JPH0311807Y2 - - Google Patents

Info

Publication number
JPH0311807Y2
JPH0311807Y2 JP1984057684U JP5768484U JPH0311807Y2 JP H0311807 Y2 JPH0311807 Y2 JP H0311807Y2 JP 1984057684 U JP1984057684 U JP 1984057684U JP 5768484 U JP5768484 U JP 5768484U JP H0311807 Y2 JPH0311807 Y2 JP H0311807Y2
Authority
JP
Japan
Prior art keywords
zinc
current collector
negative electrode
active material
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984057684U
Other languages
Japanese (ja)
Other versions
JPS60174065U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984057684U priority Critical patent/JPS60174065U/en
Publication of JPS60174065U publication Critical patent/JPS60174065U/en
Application granted granted Critical
Publication of JPH0311807Y2 publication Critical patent/JPH0311807Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/124

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 この考案は、ニツケル−亜鉛蓄電池、銀−亜鉛
蓄電池などのように負極活物質として亜鉛を用い
るアルカリ亜鉛蓄電池に関するものである。
[Detailed description of the invention] (a) Industrial application field This invention relates to alkaline zinc storage batteries that use zinc as the negative electrode active material, such as nickel-zinc storage batteries and silver-zinc storage batteries.

(ロ) 従来技術 負極活物質としての亜鉛は、単位重量当りのエ
ネルギー密度が大きく且つ安価である利点を有す
る反面、放電時に亜鉛がアルカリ電解液に溶出し
て亜鉛酸イオンとなり、充電時に、その亜鉛酸イ
オンが元の位置に電析することがほとんどないた
め、更に充放電を繰り返すと亜鉛負極の極板変形
が著しくなり容量低下を招いてより長期にわたる
充放電に耐えられなくなる。そして上記亜鉛負極
の極板変形はその周縁部が著しい。これは、周縁
部に過剰の電解液が溜りやすいとかいわゆるエツ
ヂ効果により周縁部に電流が集中することなどか
ら周縁部の亜鉛が、他の部分の亜鉛よりも多量に
亜鉛酸イオンとして電解液に溶出するためである
と考えられる。
(b) Prior art Zinc as a negative electrode active material has the advantage of having a high energy density per unit weight and being inexpensive, but on the other hand, zinc dissolves into the alkaline electrolyte during discharge and becomes zincate ions, and during charging, Since zincate ions are hardly deposited in their original positions, further repeated charging and discharging causes significant plate deformation of the zinc negative electrode, leading to a decrease in capacity and making it impossible to withstand charging and discharging over a longer period of time. The plate deformation of the zinc negative electrode is significant at its peripheral edge. This is because excess electrolyte tends to accumulate at the periphery, and current concentrates at the periphery due to the so-called edge effect, so zinc in the periphery is transferred to the electrolyte as zincate ions in larger amounts than zinc in other areas. This is thought to be due to elution.

上記問題点を改善するために従来、電解液量を
規制して亜鉛活物質が亜鉛酸イオンとして溶出す
るのを抑制する方法が提案されている(特開昭55
−3135号公報)が、極板変形は十分防止できな
い。また亜鉛負極中にアルカリ土類金属の水酸化
物を添加することが提案されている(特公昭37−
5883号)。この方法は、下記反応式(1)のように亜
鉛が亜鉛酸イオンとして電解液中に溶解して拡散
するのを、直ちに式(2)の反応によつてアルカリ土
類金属水酸化物と反応させて負極内に固定する方
法である。
In order to improve the above-mentioned problems, a method has been proposed in which the amount of electrolyte is regulated to suppress the elution of zinc active material as zincate ions (Japanese Patent Laid-Open No. 55
However, deformation of the electrode plate cannot be sufficiently prevented. It has also been proposed to add alkaline earth metal hydroxides to the zinc negative electrode (Japanese Patent Publication No. 1973-
No. 5883). In this method, zinc dissolves and diffuses into the electrolyte as zincate ions as shown in reaction formula (1) below, and then immediately reacts with alkaline earth metal hydroxide through the reaction shown in formula (2). This is a method of fixing it inside the negative electrode.

