JPH0566718B2 - - Google Patents

Info

Publication number
JPH0566718B2
JPH0566718B2 JP59080515A JP8051584A JPH0566718B2 JP H0566718 B2 JPH0566718 B2 JP H0566718B2 JP 59080515 A JP59080515 A JP 59080515A JP 8051584 A JP8051584 A JP 8051584A JP H0566718 B2 JPH0566718 B2 JP H0566718B2
Authority
JP
Japan
Prior art keywords
electrode
zinc
zinc electrode
regenerated cellulose
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59080515A
Other languages
Japanese (ja)
Other versions
JPS60225373A (en
Inventor
Mitsuzo Nogami
Sanehiro Furukawa
Kenji Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59080515A priority Critical patent/JPS60225373A/en
Publication of JPS60225373A publication Critical patent/JPS60225373A/en
Publication of JPH0566718B2 publication Critical patent/JPH0566718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明はニツケル−亜鉛蓄電池、銀−亜鉛蓄電
池などのように負極活物質として亜鉛を用いるア
ルカリ亜鉛蓄電池に関する。 (ロ) 従来技術 負極活物質としての亜鉛は単位重量あたりのエ
ネルギー密度が大きく且つ安価である利点を有す
る反面、放電時に亜鉛がアルカリ電解液に溶出し
て亜鉛酸イオンとなり、充電時にその亜鉛酸イオ
ンが亜鉛極表面に樹枝状或いは海綿状に電析する
ため、充放電を繰り返すと電析亜鉛がセパレータ
を貫通して対極と接して内部短絡を起すためにサ
イクル寿命が短い欠点がある。 このサイクル寿命を改善するために特開照57−
197757号公報では、電解液量に実質的に遊離のも
のを存在させない程度に制限して亜鉛酸イオンの
拡散を防止すると共に複数枚の有機セパレータを
積重して用いることで負極に接するセパレータの
電解液量を正極に接するセパレーターの電解液量
より小とすることでサイクル寿命を向上させるこ
とが提案されている。しかしながら放電時に一旦
亜鉛酸イオンとして溶解した亜鉛は充電時に元の
位置に電析することが困難なため、充放電を更に
繰り返すと亜鉛極の極板変形が著しくなり容量低
下を招いてより長期にわたる充放電に於いて性能
を維持することができなかつた。 この電池性能の劣化に起因する亜鉛極の極板変
形が最も著しい箇所は極板周縁であり、これは正
極と負極関に圧力がかかるため電極及びセパレー
タに含液された電解液が電極周縁部に局在し易い
こと及びエツジ効果に起因し、亜鉛極の周縁部に
電池反応には必要でない余剰の電解液が存在する
ことにより亜鉛活物質の電解液への溶出が促進さ
れると共に電流が極板周縁に集中するために生じ
るものである。 かかる問題点に対して種々の方法が提案されて
いるが実公昭57−41953号公報では亜鉛極の周縁
に耐アルカリ性の絶縁層を配することが開示され
ており、この方法は亜鉛極周縁での撥水性を高め
て上記問題点を抑制するのでサイクル寿命を向上
させる。ところがこの方法に於いても極板周縁が
撥水性であるため亜鉛極の利用率が減少しサイク
ル初期から容量が従来のものより低くなるという
欠点がある。 (ハ) 発明の目的 本発明はかかる点に鑑み発明されたものにして
亜鉛極の極板変形が極板周縁部に電解液が溜り易
く電流が集中することに起因することに着目し
て、電極中央部の電解液保持量を多くして電流分
布の均一化をはかり、亜鉛極の極板変形を一層抑
制することによつてより長期にわたるサイクル寿
命に耐え得るアルカリ亜鉛蓄電池を提供せしめん
とするものである。 (ニ) 発明の構成 本発明のアルカリ亜鉛蓄電池は、セパレータを
介して正極と対向する亜鉛極表面の少なくとも巾
方向の両端縁を除く中央部分に、前記亜鉛極表面
の20〜85%と接する再生セルロース膜を配したも
のである。 (ホ) 実施例 酸化亜鉛粉末80重量%、金属亜鉛粉末10重量
%、添加剤として酸化カドミウム5重量%及び結
着剤として耐アルカリ性撥水性のフツ素樹脂粉末
5重量%からなる混合粉末に水を加えて混練した
後圧延して亜鉛活物質シートを作製し、次いでこ
のシートを銅網からなる集電体の両面に圧着して
縦40mm、横200mmの亜鉛極を作製した。こうして
作製された亜鉛極の表面中央部に第1図に示すよ
うに帯状のセロフアン膜3を亜鉛極1の中心線と
セロフアン膜の中心線が一致するように配置した
後、微孔性セパレータ、含液布及び焼結式ニツケ
ル極と組み合わせて巻き取り電極体を構成し、こ
の電極体を電池外装缶に挿入して前記亜鉛極及び
ニツケル極のニードを夫々封口体及び外装缶に溶
接して電解液の注液及び封口を行なつて円筒形ニ
ツケル亜鉛蓄電池を作製する。ここに於いて前記
電極体は第2図の要部分解断面図に示すように亜
鉛極1とニツケル極2との間に亜鉛極1側から順
にセロフアン膜3、微孔性セパレータ4、保液層
5、微孔性セパレータ4、保液層5が介挿されて
構成されており、セロフアン膜3は巻回圧によつ
て亜鉛極表面中央部に保持されている。 上述のニツケル亜鉛蓄電池から帯状セロフアン
を除きその他は同一の従来電池を作製し、また上
述のニツケル亜鉛蓄電池を帯状セロハンの巾を変
え6種類作製して第1表に示す様に夫々電池A〜
Gとする。尚、第1表に於いて接触面積とはセロ
フアン膜が亜鉛極と接する面積を、亜鉛極の表面
積に対する百分率で表わしたものである。
(a) Industrial Application Field The present invention relates to an alkaline zinc storage battery using zinc as a negative electrode active material, such as a nickel-zinc storage battery or a silver-zinc storage battery. (b) Prior art Zinc as a negative electrode active material has the advantages of high energy density per unit weight and low cost, but on the other hand, zinc dissolves into the alkaline electrolyte during discharge and becomes zincate ions, and during charging, the zincate Since ions are deposited on the surface of the zinc electrode in a dendritic or spongy pattern, repeated charging and discharging causes the deposited zinc to penetrate the separator and come into contact with the counter electrode, causing an internal short circuit, resulting in a short cycle life. In order to improve this cycle life,
