JP2020170652A - Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery - Google Patents

Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery Download PDF

Info

Publication number
JP2020170652A
JP2020170652A JP2019071905A JP2019071905A JP2020170652A JP 2020170652 A JP2020170652 A JP 2020170652A JP 2019071905 A JP2019071905 A JP 2019071905A JP 2019071905 A JP2019071905 A JP 2019071905A JP 2020170652 A JP2020170652 A JP 2020170652A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
electrode material
material layer
zinc battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019071905A
Other languages
Japanese (ja)
Inventor
有広 櫛部
Arihiro Kushibe
有広 櫛部
孟光 大沼
Takemitsu Onuma
孟光 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2019071905A priority Critical patent/JP2020170652A/en
Publication of JP2020170652A publication Critical patent/JP2020170652A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a manufacturing method of a negative electrode for a zinc battery enabling the negative electrode to have excellent life performance.SOLUTION: The manufacturing method of a negative electrode for a zinc battery is provided, the negative electrode comprising a negative electrode current collector 21, a first negative electrode material layer provided on one surface 21a of the negative electrode current collector, and a second negative electrode material layer provided on the other surface 21b of the negative electrode current collector 21. The manufacturing method includes a negative electrode material layer forming step of forming a first negative electrode material layer and a second negative electrode material layer by passing the negative electrode current collector 21 between a first wall surface 51 and a second wall surface 52 while contacting the negative electrode material pastes 23a, 23b on both sides with the first wall surface 51 and the second wall surface 52 facing each other in a state where the negative electrode material pastes 23a, 23b adhere to both sides of the negative electrode current collector 21. In the negative electrode material layer forming step, a ratio of a distance D2 between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21 to a distance D1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 is 0.7 to 1.SELECTED DRAWING: Figure 3

Description

本発明は、亜鉛電池用負極の製造方法、及び亜鉛電池用負極に関する。 The present invention relates to a method for manufacturing a negative electrode for a zinc battery and a negative electrode for a zinc battery.

亜鉛電池としては、ニッケル亜鉛電池、空気亜鉛電池、銀亜鉛電池等が知られている。例えば、ニッケル亜鉛電池は、水酸化カリウム水溶液等の水系電解液を用いる水系電池であることから、高い安全性を有するとともに、亜鉛電極とニッケル電極との組み合わせにより、水系電池としては高い起電力を有することが知られている。さらに、ニッケル亜鉛電池は、優れた入出力性能に加えて、低コストであることから、産業用途(例えば、バックアップ電源等の用途)及び自動車用途(例えば、ハイブリッド自動車等の用途)への適用可能性が検討されている。 As the zinc battery, a nickel-zinc battery, a zinc-air battery, a silver-zinc battery and the like are known. For example, a nickel-zinc battery is an aqueous battery that uses an aqueous electrolytic solution such as an aqueous potassium hydroxide solution, so that it has high safety and a high electromotive force as an aqueous battery by combining a zinc electrode and a nickel electrode. It is known to have. Further, since the nickel-zinc battery has excellent input / output performance and low cost, it can be applied to industrial applications (for example, applications such as backup power supply) and automobile applications (for example, applications such as hybrid automobiles). Gender is being considered.

ニッケル亜鉛電池の充放電反応は、例えば、下記式に従って進行する(放電反応:右向き、充電反応:左向き)。
(正極)2NiOOH+2HO+2e → 2Ni(OH)+2OH
(負極)Zn+2OH → Zn(OH)+2e
The charge / discharge reaction of the nickel-zinc battery proceeds according to, for example, the following formula (discharge reaction: rightward, charge reaction: leftward).
(Positive electrode) 2NiOOH + 2H 2 O + 2e - → 2Ni (OH) 2 + 2OH -
(Negative electrode) Zn + 2OH → Zn (OH) 2 + 2e