Zn+4OH-→Zn(OH)2- 4+2e (1) Zn(OH)2- 4+Ca(OH)2→CaZn(OH)4+2OH-
(2) しかしこの方法では、亜鉛に対して等モルのア
ルカリ土類金属の水酸化物が必要であるから、負
極中の亜鉛活物質の量が減少するという問題点が
ある。
Zn+4OH - →Zn(OH) 2- 4 +2e (1) Zn(OH) 2- 4 +Ca(OH) 2 →CaZn(OH) 4 +2OH -
(2) However, this method requires equimolar alkaline earth metal hydroxide to zinc, so there is a problem that the amount of zinc active material in the negative electrode decreases.

(ハ) 考案の目的 この考案の目的は上記問題点を改善するために
なされたものであつて、亜鉛負極の周縁部におけ
る、集電体への亜鉛の析出、溶解を抑え、亜鉛負
極の形状変形を抑制し、優れた充放電寿命を有す
るアルカリ亜鉛蓄電池を提供するにある。
(c) Purpose of the invention The purpose of this invention was to improve the above-mentioned problems. An object of the present invention is to provide an alkaline zinc storage battery that suppresses deformation and has an excellent charge/discharge life.

(ニ) 考案の構成 本考案のアルカリ亜鉛蓄電池は、少なくとも一
つの亜鉛負極、少なくとも一つの正極、これら両
極間に配置されたセパレータ及びこれら両極とセ
パレータに吸収されたアルカリ電解液からなり、
前記亜鉛負極は、集電体、耐アルカリ性撥水性合
成樹脂からなる多孔性シート及び亜鉛活物質層を
有しており、前記集電体は、その周縁部の両表面
に、前記多孔性シートが添設されており、前記多
孔性シート上及び前記周縁部を除く集電体の両表
面には、前記亜鉛活物質層が固着されていること
を特徴とするものである。
(d) Structure of the invention The alkaline zinc storage battery of the invention consists of at least one zinc negative electrode, at least one positive electrode, a separator disposed between these two electrodes, and an alkaline electrolyte absorbed by these two electrodes and the separator,
The zinc negative electrode has a current collector, a porous sheet made of an alkali-resistant water-repellent synthetic resin, and a zinc active material layer, and the current collector has the porous sheet on both surfaces of its peripheral portion. The present invention is characterized in that the zinc active material layer is attached to both surfaces of the current collector excluding the porous sheet and the peripheral edge portion.

この考案において耐アルカリ性撥水性合成樹脂
とは、アルカリ亜鉛蓄電池に通常用いられアルカ
リ電解液に充分耐えうる撥水性合成樹脂であつて
具体的には、弗素含有合成樹脂例えばポリテトラ
フルオロエチレン(PTFE)、テトラフルオロエ
チレンとヘキサクロロプロピレンの共重合体など
や、ポリオレフイン類例えばポリプロピレン、ポ
リエチレンなどが挙げられる。
In this invention, the alkali-resistant water-repellent synthetic resin refers to a water-repellent synthetic resin that is commonly used in alkaline zinc storage batteries and can sufficiently withstand alkaline electrolytes, and specifically refers to fluorine-containing synthetic resins such as polytetrafluoroethylene (PTFE). , a copolymer of tetrafluoroethylene and hexachloropropylene, and polyolefins such as polypropylene and polyethylene.

