery
JP2001036104A (en) Solar battery module
JPH0669104B2 (en) Photovoltaic device manufacturing method
JP2819538B2 (en) Method for manufacturing photovoltaic device
JPH02106978A (en) Manufacture of integrated type solar cell
CN116471857A (en) Perovskite laminated cell structure and production process thereof
JPS63202078A (en) Manufacture of photovoltaic device