JPH03196679A - Manufacture of thin film solar battery - Google Patents

Manufacture of thin film solar battery

Info

Publication number
JPH03196679A
JPH03196679A JP1337368A JP33736889A JPH03196679A JP H03196679 A JPH03196679 A JP H03196679A JP 1337368 A JP1337368 A JP 1337368A JP 33736889 A JP33736889 A JP 33736889A JP H03196679 A JPH03196679 A JP H03196679A
Authority
JP
Japan
Prior art keywords
electrode
extended
photoelectric conversion
conversion film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337368A
Other languages
Japanese (ja)
Inventor
Masayoshi Maehane
昌佳 前羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1337368A priority Critical patent/JPH03196679A/en
Publication of JPH03196679A publication Critical patent/JPH03196679A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent laser-welded section from corroding, being improperly coupled and exfoliating due to moisture and the like, by irradiating, with a laser beam, the mutually facing portions of extended first and second electrodes with photoelectric conversion film sandwiched between them, in the direction from insulating board side. CONSTITUTION:One of adjacent unit generating elements, such as extended first electrode 3be of SC2 and extended second electrode 5ae of another unit generating element SC1 face to each other with photoelectric conversion film 4 sandwiched between them, and a laser beam LB is directed from insulating base board 1 to the mutually facing portions of the extended first and second electrodes 3be and 5ae. Therefore, photoelectrically transducing film 4 and part of the extended second electrode 5ae facing to the photoelectrically transducing film 4 are melted and conductive material of the extended second electrode 5ae is mixed in the molten substance and the extended second electrode 5ae and the extended first electrode 3be can be electrically coupled to each other. In addition, the laser-welded section is not exposed to the outside surface. This can prevent the laser-welded section from corroding, improper coupling and exfoliating due to moisture and the like.

Description

【発明の詳細な説明】 (イ)産業上の利用分計 本発明は太陽光や人工照明の下で発電動作する薄膜太陽
電池の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Utilization The present invention relates to a method for manufacturing a thin film solar cell that generates electricity under sunlight or artificial lighting.

(ロ)従来の技術 太陽光や人工照明の下で発電動作する太陽電池として、
アモルファスシリコン系の光電変換膜を備えた薄膜太陽
電池が広く実用化されている。斯る光電変換膜を備えた
薄膜太陽電池は、第6図に示す如く当該光電変換膜(4
)を支持する基板(1)上に先ず第1電極(3)が形成
され、次いで光電変換膜(4)、第2電極(5)がこの
順に積層され、この積層体が発電素子(SC)として動
作する。通常、この発電素子(S C、)(S et)
・・・の出力電圧は、0.5〜0.9■と1V以下であ
るために第7図に示すように一ト記基板(1)上に複数
個形成され、隣接する一方の単位発電素子(SC,)と
他方の単位発電素子(SC,)の出力が、直列的に相加
されるように、一方の素子の第it極(3a)と他方の
素子の第2電極(5b)とが電気的に結合されている(
米国特許第4,281.208号明細書及び図面)。斯
る従来の直列接続構造の太陽電池にあっては、成膜時に
得たいパターンの開口部を有するメタルマスクで基板(
1)を部分的に覆う方法が、製造コスト的に有利なこと
から、当初この方法により製造されていた。
(b) Conventional technology As a solar cell that generates electricity under sunlight or artificial lighting,
Thin-film solar cells equipped with amorphous silicon-based photoelectric conversion films have been widely put into practical use. A thin film solar cell equipped with such a photoelectric conversion film has the photoelectric conversion film (4) as shown in FIG.
) A first electrode (3) is first formed on a substrate (1) that supports a photoelectric conversion film (4) and a second electrode (5) are laminated in this order, and this laminated body becomes a power generation element (SC). operates as Usually, this power generating element (S C,) (S et)
Since the output voltage of . The it pole (3a) of one element and the second electrode (5b) of the other element are connected so that the outputs of the element (SC,) and the other unit power generation element (SC,) are added in series. are electrically coupled (
(U.S. Pat. No. 4,281,208 and drawings). In such conventional solar cells with a series connection structure, the substrate (
Since the method of partially covering 1) was advantageous in terms of manufacturing cost, this method was initially used for manufacturing.