Publication No. 197757 discloses that diffusion of zincate ions is prevented by limiting the amount of electrolyte to such an extent that no free substances exist, and that the separator in contact with the negative electrode is stacked and used. It has been proposed to improve cycle life by making the amount of electrolyte smaller than the amount of electrolyte in the separator in contact with the positive electrode. However, once the zinc is dissolved as zincate ions during discharging, it is difficult to deposit it in its original position during charging, so if charging and discharging are repeated, the deformation of the zinc electrode plate becomes significant, resulting in a decrease in capacity and a long-term impact. Performance could not be maintained during charging and discharging. The area where the plate deformation of the zinc electrode due to this deterioration of battery performance is most significant is at the periphery of the electrode plate, and because pressure is applied between the positive and negative electrodes, the electrolyte contained in the electrode and separator is Due to the fact that the zinc active material is easily localized in the electrolyte and the edge effect, the presence of surplus electrolyte that is not necessary for the battery reaction at the periphery of the zinc electrode accelerates the elution of the zinc active material into the electrolyte and increases the current flow. This occurs because it is concentrated at the periphery of the electrode plate. Various methods have been proposed to solve this problem, and Japanese Utility Model Publication No. 57-41953 discloses disposing an alkali-resistant insulating layer around the periphery of the zinc electrode. This improves the water repellency of the material and suppresses the above problems, thereby improving cycle life. However, even in this method, since the electrode plate periphery is water repellent, the utilization rate of the zinc electrode is reduced, and the capacity is lower than that of the conventional method from the beginning of the cycle. (c) Purpose of the Invention The present invention was invented in view of the above points, and focuses on the fact that deformation of the plate of a zinc electrode is caused by electrolyte tending to accumulate at the periphery of the plate, causing current to concentrate. We aim to provide an alkaline zinc storage battery that can withstand a longer cycle life by increasing the amount of electrolyte held in the center of the electrode to make the current distribution more uniform and further suppressing the deformation of the zinc electrode plates. It is something to do. (d) Structure of the Invention The alkaline zinc storage battery of the present invention has a recycled zinc electrode which is in contact with 20 to 85% of the surface of the zinc electrode, at least in the central portion of the surface of the zinc electrode facing the positive electrode with a separator in