JPH0560219B2 - - Google Patents

Info

Publication number
JPH0560219B2
JPH0560219B2 JP59198097A JP19809784A JPH0560219B2 JP H0560219 B2 JPH0560219 B2 JP H0560219B2 JP 59198097 A JP59198097 A JP 59198097A JP 19809784 A JP19809784 A JP 19809784A JP H0560219 B2 JPH0560219 B2 JP H0560219B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
active material
current collector
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59198097A
Other languages
Japanese (ja)
Other versions
JPS6177255A (en
Inventor
Kenji Inoe
Mitsuzo Nogami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59198097A priority Critical patent/JPS6177255A/en
Publication of JPS6177255A publication Critical patent/JPS6177255A/en
Publication of JPH0560219B2 publication Critical patent/JPH0560219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 この発明はニツケル亜鉛蓄電池、銀亜鉛電池な
どのような負極活物質として亜鉛を用いる電池で
あつて帯状の正負両端をセパレータを介して巻回
してなる渦巻形電極体を備えた円筒形アルカリ蓄
電池に関する。 (ロ) 従来の技術 上記の電池において、負極活物質として亜鉛
は、単位重量あたりのエネルギー密度が大きくか
つ安価である利点を有する反面、放電時に亜鉛が
アルカリ電解液に溶出して亜鉛酸イオンとなるた
めに充放電を繰返すと電極の形状が変化するとい
う欠点がある。またこの負極活物質は、充放電に
ともなつてその容積が収縮、膨張を繰返すので、
負極上で移動し負極の形状変化が加速度的に進行
しこの電池サイクル寿命低下の原因となつてい
る。このような負極の形状変化を抑制するために
亜鉛負極集電体としては、活物質が移動しやすい
メツシユ(網)でなくては開孔率が比較的小さい
50%以下の活物質の移動しにくい孔あき金属板が
用いられてきた。しかしながらこの負極の形状変
化防止は満足すべきものではない。 (ハ) 発明が解決しようとする問題点 この発明は上記の事情に鑑みなされたもので、
亜鉛負極の形状変化を抑制してサイクル寿命の長
いアルカリ亜鉛電池を目的とするものである。 (ニ) 問題点を解決するための手段 この発明の発明者らは、孔あき金属板の集電体
の両面に負極活物質層を設けた帯状亜鉛負極と帯
状正極とをセパレータを介して巻回した渦巻形電
極体を備えた円筒形アルカリ亜鉛蓄電池の亜鉛負
極の劣化状態を研究した結果、前記集電体を中心
して渦巻形電極体の外面側に位置する負極活物質
層が主として劣化減容していることを見出した。 この発明は上記の知見に基づいてなされたもの
であつて、帯状亜鉛負極と帯状正極とをセパレー
タを介して巻回した渦巻形電極体を備えた電池で
あつて、亜鉛負極が孔あき金属板の集電体の両面
に亜鉛活物質を具備し、前記集電体を中心にして
前記電極体の外面側に位置する亜鉛活物質層の厚
みをその反対側の亜鉛活物質層の厚みの1.2〜1.5
倍であることを特徴とする円筒形アルカリ亜鉛蓄
電池を提供するものである。 この発明の亜鉛負極集電体としては従来用いら
れている開孔率が50%の金属板が用いられる。ま
た亜鉛活物質層の集電体は前記外面側の厚みが内
面側のそれ1.2倍未満の場合は外面側の劣化減容
が著しくサイクル寿命が低下しまた1.8倍を超え
ると内面側が薄すぎてかえつてサイクル寿命が低
下する。 (ホ) 作用 この発明によれば亜鉛負極の形状変化を抑制す
ることができるサイクル寿命の長いアルカリ亜鉛
電池が得られる。 (ヘ) 実施例 酸化亜鉛粉末85重量%、亜鉛粉末10重量%、添
加剤の酸化カドミウム2.5重量%、結着剤のフツ
沿樹脂粉末2.5重量%よりなる混合粉末に水を加
え混練した後ローラーにより0.43、0.48、0.55、
0.60、0.65、0.72及び0.77mmの7種の厚みのシー
トを作成した。これらのシートを、第1表に示す
各種の組合わせで、孔径1.5mmφの透孔を開口率
22%で設けた幅40mm長さ200mm厚み0.08mmの鉄板
(負極集電体)の図面に圧着して全体の厚みを
0.70mmとしてこれを乾燥させて第1図に示すよう
な亜鉛負極を作製した。(第1図において1は集
電体、2と2′は活物質層であり2′の方が厚みが
大きい)。また得られた負極の集電体両面上の活
物質層の厚みの比率の測定結果を第1表に示し
た。
(a) Industrial application field This invention relates to a spiral electrode body formed by winding the positive and negative ends of a strip with a separator interposed in a battery that uses zinc as a negative electrode active material, such as a nickel-zinc storage battery or a silver-zinc battery. This invention relates to a cylindrical alkaline storage battery. (b) Prior art In the above-mentioned batteries, zinc as a negative electrode active material has the advantages of high energy density per unit weight and low cost, but on the other hand, zinc dissolves into the alkaline electrolyte during discharge and becomes zincate ions. Therefore, there is a drawback that the shape of the electrode changes when charging and discharging are repeated. In addition, this negative electrode active material repeatedly contracts and expands in volume as it is charged and discharged.
It moves on the negative electrode, causing the shape of the negative electrode to change at an accelerating pace, causing a reduction in battery cycle life. In order to suppress such changes in the shape of the negative electrode, the zinc negative electrode current collector must have a relatively small porosity unless it is a mesh that allows the active material to move easily.