しかし、斯るメタルマスク法による光電変換膜のパター
ニングは、マスク端面付近における膜と、パターン中央
部における膜とでは、膜厚ムラが生じたり、成膜時の加
熱によりマスクが膨張して基板(1)とマスクとの間に
隙間が生じ、この隙間の一部に膜が形成される、所謂「
にじみ」が発生する。もしこのにじみが直列接続のため
に露出させなければならない第1電極(3a)の延長部
(3ae )(3be )を覆うと、この延長部(3a
e )(3be )に重畳される他方の発電素子(SC
)の第2電極延長部(5be)(5be)との間に、位
置することとなる。即ち、にじみは直列接続部において
、接続抵抗増大の原因となる。
However, when patterning a photoelectric conversion film using such a metal mask method, there may be uneven film thickness between the film near the end face of the mask and the film at the center of the pattern, or the mask may expand due to heating during film formation, resulting in damage to the substrate ( A gap is created between 1) and the mask, and a film is formed in a part of this gap.
"Bleeding" occurs. If this bleed covers the extensions (3ae) (3be) of the first electrode (3a) that must be exposed for series connection, then this extension (3a)
e ) (3be ) is superimposed on the other power generating element (SC
) and the second electrode extension part (5be) (5be). That is, the bleeding causes an increase in connection resistance in the series connection portion.

そこで、第8図に示す如く、光電変換膜(4)をメタル
マスクを用いることなく基板(1)表面の全域に均一・
に成膜し、引き続き第2′#L極を所定形状にパターニ
ングした後、一方の単位発電素子(SC,)の第1電極
(3b)の延長部(3be)と、他方の単位発電素子(
SC,ンの第21i極(5a)の延長部(5ae)とが
E記光電変換膜(4)を挟んで対向する部位に、第2を
極(5a)の延長部(5ae)側からレーザビーム(L
B)を照射し、被照射部位の第211IL掻(5a)の
延長部(5ae)と下層の光電変換膜(4)を連名して
、延長部(5ae)(3be)同士を電気的に結合(溶
着)する方法を試みた。
Therefore, as shown in Fig. 8, the photoelectric conversion film (4) is uniformly spread over the entire surface of the substrate (1) without using a metal mask.
After forming a film and subsequently patterning the 2′#L pole into a predetermined shape, the extension part (3be) of the first electrode (3b) of one unit power generating element (SC,) and the other unit power generating element (SC,) are formed.
A laser beam is applied from the extension part (5ae) side of the second pole (5a) to the part where the extension part (5ae) of the 21i pole (5a) of SC and N faces across the E photoelectric conversion film (4). Beam (L
B) is irradiated, the extension part (5ae) of the 211th IL scraper (5a) of the irradiated area and the lower photoelectric conversion film (4) are jointly connected, and the extension parts (5ae) (3be) are electrically connected to each other. (Welding) method was tried.

(ハ)発明が解決しようとする課題 ところが、斯る太陽電池においては、レーザビームの被
照射部位が露出するために、電気的結合部が最終的に樹
脂材料等により、オーバーコートされたとしても、信頼
性の面で、特に耐湿性の面でレーザ溶着部における結合
不良や、剥離を招く危惧を有していた。
(c) Problems to be Solved by the Invention However, in such solar cells, the area to be irradiated with the laser beam is exposed, so even if the electrical connection part is eventually overcoated with a resin material, etc. However, in terms of reliability, especially in terms of moisture resistance, there was a risk of poor bonding or peeling at the laser welded part.

本発明は、上述の如く直列接合部におれる従来の種々の
問題点を解決せんとするものである。
The present invention is intended to solve the various problems of the conventional series junctions as described above.