またこの考案における上記合成樹脂からなる多
孔性シートとしては上記合成樹脂製で多孔度がア
ルカリ電解液や亜鉛イオンが通過しうる程度以上
のものが用いられる。弗素樹脂の多孔性シートの
具体例としては日東電気工業(株)製のニトフロンな
どが挙げられる。また上記合成樹脂のうち特に弗
素含有樹脂粉末に酸化亜鉛粉末を混合し水を加え
て混練し圧延乾燥して得られる弗素樹脂の多孔性
シートも使用できる。このシートはアルカリ電解
液が充分浸透透過しうる。
The porous sheet made of the above synthetic resin in this invention is made of the above synthetic resin and has a porosity higher than that through which the alkaline electrolyte and zinc ions can pass. Specific examples of porous sheets of fluororesin include Nitoflon manufactured by Nitto Electric Industry Co., Ltd. Among the above synthetic resins, a porous sheet of fluororesin obtained by mixing zinc oxide powder with fluorine-containing resin powder, adding water, kneading, and rolling drying can also be used. This sheet allows the alkaline electrolyte to permeate sufficiently.

また上記多孔性シートは、銅やニツケルなどの
網、パンチング板、エキスパンデツド板などの集
電体の周縁部両面を充分被覆するように集電体に
添設される。一方、例えば酸化亜鉛粉末、亜鉛粉
末、酸化カドミウム及びポリテトラフルオロエチ
レン粉末の混合物に水を加えて混練して作つた亜
鉛活物質ペーストをローラにて加圧して板状とす
る。この活物質板状物を上記の多孔性シートを添
設した集電体の両面に重ねておいて両面から加圧
成形して該シートを集電体に付着させ、乾燥して
この考案の電池に用いる亜鉛負極が得られる。
The porous sheet is attached to a current collector such as a mesh made of copper or nickel, a punched plate, an expanded plate, etc. so as to sufficiently cover both sides of the peripheral edge of the current collector. On the other hand, for example, a zinc active material paste made by adding water to a mixture of zinc oxide powder, zinc powder, cadmium oxide, and polytetrafluoroethylene powder and kneading is pressed with a roller to form a plate shape. This plate-like active material is stacked on both sides of the current collector to which the above-mentioned porous sheet has been attached, and the sheets are adhered to the current collector by pressure molding from both sides, and then dried to form a battery of this invention. A zinc negative electrode is obtained.

この考案の電池に用いられる正極としては通常
のアルカリ蓄電池用のもの、例えば焼結ニツケル
に水酸化ニツケルを充填したものなどが用いられ
る。
The positive electrode used in the battery of this invention is one for ordinary alkaline storage batteries, such as sintered nickel filled with nickel hydroxide.

また電解液、正負極間に介在させるセパレータ
と保液層としては通常のアルカリ蓄電池用のもの
が用いられる。
Further, as the electrolytic solution, the separator interposed between the positive and negative electrodes, and the liquid retaining layer, those for ordinary alkaline storage batteries are used.

また電解液としては、水酸化カリウム、水酸化
ナトリウムなどの水溶液が用いられ、その濃度は
5〜10規定、好ましくは7〜9規定であり、これ
に飽和値までの酸化亜鉛を溶解させたものなどが
用いられる。
As the electrolytic solution, an aqueous solution of potassium hydroxide, sodium hydroxide, etc. is used, and its concentration is 5 to 10 normal, preferably 7 to 9 normal, and zinc oxide up to the saturation value is dissolved in this. etc. are used.

なおこの考案の電池としては、上記の電極やセ
パレータを渦巻き型に巻いた形態のいわゆる渦巻
き型電極を備えたアルカリ亜鉛蓄電池も含まれ
る。
The battery of this invention also includes an alkaline zinc storage battery equipped with a so-called spiral electrode in which the electrodes and separators described above are spirally wound.