Perforated metal plates have been used in which less than 50% of the active material migrates. However, this prevention of shape change of the negative electrode is not satisfactory. (c) Problems to be solved by the invention This invention was made in view of the above circumstances.
The purpose is to create an alkaline zinc battery with a long cycle life by suppressing changes in the shape of the zinc negative electrode. (d) Means for Solving the Problems The inventors of the present invention have developed a method of winding a strip-shaped zinc negative electrode and a strip-shaped positive electrode in which negative electrode active material layers are provided on both sides of a current collector made of a perforated metal plate with a separator in between. As a result of researching the deterioration state of the zinc negative electrode of a cylindrical alkaline zinc storage battery equipped with a rotated spiral electrode body, it was found that the negative electrode active material layer located on the outer surface of the spiral electrode body centered on the current collector mainly suffered from deterioration. I found that it is acceptable. The present invention has been made based on the above findings, and is a battery equipped with a spiral electrode body in which a strip-shaped zinc negative electrode and a strip-shaped positive electrode are wound with a separator interposed therebetween, in which the zinc negative electrode is formed of a perforated metal plate. Zinc active material is provided on both sides of a current collector, and the thickness of the zinc active material layer located on the outer surface side of the electrode body with the current collector in the center is 1.2 of the thickness of the zinc active material layer on the opposite side. ~1.5
The present invention provides a cylindrical alkaline zinc storage battery characterized by double the size of the battery. As the zinc negative electrode current collector of the present invention, a conventionally used metal plate with a porosity of 50% is used. In addition, if the thickness of the zinc active material layer current collector is less than 1.2 times that of the inner surface, the outer surface will deteriorate and its volume will be significantly reduced, and if it exceeds 1.8 times, the inner surface will be too thin. On the contrary, the cycle life is reduced. (e) Effects According to the present invention, an alkaline zinc battery with a long cycle life and capable of suppressing shape change of the zinc negative electrode can be obtained. (F) Example Water was added to a mixed powder consisting of 85% by weight of zinc oxide powder, 10% by weight of zinc powder, 2.5% by weight of cadmium oxide as an additive, and 2.5% by weight of resin powder as a binder, and then kneaded with a roller. 0.43, 0.48, 0.55,
Sheets with seven thicknesses of 0.60, 0.65, 0.72 and 0.77 mm were prepared. These sheets can be used in various combinations shown in Table 1 to form through holes with a hole diameter of 1.5 mmφ.
22% width 40mm length 200mm thickness 0.08mm iron plate (negative electrode current collector) drawing to determine the overall thickness.
This was dried to a thickness of 0.70 mm to produce a zinc negative electrode as shown in FIG. (In FIG. 1, 1 is a current collector, 2 and 2' are active material layers, and 2' is thicker). Table 1 also shows the measurement results of the thickness ratio of the active material layers on both sides of the current collector of the obtained negative electrode.