上記式に示されるように、亜鉛電池では、放電反応により水酸化亜鉛(Zn(OH))が生成する。水酸化亜鉛は電解液に可溶であり、水酸化亜鉛が電解液に溶解すると、テトラヒドロキシド亜鉛酸イオン([Zn(OH) )が電解液中に拡散する。その結果、負極の形態変化(変形)が進行するとともに充電電流の分布が不均一となること等により、負極上の局所で亜鉛の析出が起こり、デンドライト(樹枝状結晶)が発生する。従来の亜鉛電池では、充放電の繰り返しによりデンドライトが成長した場合、デンドライトがセパレータを貫通し短絡が発生する場合がある。そのため、このようなデンドライトによる短絡を防止し、寿命性能を向上させる種々の試みがなされている。例えば、下記特許文献1には、ニッケルメッキを施した不織布を電極間に介在させることで、デンドライトによる短絡を防止する技術が開示されている。 As shown in the above formula, in a zinc battery, zinc hydroxide (Zn (OH) 2 ) is produced by a discharge reaction. Zinc hydroxide is soluble in the electrolyte, the zinc hydroxide is dissolved in the electrolytic solution, tetra hydroxide zincate ions ([Zn (OH) 4] 2 -) is diffused into the electrolyte. As a result, the morphological change (deformation) of the negative electrode progresses and the distribution of the charging current becomes non-uniform, so that zinc precipitates locally on the negative electrode and dendrites (dendritic crystals) are generated. In a conventional zinc battery, when the dendrite grows due to repeated charging and discharging, the dendrite may penetrate the separator and cause a short circuit. Therefore, various attempts have been made to prevent such a short circuit due to dendrites and improve the life performance. For example, Patent Document 1 below discloses a technique for preventing a short circuit due to dendrite by interposing a nickel-plated non-woven fabric between electrodes.

特開昭58−126665号公報Japanese Unexamined Patent Publication No. 58-126665

このように、亜鉛電池に対しては、更なる寿命性能の改善が求められている。 As described above, the zinc battery is required to have further improvement in life performance.

本発明の一側面は、優れた寿命性能を得ることが可能な亜鉛電池用負極の製造方法、及び亜鉛電池用負極を提供することを目的とする。 One aspect of the present invention is to provide a method for manufacturing a negative electrode for a zinc battery capable of obtaining excellent life performance, and a negative electrode for a zinc battery.

本発明の一側面は、負極集電体と、負極集電体の一方面に設けられた第1の負極材層と、負極集電体の他方面に設けられた第2の負極材層と、を備える亜鉛電池用負極の製造方法であって、負極集電体の両面に負極材ペーストが付着した状態で、互いに対向する第1の壁面及び第2の壁面に両面の負極材ペーストを接触させながら第1の壁面と第2の壁面との間に負極集電体を通過させて、第1の負極材層及び第2の負極材層を形成する負極材層形成工程を備え、負極材層形成工程において、第1の壁面と負極集電体の一方面との距離に対する、第2の壁面と負極集電体の他方面との距離に対する比が0.7〜1である、亜鉛電池用負極の製造方法を提供する。この製造方法によって得られる亜鉛電池用負極を用いた亜鉛電池は、寿命性能に優れている。 One aspect of the present invention includes a negative electrode current collector, a first negative electrode material layer provided on one surface of the negative electrode current collector, and a second negative electrode material layer provided on the other surface of the negative electrode current collector. A method for manufacturing a negative electrode for a zinc battery, wherein the negative electrode material pastes on both sides are brought into contact with the first wall surface and the second wall surface facing each other in a state where the negative electrode material pastes are attached to both sides of the negative electrode current collector. The negative electrode material is provided with a negative electrode material layer forming step of passing a negative electrode current collector between the first wall surface and the second wall surface to form a first negative electrode material layer and a second negative electrode material layer. In the layer forming step, the ratio of the distance between the first wall surface and one surface of the negative electrode current collector to the distance between the second wall surface and the other surface of the negative electrode current collector is 0.7 to 1. Provided is a method for manufacturing a negative electrode for use. A zinc battery using a negative electrode for a zinc battery obtained by this manufacturing method has excellent life performance.

一側面において、上記の比が1未満であってもよい。 In one aspect, the above ratio may be less than one.