(ホ) 実施例 実施例 1 第1a及び1b図に示すごとく、銅製パンチン
グ板からなる5cm×4cmの集電体1の両面に、縦
桟の幅が5mm、横桟の幅が5mmの枠状の厚み0.15
mmで、多孔性のポリテトラフルオロエチレンのシ
ート(ニトフロン)2を添設して集電体1両面の
周縁を覆つた。次いで酸化亜鉛粉末80重量%、金
属亜鉛粉末10重量%、酸化カドミウム粉末5重量
%及び結着剤のポリテトラフルオロエチレン粉末
5重量%の混合物に水を加え混練した後ローラに
よつて加圧し負極活物質シートを作製し、その1
枚づゝを上記の多孔性ポリテトラフルオロエチレ
ンシートを添設した集電体を挾んで重ね、加圧成
形し乾燥して第2図に示すような負極活物質層3
を有する5cm×4cm厚み1mmの亜鉛負極4を作製
した。
(e) Examples Example 1 As shown in Figures 1a and 1b, a frame shape with a vertical bar width of 5 mm and a horizontal bar width of 5 mm is placed on both sides of a 5 cm x 4 cm current collector 1 made of a copper punching plate. Thickness of 0.15
A porous polytetrafluoroethylene sheet (Nitoflon) 2 was attached to cover the periphery of both sides of the current collector 1. Next, water was added to a mixture of 80% by weight of zinc oxide powder, 10% by weight of metal zinc powder, 5% by weight of cadmium oxide powder, and 5% by weight of polytetrafluoroethylene powder as a binder, and the mixture was kneaded and then pressed with a roller to form a negative electrode. Producing an active material sheet, Part 1
The current collector to which the above-mentioned porous polytetrafluoroethylene sheet is attached is sandwiched between the sheets, and the sheets are stacked one on top of the other, pressure molded, and dried to form a negative electrode active material layer 3 as shown in FIG.
A zinc negative electrode 4 having a size of 5 cm x 4 cm and a thickness of 1 mm was prepared.

この亜鉛負極を用い焼結ニツケルに水酸化ニツ
ケルを充填した正極を有するアルカリ亜鉛蓄電池
Aを作製した。5は亜鉛負極、6は保液層、7は
セパレータ、8は正極、9は電槽、10は電槽
蓋、11と12はそれぞれ正極と負極の端子であ
る。
Using this zinc negative electrode, an alkaline zinc storage battery A having a positive electrode made of sintered nickel filled with nickel hydroxide was produced. 5 is a zinc negative electrode, 6 is a liquid retaining layer, 7 is a separator, 8 is a positive electrode, 9 is a battery case, 10 is a battery cover, and 11 and 12 are positive and negative terminals, respectively.

比較例 1 集電体の周縁を覆う多孔性シートを用いないこ
と以外、実施例1と同じアルカリ亜鉛蓄電池Bを
作製した。
Comparative Example 1 Alkaline zinc storage battery B was produced in the same manner as in Example 1 except that a porous sheet covering the periphery of the current collector was not used.

性能比較試験 上記のアルカリ亜鉛蓄電池A及びBについて、
150mAの電流で5時間充電した後150mAで放電
し、電池電圧が1.2Vに達する時点で放電を停止
するという充放電サイクルを繰返し、そのサイク
ル数に対する電池容量の変化を示すグラフを第4
図に示した。
Performance comparison test Regarding the above alkaline zinc storage batteries A and B,
A charge/discharge cycle is repeated in which the battery is charged for 5 hours with a current of 150mA, then discharged with 150mA, and the discharge is stopped when the battery voltage reaches 1.2V.
Shown in the figure.

このグラフから明らかなようにこの考案の実施
例の電池Aは比較例電池Bと比べて充放電サイク
ル特性が著しく優れていることは明らかである。
As is clear from this graph, it is clear that Battery A of the Example of this invention has significantly superior charge-discharge cycle characteristics compared to Comparative Example Battery B.