between, excluding both edges in the width direction. It is equipped with a cellulose membrane. (E) Example Water was added to a mixed powder consisting of 80% by weight of zinc oxide powder, 10% by weight of metal zinc powder, 5% by weight of cadmium oxide as an additive, and 5% by weight of alkali-resistant and water-repellent fluororesin powder as a binder. was added, kneaded, and rolled to produce a zinc active material sheet, and then this sheet was crimped onto both sides of a current collector made of copper mesh to produce a zinc electrode measuring 40 mm long and 200 mm wide. As shown in FIG. 1, a strip-shaped cellophane film 3 is arranged at the center of the surface of the zinc electrode thus prepared so that the center line of the zinc electrode 1 and the center line of the cellophane film coincide, and then a microporous separator is placed. A wound electrode body is constructed by combining the liquid-impregnated cloth and the sintered nickel electrode, and this electrode body is inserted into a battery outer can, and the needles of the zinc electrode and the nickel electrode are welded to the sealing body and the outer can, respectively. A cylindrical nickel-zinc storage battery is manufactured by injecting electrolyte and sealing. Here, as shown in the exploded sectional view of main parts in FIG. 2, the electrode body has a cellophane membrane 3, a microporous separator 4, and a liquid retaining layer between the zinc electrode 1 and the nickel electrode 2 in order from the zinc electrode 1 side. It is constructed by interposing a layer 5, a microporous separator 4, and a liquid retaining layer 5, and the cellophane film 3 is held at the center of the surface of the zinc electrode by the winding pressure. Conventional batteries were prepared from the above-mentioned Nickel zinc storage battery except for the cellophane strip, and six types of the above-mentioned Nickel zinc storage battery were prepared by changing the width of the cellophane band.
Let it be G. In Table 1, the contact area is the area where the cellophane film is in contact with the zinc electrode, expressed as a percentage of the surface area of the zinc electrode.

【表】 上記電池A乃至Gを夫々10セルずつ作製しサイ
クルテストを行なつた。充放電サイクル条件は充
電電流400mAで5時間充電した後、ただちに放
電電流400mAで放電を行ない電池電圧が1.2Vに
達した時点で放電を停止するものである。第3図
はこの充放電サイクル条件で充放電を繰り返し行
ない放電容量が初期容量の約60%以下、すなわち
1200mAH以下になつた時点のサイクル数の最大
値と最小値を示した図面であり、また第2表は上
記サイクルテストに於ける20サイクル経過時と
100サイクル経過時の放電容量を示したものであ
る。
[Table] 10 cells each of the above batteries A to G were prepared and a cycle test was conducted. The charge/discharge cycle conditions are that after charging for 5 hours at a charging current of 400 mA, discharging is immediately performed at a discharging current of 400 mA, and discharging is stopped when the battery voltage reaches 1.2 V. Figure 3 shows that after repeated charging and discharging under these charge/discharge cycle conditions, the discharge capacity is approximately 60% or less of the initial capacity, i.e.
This is a drawing showing the maximum and minimum values of the number of cycles at the time when it becomes 1200mAH or less, and Table 2 shows the maximum and minimum values of the number of cycles after 20 cycles in the above cycle test.
This shows the discharge capacity after 100 cycles.