(ニ)課題を解決するための手段 本発明の製造方法は、上記課題を解決するために、透光
性絶縁基板上に並置された透光性の第1電極、該第1を
極を覆う光電変換膜、該光電変換膜の背面側に設けられ
た導電ペーストの第2電極を備え、これら第1電極、充
電変換膜及び第2′11極の積層体で単位発電素子を隣
成し、隣接する一方の単位発電素子の第1電極の延長部
と他方の曝位発電素子の第2電極の延長部を、光電変換
膜を挟んで対向させると共に、当該第1・第2電極の延
長部対向箇所に対して上記絶縁基板からレーザビームを
照射することを特徴とする。
(d) Means for Solving the Problems In order to solve the above problems, the manufacturing method of the present invention includes transparent first electrodes juxtaposed on a transparent insulating substrate, the first electrodes covering the poles. A photoelectric conversion film, a second electrode of a conductive paste provided on the back side of the photoelectric conversion film, and a unit power generation element is formed by a stack of these first electrodes, a charge conversion film, and a 2′11 electrode, The extension of the first electrode of one adjacent unit power generation element and the extension of the second electrode of the other exposure power generation element are made to face each other with a photoelectric conversion film in between, and the extension of the first and second electrodes. The method is characterized in that a laser beam is irradiated from the insulating substrate to the opposing location.

(ホ) fヤ   用 上述の如く絶縁基板及び基板側の第1電極を透光性とし
、第2に極を導電ペーストで構成すると共に、光電変換
膜を挟んで対向する第1・第2電極の延長部対向箇所に
対して上記絶縁基板側からレーザビームを照射すること
によって、当該レーザビームの照射を受けた充電変換膜
及び第2を極延長部の光電変換膜側の部位が溶融される
(e) For fya As described above, the insulating substrate and the first electrode on the substrate side are made transparent, the second electrode is made of conductive paste, and the first and second electrodes are opposed to each other with a photoelectric conversion film in between. By irradiating a laser beam from the insulating substrate side to a portion facing the extension portion, the charge conversion film and the portion on the photoelectric conversion film side of the second pole extension portion irradiated with the laser beam are melted. .

(へ)実施例 第1図乃至第4図は、本発明製造方法による一実施例を
示す。
(F) Embodiment FIGS. 1 to 4 show an embodiment according to the manufacturing method of the present invention.

第1図の工程では、ガラス、耐熱プラスチック等から成
る透光性の絶縁基板(1)の−表面の長子方向に整列区
画された複数の単位発電素子が形成される発電領域(2
a)〜(2c)に、第1を極(3a)〜(3c)が分割
配置される。この第】を極(3a)〜(3C)は、酸化
錫(SnOy)や酸化インジウム錫(ITO)等の透光
性導電酸化物(TCO)の単層あるいは積層構造から成
る。更に、第1電極(3a)〜(3C)は基板(1)の
一方の周縁に向かって延出した第1TL極延長部(3a
e)−(3ce)を有し、そして、第1電極(3b)(
3c)に形成された第1を極延長部(3be)(3ce
)は、左隣りの第1を極膜(3a)(3b)方向に約0
.3ffWの幅で向かう逆り字状に形成されている。
In the process shown in FIG. 1, a power generation area (2) in which a plurality of unit power generation elements arranged and sectioned in the longitudinal direction of the -surface of a transparent insulating substrate (1) made of glass, heat-resistant plastic, etc. is formed.
The first poles (3a) to (3c) are divided and arranged in a) to (2c). The electrodes (3a) to (3C) are made of a single layer or a laminated structure of a translucent conductive oxide (TCO) such as tin oxide (SnOy) or indium tin oxide (ITO). Further, the first electrodes (3a) to (3C) have a first TL pole extension (3a) extending toward one peripheral edge of the substrate (1).
e)-(3ce), and the first electrode (3b) (
3c) and the first pole extension (3be) (3ce
) is about 0 in the polar membrane (3a) (3b) direction.
.. It is formed in an inverted shape with a width of 3ffW.