上記の実施例の電池はその集電体の周縁部に、
耐アルカリ性撥水性合成樹脂からなる多孔性シー
トを添設することにより集電体周縁部の電流集中
を緩和して電流分布が均一になり、その結果周縁
部から亜鉛酸イオンが集中的に溶出することが抑
制されて極板変形が少なくサイクル寿命が向上し
たものと考えられる。なお特に上記実施例の電池
Aの多孔性シートと負極の活物質板にはいずれも
弗素樹脂が用いられているので両者の密着性が良
好であり、その結果亜鉛負極周縁の活物質は強く
拘束され極板周縁部の変形が一層抑制されると考
えられる。
In the battery of the above embodiment, at the periphery of the current collector,
By attaching a porous sheet made of alkali-resistant and water-repellent synthetic resin, current concentration at the periphery of the current collector is alleviated and the current distribution becomes uniform, resulting in concentrated elution of zincate ions from the periphery. It is thought that this is because the deformation of the electrode plate is suppressed and the cycle life is improved. In particular, since fluororesin is used for both the porous sheet and the active material plate of the negative electrode of Battery A in the above example, the adhesion between the two is good, and as a result, the active material around the zinc negative electrode is strongly restrained. It is thought that the deformation of the peripheral edge of the electrode plate is further suppressed.

(ヘ) 考案の効果 以上詳述した如く、本考案は、亜鉛負極の集電
体には、その周縁部の両表面に、耐アルカリ性撥
水性合成樹脂からなる多孔性シートが添設されて
いるので、亜鉛負極の周縁部における亜鉛活物質
層は、直接、集電体に接しておらず、この周縁部
を除く集電体の両表面に固着された亜鉛活物質層
に比べて、亜鉛の析出、溶解が小さくなるので、
亜鉛負極の形状変形が抑制できる。従つて、長期
にわたる充放電サイクルに耐えうるアルカリ亜鉛
蓄電池を提供することができる。
(f) Effects of the invention As detailed above, in the present invention, porous sheets made of alkali-resistant and water-repellent synthetic resin are attached to both surfaces of the periphery of the current collector of the zinc negative electrode. Therefore, the zinc active material layer at the periphery of the zinc negative electrode is not in direct contact with the current collector, and compared to the zinc active material layer fixed to both surfaces of the current collector except for this periphery, the zinc active material layer is Precipitation and dissolution are reduced, so
Shape deformation of the zinc negative electrode can be suppressed. Therefore, it is possible to provide an alkaline zinc storage battery that can withstand long-term charging and discharging cycles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図はこの考案の一実施例の集電体の平面
図、第1b図は第1a図のA−A′断面図、第2
a図はこの考案の一実施例の亜鉛負極の平面図、
第2b図は第2a図のB−B′断面図、第3図は
この考案の一実施例のアルカリ亜鉛蓄電池の縦断
面図、第4図は各種アルカリ亜鉛蓄電池の充放電
サイクルにおける容量の変化を示すグラフであ
る。 1……集電体、2……多孔性弗素樹脂シート、
3……負極活物質層、4,5……亜鉛負極、6…
…保液層、7……セパレータ、8……正極、9…
…電槽、10……電槽蓋、11……正極端子、1
2……負極端子。
Fig. 1a is a plan view of a current collector according to an embodiment of this invention, Fig. 1b is a sectional view taken along line A-A' in Fig. 1a, and Fig.
Figure a is a plan view of a zinc negative electrode according to an embodiment of this invention.
Figure 2b is a sectional view taken along line B-B' in Figure 2a, Figure 3 is a longitudinal cross-sectional view of an alkaline zinc storage battery according to an embodiment of this invention, and Figure 4 is a change in capacity during charging and discharging cycles of various alkaline zinc storage batteries. This is a graph showing. 1... Current collector, 2... Porous fluororesin sheet,
3... Negative electrode active material layer, 4, 5... Zinc negative electrode, 6...
...Liquid retaining layer, 7...Separator, 8...Positive electrode, 9...
...Battery container, 10...Battery container lid, 11...Positive terminal, 1
2... Negative terminal.