一側面において、第1の壁面と負極集電体の一方面との距離と、第2の壁面と負極集電体の他方面との距離の差が、好ましくは0.03mm以下である。 On one side, the difference between the distance between the first wall surface and one surface of the negative electrode current collector and the distance between the second wall surface and the other surface of the negative electrode current collector is preferably 0.03 mm or less.

本発明の他の一側面は、負極集電体と、負極集電体の一方面に設けられた第1の負極材層と、負極集電体の他方面に設けられた第2の負極材層と、を備える亜鉛電池用負極であって、第1の負極材層の厚みに対する、第2の負極材層の厚みの比が、0.7〜1である、亜鉛電池用負極を提供する。この亜鉛電池用負極を用いた亜鉛電池は、寿命性能に優れている。 Another aspect of the present invention is a negative electrode current collector, a first negative electrode material layer provided on one surface of the negative electrode current collector, and a second negative electrode material provided on the other surface of the negative electrode current collector. Provided is a negative electrode for a zinc battery comprising a layer, wherein the ratio of the thickness of the second negative electrode material layer to the thickness of the first negative electrode material layer is 0.7 to 1. .. The zinc battery using the negative electrode for the zinc battery has excellent life performance.

他の一側面において、上記の比が1未満であってもよい。 In another aspect, the above ratio may be less than one.

他の一側面において、第1の負極材層の厚みと第2の負極材層の厚みとの差が、好ましくは0.03mm以下である。 On the other side, the difference between the thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer is preferably 0.03 mm or less.

本発明の一側面によれば、優れた寿命性能を得ることが可能な亜鉛電池用負極の製造方法、及び亜鉛電池用負極を提供できる。 According to one aspect of the present invention, it is possible to provide a method for manufacturing a negative electrode for a zinc battery capable of obtaining excellent life performance, and a negative electrode for a zinc battery.

従来の両面塗工型の負極において、電池のサイクル数の経過に伴う負極の断面の様子を観察した顕微鏡写真である。It is a micrograph which observed the state of the cross section of the negative electrode as the number of battery cycles elapses in the conventional double-sided coating type negative electrode. 一実施形態に係る亜鉛電池用負極の製造方法に用いられる装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus used in the manufacturing method of the negative electrode for a zinc battery which concerns on one Embodiment. 図2に示す装置における層形成部を示す模式断面図である。It is a schematic cross-sectional view which shows the layer forming part in the apparatus shown in FIG. 負極材層の厚みの測定箇所の一例を示す平面図である。It is a top view which shows an example of the measurement part of the thickness of a negative electrode material layer.

以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof. The sizes of the components in each figure are conceptual, and the relative size relationships between the components are not limited to those shown in each figure.

本明細書において、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。 In the present specification, the numerical range indicated by using "~" indicates a range including the numerical values before and after "~" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. “A or B” may include either A or B, or both. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means. Further, in the present specification, the term "layer" includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view. Further, in the present specification, the term "process" is used not only as an independent process but also as a term as long as the desired action of the process is achieved even when it cannot be clearly distinguished from other processes. included.

以下の実施形態に係る製造方法により得られる負極は、亜鉛電池に用いられる負極(亜鉛電池用負極)である。亜鉛電池(例えば亜鉛二次電池)としては、ニッケル亜鉛電池、空気亜鉛電池、銀亜鉛電池等が挙げられる。亜鉛電池の基本構成としては、従来の亜鉛電池と同様の構成を用いることができる。本明細書における亜鉛電池は、化成後又は未化成のいずれであってもよい。 The negative electrode obtained by the manufacturing method according to the following embodiment is a negative electrode used for a zinc battery (negative electrode for a zinc battery). Examples of the zinc battery (for example, a zinc secondary battery) include a nickel-zinc battery, a zinc-air battery, a silver-zinc battery, and the like. As the basic configuration of the zinc battery, the same configuration as that of the conventional zinc battery can be used. The zinc battery in the present specification may be either post-chemical or non-chemical.