【表】 次いで第2図に示すように、得られた帯状負極
a,b,c又はd11と焼結式ニツケルの帯状正
極ナイロン不織布のセパレータ14を介して巻回
して渦巻形電極体15を作製した。なお帯状負極
a,b又はcを用いた場合は負極集電体の両面の
負極活性物質の厚みは電極体の外面側の方が厚く
なるように巻回した。上記a,b,c又はdの負
極を用いて作製した電極体と水酸化カリウムの電
解液を用いて、1500mAHの円筒形のアルカリ亜
鉛蓄電池A,B,C及びDを各々10セル作製し
た。これらの各電池を充電電流400mAで4時間
30分充電し、放電電流400mAで4時間放電する
充放電を繰返し、1.4V以上の電池電圧を3時間
以上維持できなくなるまでの充放電サイクル数を
測定した。各電池10セルのうち上記充放電サイク
ル数の最小のものから順に3個の電池を除いた残
りの7セルの上記充放電サイクル数の平均値をそ
の電池のサイクル寿命とし、これをグラフにして
第3図に示した。 その結果、亜鉛極活物質層の厚みの外面側/内
面側の比率1.2〜1.5のもののサイクル寿命が優れ
ていることが分かる。 上記の結果から得られた理由としては次のこと
が考えられる。 前記のごとき渦巻形電極体において、亜鉛負極
の内面側の方が外面側より曲率が小さいので前者
の方が圧縮されて活物質層の厚みが大きくなり、
後者の方が伸長されて厚みが薄くなる。しかも亜
鉛負極の外面側に対向する正極の面積は同じ亜鉛
負極の内面側に対向する正極の面積よりもはるか
に大きくなる。したがつて亜鉛負極の活物質層の
充放電深度は外面側の方が内面側よりはるかに大
きくなり、外面側の方が活物質層の劣化減容が大
きくなると考えられる。そしてこの傾向は特に渦
巻形電極体の中央の巻回開始部で著しい。一方渦
巻形電極体の最外周の正極は、その外面側に負極
が存在していないので、この最外周の正極の内面
側の亜鉛負極に対する容量が他の部分より大き
い。したがつてこの部分の亜鉛負極も特に外面側
の充放電深度が深くなり劣化減容が大きくなり形
状変形が大きくなる。いずれにしても亜鉛負極の
外面側の活物質の利用率が内面側よりも大きくな
り劣化減容が大きいので、外面側の活物質層の厚
みを内面側の厚みより適度に厚くすることによつ
て外面側の劣化減容による形状変形が抑制されそ
の結果電池のサイクル寿命が向上する。 (ハ) 発明の効果 この発明によれば、亜鉛負極の形状変形が抑制
されサイクル寿命が大きいアルカリ亜鉛蓄電池が
得られる。
[Table] Next, as shown in FIG. 2, the obtained strip-shaped negative electrode a, b, c, or d11 and the strip-shaped positive electrode of sintered nickel are wound through a separator 14 of nylon nonwoven fabric to produce a spiral electrode body 15. did. In addition, when the band-shaped negative electrodes a, b, or c were used, the negative electrode active material on both sides of the negative electrode current collector was wound so that it was thicker on the outer surface side of the electrode body. Ten cells each of 1500 mAH cylindrical alkaline zinc storage batteries A, B, C, and D were fabricated using electrode bodies fabricated using the negative electrodes a, b, c, or d above and an electrolyte of potassium hydroxide. Each of these batteries was charged at a charging current of 400 mA for 4 hours.
Charge/discharge was repeated by charging for 30 minutes and discharging for 4 hours at a discharge current of 400 mA, and the number of charge/discharge cycles until a battery voltage of 1.4 V or more could not be maintained for 3 hours or more was measured. The cycle life of the battery is determined by the average value of the number of charge/discharge cycles of the remaining 7 cells after excluding the three batteries with the smallest number of charge/discharge cycles from each of the 10 cells, and this is plotted as a graph. It is shown in Figure 3. As a result, it can be seen that the cycle life is excellent when the ratio of the outer surface side to the inner surface side of the zinc electrode active material layer is 1.2 to 1.5. The following may be the reason for the above results. In the spiral electrode body as described above, the inner surface of the zinc negative electrode has a smaller curvature than the outer surface, so the former is compressed and the thickness of the active material layer becomes larger.