第2図の工程では、第1を極(3a)〜(3C)及び第
1電極延長部(3ae)〜(3ce)を含んで基板(1
)の−表面の略全面に、SiH,,5iFs等のシリコ
ン化合物ガスを原料ガスとするプラズマCVD法や光C
V D法により、アモルファスシリコン(a−3i)、
アモルファスシリコンカーバイド(a−8i C) 、
アモルファスシリコンゲルマニウム(a−5iGe)等
をpn% pinに積層した半導体接合を含む光電変換
膜(4)が形成される。
In the process shown in FIG. 2, the first substrate (1
) - The plasma CVD method using a silicon compound gas such as SiH, 5iFs, etc.
Amorphous silicon (a-3i),
Amorphous silicon carbide (a-8i C),
A photoelectric conversion film (4) including a semiconductor junction in which amorphous silicon germanium (a-5iGe) or the like is stacked on pn% pin is formed.

第3図の工程では、絶縁基板(1)上の複数の発電領域
(2a)−(2c)に単位発電素子(SC,)−(SC
3)を形成すべく光電変換膜(4)を挟んで第1′jl
t極(3a)〜(3c)と重なるように、第2を極(5
a)〜(5c)が分割配置される。第2電極(5a)〜
(5c)は、膜厚約10μm以上と十分な厚みを備える
べくスクリーン印刷によりパターニングされた後に焼成
することなく150℃程度で熱硬化させることにより形
成された導電性ペーストから成る。斯る導電性ペースト
としては、フィラーがAg、Ni、Cu等で、バインダ
がフェノール、エポキシ、ポリエステル等のものが用い
られる。また、第2を極(5a)〜(5c)は第1を極
(3a)〜(3c)と同じく基板(1)の一方の周縁に
向かって延出した第2電極延長部(5ae) −(5c
e)を有し、そして、第2電極(5a)(5b)に形成
された第2電極延長部(5ae)〜(5be)は、夫々
右隣りの第1を極(3b)(3c)の第1電極延長部(
3be)(3ce)と光電変換膜(4)を挟んで対向す
るように形成されている。また、左端の第11を極(3
a)の第1t極延長部(3ae)と重なるように、取出
電極膜(6)が配置されるが、この取出電極膜(6)も
第1電極延長部(3ae )と光電変換膜(4)を挟ん
で対向するように形成されている。透光性の絶縁基板(
])側から、最後に、第2電極延長部(5ae)〜(5
cc)の配列方向(第3図に示す矢印方向)に絶縁基板
(1)及び第1電極延長部(3ae)〜(3ce)を透
過し得る波長(可視光及び赤外光)のレーザビームを照
射することによって、第1電極延長部(3ae)〜(3
ce )の夫々と取出電極膜(6)及び第2を極延長部
(5ae)〜(5be )の夫々とが光電変換膜(4)
の溶融により内面から溶着される。
In the process shown in FIG. 3, unit power generation elements (SC,)-(SC
3) with the photoelectric conversion film (4) in between.
The second pole (5) overlaps with the t poles (3a) to (3c).
a) to (5c) are divided and arranged. Second electrode (5a) ~
(5c) is made of a conductive paste formed by patterning by screen printing to have a sufficient film thickness of about 10 μm or more and then thermally curing at about 150° C. without baking. Such conductive pastes include fillers such as Ag, Ni, Cu, and the like, and binders such as phenol, epoxy, and polyester. In addition, the second electrode extensions (5ae) extending toward one peripheral edge of the substrate (1) are similar to the first electrodes (3a) to (3c). (5c
e), and the second electrode extension parts (5ae) to (5be) formed on the second electrodes (5a) and (5b) extend from the first right-hand side to the poles (3b) and (3c), respectively. First electrode extension (
3be) (3ce) and are formed to face each other with the photoelectric conversion film (4) in between. Also, set the leftmost 11th pole to the pole (3
The extraction electrode film (6) is arranged so as to overlap the first t-pole extension (3ae) in a), but this extraction electrode film (6) also overlaps the first electrode extension (3ae) and the photoelectric conversion film (4). ) are formed to face each other with the two sides in between. Translucent insulating substrate (
]) side, and finally the second electrode extension part (5ae) to (5
A laser beam of a wavelength (visible light and infrared light) that can be transmitted through the insulating substrate (1) and the first electrode extensions (3ae) to (3ce) in the arrangement direction (arrow direction shown in FIG. 3) of cc) is emitted. By irradiating, the first electrode extensions (3ae) to (3
ce), each of the extraction electrode film (6), and each of the second pole extension parts (5ae) to (5be) are the photoelectric conversion film (4).
It is welded from the inside by melting.