【表】 第2表より電池A乃至Gは何れも100サイクル
経過時までは放電容量にほとんど差が生じていな
いことがわかる。しかしながら第3図から明らか
なようにサイクル寿命については帯状セロフアン
の巾が8mm〜34mmの電池C乃至Fが電池A、B及
びGに比し優れた性能を有している。この時のセ
ロフアン膜と亜鉛極とが接する面積を亜鉛極の面
積に対する百分率で表わすと20〜85%である。 この様に亜鉛極の中心部分に再生セルロース膜
を配することによりアルカリ亜鉛蓄電池のサイク
ル寿命が延びるのは以下の理由による。 再生セルロース膜はアルカリ性電解液に対して
膨潤性を有し電解液を保持するため、再生セルロ
ース膜と接する亜鉛極中央部上では水酸イオンが
リツチとなりイオン導電性が増すことによりこの
部分での電極反応速度が増大する。したがつて、
従来電池では電極周縁部に電解液がたまり、エツ
ジ効果による電流集中が起こり極板の形状変形の
進行による電池性能を劣化が多々あつたが、亜鉛
極の中心部分に再生セルロースを配した本発明電
池では亜鉛極中央部に電解液を多く保持させるこ
とができ、その結果亜鉛極中央部の電極反応を増
大させるので、電極周縁のエツジ効果が相まつて
亜鉛極表面の電流分布を均一化して、亜鉛極の形
状変形の進行を緩和させサイクル寿命を延ばすこ
とができると考えられる。 次いで、前述のニツケル亜鉛蓄電池では亜鉛極
上の再生セルロース膜をフリーの状態で巻き取り
を行なうのが困難であるため、予め帯状の再生セ
ルロース膜を亜鉛極に付着させることで電池の製
造を容易にして電池を作製してサイクル寿命の測
定を行なつた。 即ち、前記再生セルロース膜をポリビニルアル
コール水溶液で亜鉛極に貼り付けて用い、その他
は同一の電池を作製した。こうして作製された電
池を亜鉛極表面に貼り付けた再生セルロースの巾
の違いにより、その巾が8mm、16mm、34mmである
ものを夫々電池H、I、Jとする。尚、このとき
のセロフアン膜が亜鉛極と接する面積を亜鉛極表
面積に対する百分率で表わすと夫々20%、40%、
85%となる。 前記電池A及びH、I、Jを夫々10セルずつ作
製し前述と同様の充放電サイクル条件でサイクル
テストを行なつた。第4図はこの充放電サイクル
条件で充放電を繰り返し行ない放電容量が1200m
AH以下になつた時点のサイクル数の最大値と最
小値を示す図面である。第4図からセロフアン膜
をポリビニルアルコール水溶液で亜鉛極に貼り付
けて用いた電池であつてもセロフアン膜が亜鉛極
と接する面積が亜鉛極表面の20%〜85%である場
合にはサイクル寿命が向上することがわかる。 この理由を推察するに、ポリビニルアルコール
はアルカリ中で安定であるので電極反応妨害物質
にならず、またポリビニルアルコール自体が親水
性であるので再生セルロースと亜鉛極の接着面の
イオン電導性を更に高めるため、前述した電池C
乃至Fと同様優れたサイクル特性を示したと考え
られる。更にポリビニルアルコール水溶液は亜鉛
極と再生セルロース膜とを電極体構成時の巻き取
りに耐えるに充分な接着力で付着させることが可
能であり、電池製造が容易となる。この亜鉛極と
再生セルロース膜との接着は巻き取り強度やセパ
レータ構成に応じてポリビニルアルコール水溶液
を再生セルロース膜の一部あるいは全面に付着さ
せて行なえばよい。 尚、上記実施例では電池製造の際の作業性を考
え再生セルロース膜は亜鉛極の巾方向の両端部を
除く部分に配して用いたが、再生セルロース膜を
亜鉛極の周縁を除く中央部に配して用いる場合の
方がより一層亜鉛極表面の電流分布が均一化され
効果的であることは云うまでもない。 (ヘ) 発明の効果 本発明のアルカリ亜鉛蓄電池は、セパレータを
介して正極と対向する亜鉛極表面の少なくとも巾
方向の両端縁を除く中央部分に、前記亜鉛極表面
の20〜85%と接する再生セルロース膜を配してい
るので、電極中央部の電解液保持量が多くなり、
電流分布が均一化して亜鉛極の極板変形が抑制さ
れ、長期にわたるサイクル寿命が得られる。また
前記再生セルロースを亜鉛極表面にポリビニルア
ルコールを用いて貼り付けると、此種アルカリ亜
鉛蓄電池の製造が容易となる。
[Table] From Table 2, it can be seen that there is almost no difference in discharge capacity between batteries A to G until 100 cycles have passed. However, as is clear from FIG. 3, in terms of cycle life, batteries C to F, in which the width of the cellophane strip is 8 mm to 34 mm, have superior performance compared to batteries A, B, and G. The area of contact between the cellophane film and the zinc electrode at this time is 20 to 85% when expressed as a percentage of the area of the zinc electrode. The reason why the cycle life of the alkaline zinc storage battery is extended by disposing the regenerated cellulose membrane in the center of the zinc electrode is as follows. Since the regenerated cellulose membrane has the ability to swell with alkaline electrolyte and retains the electrolyte, hydroxide ions become rich on the central part of the zinc electrode that is in contact with the regenerated cellulose membrane, increasing ionic conductivity and increasing the ion conductivity in this area. Electrode reaction rate increases. Therefore,
In conventional batteries, electrolyte accumulates around the periphery of the electrode, causing current concentration due to the edge effect and deterioration of battery performance due to progressive deformation of the electrode plate.However, in the present invention, regenerated cellulose is placed in the center of the zinc electrode. In a battery, a large amount of electrolyte can be retained in the center of the zinc electrode, which increases the electrode reaction in the center of the zinc electrode, and the edge effect of the electrode periphery works together to equalize the current distribution on the surface of the zinc electrode. It is thought that the progression of shape deformation of the zinc electrode