The latter is stretched and becomes thinner. Furthermore, the area of the positive electrode facing the outer surface of the zinc negative electrode is much larger than the area of the positive electrode facing the inner surface of the same zinc negative electrode. Therefore, it is considered that the charge/discharge depth of the active material layer of the zinc negative electrode is much greater on the outer surface side than on the inner surface side, and that the deterioration and volume reduction of the active material layer is greater on the outer surface side. This tendency is particularly remarkable at the center winding start portion of the spiral electrode body. On the other hand, since there is no negative electrode on the outer surface of the outermost positive electrode of the spiral electrode body, the capacity with respect to the zinc negative electrode on the inner surface of the outermost positive electrode is larger than that of the other portions. Therefore, the charging/discharging depth of the zinc negative electrode in this area becomes deep, especially on the outer surface side, and the deterioration and volume reduction become large, resulting in large shape deformation. In any case, the utilization rate of the active material on the outer surface of the zinc negative electrode is greater than that on the inner surface, resulting in greater deterioration and volume loss. As a result, shape deformation due to deterioration and volume reduction on the outer surface side is suppressed, and as a result, the cycle life of the battery is improved. (c) Effects of the Invention According to the present invention, an alkaline zinc storage battery can be obtained in which shape deformation of the zinc negative electrode is suppressed and the cycle life is long.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の電池の亜鉛負極
の縦断面図、第2図はこの発明の一実施例の電池
の渦巻形電極体の横断面図、第3図はこの発明の
実施例及び比較例の電池における亜鉛負極集電体
の両面の活物質層の厚みの比率と電池のサイクル
寿命との関係を示すグラフである。 1,12……孔あき負極集電体、2,2′……
負極活物質層、11……負極、13……正極、1
4……セパレータ、15……渦巻形電極体。
FIG. 1 is a longitudinal cross-sectional view of a zinc negative electrode of a battery according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a spiral-shaped electrode body of a battery according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of a zinc negative electrode of a battery according to an embodiment of the present invention. 2 is a graph showing the relationship between the ratio of the thickness of the active material layers on both sides of the zinc negative electrode current collector and the cycle life of the battery in the batteries of Examples and Comparative Examples. 1, 12... Perforated negative electrode current collector, 2, 2'...
Negative electrode active material layer, 11... negative electrode, 13... positive electrode, 1
4... Separator, 15... Spiral electrode body.