斯る溶着は、レーザビーム(LB)を第4図に示す如く
絶縁基板(1)側から第1電極延長部(3ae)と取出
電極膜(6)又は第1電極延長部(3be)、(3ce
)と第21を極延長部(5ae)、(5be)が光電変
換膜(−1)を挟んで対向する部位に照射することによ
り行なわれる。このとき照射されたレーザビーム(LB
)は絶縁基板(1)及び第1を極延長部(3ae)、(
3be)、(3ce)に実質的に吸収されることなく透
過し、光電変換膜(4)及びこの光電変換膜(4)と接
触する肉厚な取出電極膜(6)又は第2電極延長部(5
ae)、(5be)の接触面側部分で吸収される。
Such welding is performed by applying a laser beam (LB) from the insulating substrate (1) side to the first electrode extension (3ae) and the extraction electrode film (6) or the first electrode extension (3be), ( 3ce
) and No. 21 are irradiated to the portions where the pole extensions (5ae) and (5be) face each other with the photoelectric conversion film (-1) in between. The laser beam (LB
) is an insulating substrate (1) and a first pole extension (3ae), (
3be) and (3ce), transmits through the photoelectric conversion film (4) without being absorbed substantially, and the thick extraction electrode film (6) or the second electrode extension that comes into contact with the photoelectric conversion film (4). (5
ae) and (5be) are absorbed at the contact surface side portions.

斯るレーザビーム(1,8)を吸収した部位は、熱的に
溶融され、導電ペースト中に含まれる導電性フィラが第
1電極延長部(3ae)〜(3ce)表面にまで移動す
ることとなる。その結果、第1t極延長部(3ae )
〜(3ce)と、取出電極膜(6)又は第2電極延長部
(5ae)、(5be)の電気的結合が各々完成する。
The portion that absorbed the laser beam (1, 8) is thermally melted, and the conductive filler contained in the conductive paste moves to the surfaces of the first electrode extensions (3ae) to (3ce). Become. As a result, the first t-pole extension (3ae)
The electrical connection between ~ (3ce) and the extraction electrode film (6) or the second electrode extensions (5ae) and (5be) is completed.

使用されるレーザビームは、波長1.06pmのQスイ
ッチ式のNd:YAGレーザが好適であり、くり返し周
波数3KHzでレーザパワー0.5Wのとき、取出電極
膜(6)又は第2を極延長部(5ae)〜(5be )
を貫通することなく加工径30〜50pmの内部コンタ
クトが得られる。珠に、上記取出電極膜(6)及び第2
を極延長部(5ae)、(5be)は、導電ペーストか
ら成り、厚み約10μm以上と十分な膜厚を備えること
から、上記絶縁基板(1)側から照射されるレーザビー
ムの出力が多少変動したとしても、これら取出電極膜(
6)及び第2電極延長部(5ae)、(5be)を貫通
することはない。従って、斯るレーザビーム出力が多少
変動しても、当該レーザビームの貫通事故を回避し得る
ので、内部において十分に電気的結合を実現するレーザ
ビーム加工が可能となる。
The laser beam used is preferably a Q-switch type Nd:YAG laser with a wavelength of 1.06 pm, and when the repetition frequency is 3 KHz and the laser power is 0.5 W, the extraction electrode film (6) or the second pole extension part is (5ae) ~ (5be)
An internal contact with a processing diameter of 30 to 50 pm can be obtained without penetrating the The lead electrode film (6) and the second
The pole extensions (5ae) and (5be) are made of conductive paste and have a sufficient film thickness of about 10 μm or more, so the output of the laser beam irradiated from the insulating substrate (1) side varies slightly. Even if these extraction electrode films (
6) and the second electrode extensions (5ae) and (5be). Therefore, even if the laser beam output fluctuates to some extent, the penetration accident of the laser beam can be avoided, making it possible to perform laser beam processing that achieves sufficient internal electrical coupling.