can be alleviated and the cycle life can be extended. Next, in the aforementioned Nickel zinc storage battery, since it is difficult to wind up the regenerated cellulose membrane on the zinc electrode in a free state, we made it easier to manufacture the battery by attaching a strip-shaped regenerated cellulose membrane to the zinc electrode in advance. A battery was fabricated using the same method, and its cycle life was measured. That is, the regenerated cellulose membrane was attached to a zinc electrode using an aqueous polyvinyl alcohol solution, and a battery otherwise the same was produced. Depending on the width of the regenerated cellulose that was attached to the surface of the zinc electrode, the batteries thus produced were designated as batteries H, I, and J, respectively, with widths of 8 mm, 16 mm, and 34 mm. The area in which the cellophane film contacts the zinc electrode at this time is expressed as a percentage of the surface area of the zinc electrode, and is 20%, 40%, and 40%, respectively.
It will be 85%. Ten cells each of the batteries A, H, I, and J were prepared and cycle tested under the same charge/discharge cycle conditions as described above. Figure 4 shows a discharge capacity of 1200 m after repeated charging and discharging under these charging and discharging cycle conditions.
It is a drawing showing the maximum value and minimum value of the number of cycles at the time when the number of cycles falls below AH. Figure 4 shows that even in a battery using a cellophane membrane attached to a zinc electrode using a polyvinyl alcohol aqueous solution, if the area in which the cellophane membrane is in contact with the zinc electrode is 20% to 85% of the zinc electrode surface, the cycle life will be shortened. I can see that it will improve. The reason for this is that polyvinyl alcohol is stable in alkali, so it does not interfere with electrode reactions, and since polyvinyl alcohol itself is hydrophilic, it further increases the ionic conductivity of the bonding surface between the regenerated cellulose and the zinc electrode. Therefore, the above-mentioned battery C
It is thought that these samples exhibited excellent cycle characteristics similar to those of F to F. Furthermore, the polyvinyl alcohol aqueous solution can adhere the zinc electrode and the regenerated cellulose membrane with sufficient adhesive force to withstand winding during electrode body construction, facilitating battery manufacture. The zinc electrode and the regenerated cellulose membrane may be bonded together by applying a polyvinyl alcohol aqueous solution to a part or the entire surface of the regenerated cellulose membrane, depending on the winding strength and the separator configuration. Note that in the above example, the regenerated cellulose membrane was used in the area excluding both ends of the zinc electrode in the width direction in consideration of workability during battery manufacturing. Needless to say, the current distribution on the surface of the zinc electrode is made more uniform and more effective when the zinc electrode is used. (F) Effects of the Invention The alkaline zinc storage battery of the present invention has a recycled zinc electrode that is in contact with 20 to 85% of the surface of the zinc electrode, at least in the central portion of the surface of the zinc electrode that faces the positive electrode with a separator in between, excluding both edges in the width direction. Since the cellulose membrane is used, the amount of electrolyte retained in the center of the electrode is increased.