Claims (1)

【特許請求の範囲】[Claims] 1 帯状亜鉛負極と帯状正極とをセパレータを介
して巻回した渦巻形電極体を備えた電池であつ
て、亜鉛負極が孔あき金属板の集電体の両面に亜
鉛活物質層を具備し、前記集電体を中心にして前
記電極体の外面側に位置する亜鉛活物質層の厚み
をその反対側の亜鉛活物質層の厚みの1.2〜1.5倍
であることを特徴とする円筒形アルカリ亜鉛蓄電
池。
1. A battery equipped with a spiral electrode body in which a strip-shaped zinc negative electrode and a strip-shaped positive electrode are wound with a separator in between, the zinc negative electrode having zinc active material layers on both sides of a current collector made of a perforated metal plate, Cylindrical alkaline zinc, characterized in that the thickness of the zinc active material layer located on the outer surface side of the electrode body with the current collector in the center is 1.2 to 1.5 times the thickness of the zinc active material layer on the opposite side. Storage battery.
JP59198097A 1984-09-20 1984-09-20 Cylindrical alkaline zinc storage battery Granted JPS6177255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198097A JPS6177255A (en) 1984-09-20 1984-09-20 Cylindrical alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198097A JPS6177255A (en) 1984-09-20 1984-09-20 Cylindrical alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS6177255A JPS6177255A (en) 1986-04-19
JPH0560219B2 true JPH0560219B2 (en) 1993-09-01

Family

ID=16385443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198097A Granted JPS6177255A (en) 1984-09-20 1984-09-20 Cylindrical alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS6177255A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522967B2 (en) * 1987-10-19 1996-08-07 三洋電機株式会社 Cylindrical alkaline zinc storage battery
JP3131976B2 (en) * 1990-04-28 2001-02-05 ソニー株式会社 Non-aqueous electrolyte secondary battery
US5683834A (en) * 1994-09-07 1997-11-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CA2207801C (en) * 1996-06-19 2004-03-30 Hideki Kaido Nonaqueous electrolyte battery
KR100601561B1 (en) 2004-07-28 2006-07-19 삼성에스디아이 주식회사 Jelly-roll type electrode assembly and Cylindrical Li Secondary battery with the same
JP4529750B2 (en) * 2005-03-23 2010-08-25 新神戸電機株式会社 Winding type sealed lead-acid battery
JP4855708B2 (en) * 2005-04-25 2012-01-18 パナソニック株式会社 Electrode hoop rolling method
US7867553B2 (en) * 2006-08-23 2011-01-11 The Gillette Company Method of making cathode including iron disulfide
KR100963981B1 (en) * 2007-03-26 2010-06-15 주식회사 엘지화학 Jelly-roll Having Active Material Layer with Different Loading Amount
US8739400B2 (en) 2010-10-04 2014-06-03 Lg Chem, Ltd. Press assembly and method for bending electrical terminals of battery cells
JP2017188212A (en) * 2016-04-01 2017-10-12 日立化成株式会社 Zinc electrode for nickel zinc storage battery, and method for manufacturing the same
JP2020170652A (en) * 2019-04-04 2020-10-15 日立化成株式会社 Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery
JPWO2022195959A1 (en) * 2021-03-15 2022-09-22

Also Published As

Publication number Publication date
JPS6177255A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
JPH0560219B2 (en)
JP5308806B2 (en) Manufacturing method of nickel metal hydride storage battery
JP2002134161A (en) Spiral electrode group for battery and battery
JP2003317694A (en) Nickel hydride storage battery
JP3744716B2 (en) Sealed alkaline storage battery
EP1498977A1 (en) Alkaline storage battery
JP5655808B2 (en) Cylindrical alkaline storage battery
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
JPS5834902B2 (en) battery electrode
JP2522967B2 (en) Cylindrical alkaline zinc storage battery
JPH0311807Y2 (en)
JPH0552028B2 (en)
JPH0566718B2 (en)
JPS6081777A (en) Nickel-zinc battery
JPH0638376Y2 (en) Alkaline zinc storage battery
JPH01100872A (en) Sealed type nickel-zinc cell
JP4441191B2 (en) Alkaline storage battery and method for manufacturing the same
JP2009117243A (en) Alkaline storage battery electrode and alkaline storage battery
JP2003173815A (en) Sealed square alkaline storage battery
JPH09199162A (en) Sealed alkaline storage battery
JPS6037662A (en) Zinc electrode
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JPH043403Y2 (en)
JP3436059B2 (en) Nickel-hydrogen storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term