第5図は本発明の他の実施例により製造された光起電力
装置の一部断面斜視図を示している。この実施例の特徴
は、隣接する単位発電素子<S C、)、(S C、)
・・・の直列接続を、これら発!素子(S C、)、(
S C、)・・・の隣接間隔部において施したところに
ある。即ち、この隣接間隔部に一方の素子(S C、)
の第1電極延長部(3ae)と他方の素子(S C、)
の第2電極延長部(5be )が夫々延出し、光電変換
膜(4)を挟んで対向する部位に、絶縁基板(1)側か
らレーザビーム(LB)が照射されて、表面にレーザ照
射部位が露出することなく直列接続が実現される。
FIG. 5 shows a partially sectional perspective view of a photovoltaic device manufactured in accordance with another embodiment of the present invention. The features of this embodiment are that the adjacent unit power generating elements <S C,), (S C,)
These are the series connections of ...! Element (SC,), (
S C, )... are applied at adjacent intervals. That is, one element (S C,)
the first electrode extension (3ae) and the other element (SC,)
The second electrode extension parts (5be) extend respectively, and a laser beam (LB) is irradiated from the insulating substrate (1) side to the parts facing each other with the photoelectric conversion film (4) in between, so that the laser beam (LB) is irradiated on the surface. Series connection is realized without exposing the

(ト)発明の効果 本発明製造方法は以上の説明から明らかな如く、絶縁基
板側からレーザビームを照射することによって、当該レ
ーザビームの照射を受けた光電変換膜及び第2を極延長
部の光電変換膜側の部位が溶融されるので、第2電極延
長部の導電材料が溶融物に含まれる結果、第2電極延長
部と第1電極延長部との電気的結合を実現することがで
きる。しかも、上記電気的結合を実現するレーザ溶着部
は、表面に露出することがないので、湿気等による剥離
や腐食、更には結合不良等を回避し得、信頼性の向上が
図れる。
(G) Effects of the Invention As is clear from the above description, the manufacturing method of the present invention irradiates a laser beam from the insulating substrate side, thereby removing the photoelectric conversion film and the second photoelectric conversion film irradiated with the laser beam from the pole extension part. Since the portion on the photoelectric conversion film side is melted, the conductive material of the second electrode extension is included in the melt, and as a result, electrical coupling between the second electrode extension and the first electrode extension can be achieved. . Furthermore, since the laser welded portion that realizes the electrical connection is not exposed on the surface, peeling and corrosion due to moisture, etc., and poor bonding can be avoided, and reliability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の一実施例を示し、第1図乃
至第3図は平面図、第4図はレーザビームの走査方向に
沿う断面図、第5図は本発明の他の実施例の一部断面斜
視図、第6図乃至第8図の各々は従来例を示し、第6図
は断面図、第7図及び第8図は平面図を夫々示している
。 第1図
1 to 4 show one embodiment of the present invention, FIGS. 1 to 3 are plan views, FIG. 4 is a sectional view along the scanning direction of the laser beam, and FIG. 5 is an embodiment of the present invention. FIGS. 6 to 8 each show a conventional example, FIG. 6 shows a sectional view, and FIGS. 7 and 8 show a plan view, respectively. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)透光性絶縁基板上に並置された透光性の第1電極
、該第1電極を覆う光電変換膜、該光電変換膜の背面側
に設けられた導電ペーストの第2電極を備え、これら第
1電極、光電変換膜及び第2電極の積層体で単位発電素
子を構成し、隣接する一方の単位発電素子の第1電極の
延長部と他方の単位発電素子の第2電極の延長部を、光
電変換膜を挟んで対向させると共に、当該第1・第2電
極の延長部対向箇所に対して上記絶縁基板からレーザビ
ームを照射することを特徴とする薄膜太陽電池の製造方
法。
(1) Comprising a transparent first electrode juxtaposed on a transparent insulating substrate, a photoelectric conversion film covering the first electrode, and a second electrode made of conductive paste provided on the back side of the photoelectric conversion film. , a unit power generation element is constituted by a laminate of the first electrode, the photoelectric conversion film, and the second electrode, and an extension of the first electrode of one adjacent unit power generation element and an extension of the second electrode of the other unit power generation element A method for manufacturing a thin film solar cell, comprising: irradiating a laser beam from the insulating substrate to a portion facing the extension portions of the first and second electrodes with a photoelectric conversion film in between.
JP1337368A 1989-12-26 1989-12-26 Manufacture of thin film solar battery Pending JPH03196679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337368A JPH03196679A (en) 1989-12-26 1989-12-26 Manufacture of thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337368A JPH03196679A (en) 1989-12-26 1989-12-26 Manufacture of thin film solar battery