Claims (1)

【実用新案登録請求の範囲】 少なくとも一つの亜鉛負極、少なくとも一つの
正極、これら両極間に配置されたセパレータ及び
これら両極とセパレータに吸収されたアルカリ電
解液からなり、 前記亜鉛負極は、集電体、耐アルカリ性撥水性
合成樹脂からなる多孔性シート及び亜鉛活物質層
を有しており、 前記集電体は、その周縁部の両表面に、前記多
孔性シートが添設されており、 前記多孔性シート上及び前記周縁部を除く集電
体の両表面には、前記亜鉛活物質層が固着されて
いることを特徴とするアルカリ亜鉛蓄電池。
[Claims for Utility Model Registration] Consisting of at least one zinc negative electrode, at least one positive electrode, a separator disposed between these two electrodes, and an alkaline electrolyte absorbed by these two electrodes and the separator, the zinc negative electrode being a current collector. , the current collector has a porous sheet made of an alkali-resistant water-repellent synthetic resin and a zinc active material layer; the current collector has the porous sheet attached to both surfaces of its peripheral portion; 1. An alkaline zinc storage battery, characterized in that the zinc active material layer is fixed to both surfaces of the current collector except for the adhesive sheet and the peripheral edge.
JP1984057684U 1984-04-18 1984-04-18 alkaline zinc storage battery Granted JPS60174065U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984057684U JPS60174065U (en) 1984-04-18 1984-04-18 alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984057684U JPS60174065U (en) 1984-04-18 1984-04-18 alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS60174065U JPS60174065U (en) 1985-11-18
JPH0311807Y2 true JPH0311807Y2 (en) 1991-03-20

Family

ID=30582442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984057684U Granted JPS60174065U (en) 1984-04-18 1984-04-18 alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS60174065U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735538B2 (en) * 2015-03-09 2020-08-05 株式会社日本触媒 Electrode manufacturing method and battery manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829939A (en) * 1971-08-25 1973-04-20
JPS49101840A (en) * 1973-02-02 1974-09-26
JPS5553069A (en) * 1978-10-12 1980-04-18 Sanyo Electric Co Ltd Zinc electrode of zinc alkali secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186976U (en) * 1981-05-22 1982-11-27

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829939A (en) * 1971-08-25 1973-04-20
JPS49101840A (en) * 1973-02-02 1974-09-26
JPS5553069A (en) * 1978-10-12 1980-04-18 Sanyo Electric Co Ltd Zinc electrode of zinc alkali secondary battery

Also Published As

Publication number Publication date
JPS60174065U (en) 1985-11-18

Similar Documents

Publication Publication Date Title
LT4233B (en) High capacity rechargeable cell having manganese dioxide electrode
US3288642A (en) Rechargeable dry cell having gelled electrolyte
JPS6177255A (en) Cylindrical alkaline zinc storage battery
JPH0311807Y2 (en)
JP3737534B2 (en) Manufacturing method of alkaline secondary battery
JPS58163162A (en) Alkaline zinc storage battery
JPS6081777A (en) Nickel-zinc battery
JPS61290668A (en) Sealed zinc alkaline storage battery
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JPS6014757A (en) Alkali zinc battery
JPH0552028B2 (en)
JPH04286864A (en) Secondary battery
JPH0576743B2 (en)
JPH0566718B2 (en)
JPS6037662A (en) Zinc electrode
JPH06310116A (en) Zinc alkaline secondary battery
JP4441191B2 (en) Alkaline storage battery and method for manufacturing the same
JPH0679481B2 (en) Alkaline zinc storage battery
JPH0828236B2 (en) Sealed alkaline zinc battery
KR100287123B1 (en) Alkali-zinc secondary battery
JPH0568073B2 (en)
JPS62108467A (en) Alkaline zinc storage battery
JPS6014756A (en) Alkali zinc battery
JPS6014758A (en) Alkali zinc battery
JPH0252386B2 (en)