The current distribution becomes uniform, the deformation of the zinc electrode plate is suppressed, and a long cycle life is obtained. Further, if the regenerated cellulose is attached to the surface of the zinc electrode using polyvinyl alcohol, it becomes easy to manufacture this type of alkaline zinc storage battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は亜鉛極上に帯状再生セルロース膜を配
置したときの状態説明図、第2図は電極体の構成
を示す要部分解断面図、第3図及び第4図はサイ
クル特性図である。 1……亜鉛極、2……ニツケル極、3……再生
セルロース膜、4……微孔性セパレータ、5……
保液層。
FIG. 1 is an explanatory diagram of the state when a belt-shaped regenerated cellulose membrane is placed on a zinc electrode, FIG. 2 is an exploded sectional view of a main part showing the structure of an electrode body, and FIGS. 3 and 4 are cycle characteristic diagrams. 1... Zinc electrode, 2... Nickel electrode, 3... Regenerated cellulose membrane, 4... Microporous separator, 5...
Liquid retaining layer.

Claims (1)

【特許請求の範囲】 1 セパレータを介して正極と対向する亜鉛極表
面の少なくとも巾方向の両端縁を除く中央部分
に、前記亜鉛極表面の面積の20〜85%と接する再
生セルロース膜を配したことを特徴とするアルカ
リ亜鉛蓄電池。 2 前記再生セルロース膜が前記亜鉛極表面にポ
リビニルアルコールを用いて添着された特許請求
の範囲第1項記載のアルカリ亜鉛蓄電池。
[Claims] 1. A regenerated cellulose membrane is disposed in the central portion of the surface of the zinc electrode facing the positive electrode through a separator, excluding at least both edges in the width direction, and in contact with 20 to 85% of the area of the surface of the zinc electrode. An alkaline zinc storage battery characterized by: 2. The alkaline zinc storage battery according to claim 1, wherein the regenerated cellulose membrane is attached to the surface of the zinc electrode using polyvinyl alcohol.
JP59080515A 1984-04-20 1984-04-20 Alkaline zinc storage battery Granted JPS60225373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59080515A JPS60225373A (en) 1984-04-20 1984-04-20 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080515A JPS60225373A (en) 1984-04-20 1984-04-20 Alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS60225373A JPS60225373A (en) 1985-11-09
JPH0566718B2 true JPH0566718B2 (en) 1993-09-22

Family

ID=13720448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080515A Granted JPS60225373A (en) 1984-04-20 1984-04-20 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS60225373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847254B2 (en) 2005-12-15 2014-09-30 Seoul Semiconductor Co., Ltd. Light emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110059343A1 (en) * 2009-09-08 2011-03-10 Powergenix Systems, Inc. Heat sealing separators for nickel-zinc cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230285Y2 (en) * 1979-06-29 1987-08-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847254B2 (en) 2005-12-15 2014-09-30 Seoul Semiconductor Co., Ltd. Light emitting device

Also Published As

Publication number Publication date
JPS60225373A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
US3951687A (en) Nickel-zinc storage battery
EP2472641A1 (en) Nickel-zinc battery and manufacturing method thereof
KR20020053807A (en) Rechargeable nickel-zinc cells
EP0092656B1 (en) Nickel carbonate electrode paste for a positive nickel electrode
US20140170471A1 (en) Electrode plate, layered electrode group, battery, and cylindrical battery
JP4429569B2 (en) Nickel metal hydride storage battery
JPH0560219B2 (en)
JP2512019B2 (en) Electrochemical battery
JP3387158B2 (en) Zinc plate
JP4240030B2 (en) Alkaline zinc storage battery
JPS59501521A (en) sealed nickel-zinc battery
JPH0566718B2 (en)
JPH04206468A (en) Sealed alkali-zinc storage battery
US3790409A (en) Storage battery comprising negative plates of a wedge-shaped configuration
JP4017212B2 (en) Alkaline secondary battery having a wound structure electrode body
JPH0311807Y2 (en)
JPH01100872A (en) Sealed type nickel-zinc cell
JP3973115B2 (en) Battery having an electrode body with a wound structure
JPH0552028B2 (en)
JPH0638376Y2 (en) Alkaline zinc storage battery
JP3504303B2 (en) Cylindrical alkaline secondary battery
EP4032134A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
WO2021150851A1 (en) Lead-acid battery having fiber electrode and alloy for use with same
JP2021150128A (en) Square battery and electrode group for the square battery
JPH0828236B2 (en) Sealed alkaline zinc battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term