Publications (1)

Publication Number Publication Date
JPH03196679A true JPH03196679A (en) 1991-08-28

Family

ID=18307964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337368A Pending JPH03196679A (en) 1989-12-26 1989-12-26 Manufacture of thin film solar battery

Country Status (1)

Country Link
JP (1) JPH03196679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560800A (en) * 1994-08-31 1996-10-01 Mobil Oil Corporation Protective coating for pressure-activated adhesives
CN110136865A (en) * 2019-04-29 2019-08-16 华中科技大学 A kind of large-area nano flexible electrode preparation method and product based on laser welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560800A (en) * 1994-08-31 1996-10-01 Mobil Oil Corporation Protective coating for pressure-activated adhesives
CN110136865A (en) * 2019-04-29 2019-08-16 华中科技大学 A kind of large-area nano flexible electrode preparation method and product based on laser welding

Similar Documents

Publication Publication Date Title
US10930804B2 (en) Metallization of solar cells using metal foils
JPH03124067A (en) Photovoltaic device and its manufacture
JP3129728B2 (en) Thin film semiconductor device
JPH0472392B2 (en)
US20220173261A1 (en) Photovoltaic cell and string and associated methods
JPH07231015A (en) Semiconductor device and its manufacture
US6605774B2 (en) Photovoltaic device and a method of manufacturing thereof
JPH03196679A (en) Manufacture of thin film solar battery
JP2004095661A (en) Photoelectric converting device and its manufacturing method
JP2598967B2 (en) Method for manufacturing photovoltaic device
JP3573869B2 (en) Method for manufacturing photovoltaic device
JPH02224278A (en) Manufacture of photovoltaic device
CN220543930U (en) Photovoltaic module
JP2680709B2 (en) Method of forming photovoltaic device
JPS5935491A (en) Photo semiconductor device
JPS6261376A (en) Solar battery
JPH02106978A (en) Manufacture of integrated type solar cell
JPS63102274A (en) Photovoltaic device
JP2759301B2 (en) Photovoltaic device
JPH02100375A (en) Manufacture of photoelectric converting device
JPH11126914A (en) Manufacture of integrated solar cell
JP2771650B2 (en) Method for manufacturing photovoltaic device
JPS6461963A (en) Manufacture of solar cell
JPS61164274A (en) Manufacture of photovoltaic device
JPH0297070A (en) Photovoltaic device