一実施形態に係る亜鉛電池用負極の製造方法は、負極集電体と、負極集電体の一方面に設けられた第1の負極材層と、負極集電体の他方面に設けられた第2の負極材層と、を備える亜鉛電池用負極の製造方法であって、負極集電体の両面に負極材ペーストが付着した状態で、互いに対向する第1の壁面及び第2の壁面に両面の負極材ペーストを接触させながら第1の壁面と第2の壁面との間に負極集電体を通過させて、第1の負極材層及び第2の負極材層を形成する負極材層形成工程を備え、負極材層形成工程において、第1の壁面と負極集電体の一方面との距離に対する、第2の壁面と負極集電体の他方面との距離に対する比が0.7〜1である、亜鉛電池用負極の製造方法である。 The method for manufacturing a negative electrode for a zinc battery according to one embodiment is provided on a negative electrode current collector, a first negative electrode material layer provided on one surface of the negative electrode current collector, and the other surface of the negative electrode current collector. A method for manufacturing a negative electrode for a zinc battery including a second negative electrode material layer, wherein the negative electrode material paste is attached to both sides of the negative electrode current collector, and the negative electrode material paste is attached to the first wall surface and the second wall surface facing each other. A negative electrode material layer that forms a first negative electrode material layer and a second negative electrode material layer by passing a negative electrode current collector between the first wall surface and the second wall surface while bringing the negative electrode material pastes on both sides into contact with each other. In the negative electrode material layer forming step, the ratio of the distance between the first wall surface and one surface of the negative electrode current collector to the distance between the second wall surface and the other surface of the negative electrode current collector is 0.7. 1 is a method for manufacturing a negative electrode for a zinc battery.

また、一実施形態に係る亜鉛電池用負極は、負極集電体と、負極集電体の一方面に設けられた第1の負極材層と、負極集電体の他方面に設けられた第2の負極材層と、を備える亜鉛電池用負極であって、第1の負極材層の厚みに対する、第2の負極材層の厚みの比が、0.7〜1である、亜鉛電池用負極である。 Further, the negative electrode for a zinc battery according to one embodiment includes a negative electrode current collector, a first negative electrode material layer provided on one surface of the negative electrode current collector, and a first negative electrode material layer provided on the other surface of the negative electrode current collector. A negative electrode for a zinc battery comprising 2 negative electrode material layers, wherein the ratio of the thickness of the second negative electrode material layer to the thickness of the first negative electrode material layer is 0.7 to 1. It is a negative electrode.

これらの実施形態に係る亜鉛電池用負極を用いることにより、亜鉛電池において優れた寿命性能を得ることができる。このような効果が得られる原因は明らかではないが、本発明者らは下記のように推察している。 By using the negative electrode for a zinc battery according to these embodiments, excellent life performance can be obtained in the zinc battery. The reason why such an effect is obtained is not clear, but the present inventors speculate as follows.

亜鉛電池用負極(以下、単に「負極」ともいう。)では、放電反応により、負極活物質である金属亜鉛がテトラヒドロキシド亜鉛酸イオン([Zn(OH) )として溶出する。[Zn(OH) は電解液中での過飽和状態を経て、負極材層上に酸化亜鉛(ZnO)として析出する。ここで、[Zn(OH) の濃度及びZnOの析出量は、負極における負極材層の厚みに影響を受けると考えられる。負極材層が厚い場合、負極材層から溶出する[Zn(OH) の濃度が高くなり、これに伴い、負極材層が厚い場合、負極材層上に析出するZnOの析出量も多くなる。ZnOは電解液にわずかに可溶であるため、ZnO粒子の近傍では、[Zn(OH) が過飽和状態で存在し、更にZnOの析出が促進される。 In the negative electrode for zinc batteries (hereinafter, also simply referred to as “negative electrode”), metallic zinc, which is the negative electrode active material, is eluted as tetrahydroxydozincate ion ([Zn (OH) 4 ] 2 ) by the discharge reaction. [Zn (OH) 4 ] 2 is supersaturated in the electrolytic solution and is precipitated as zinc oxide (ZnO) on the negative electrode material layer. Here, it is considered that the concentration of [Zn (OH) 4 ] 2 and the amount of ZnO deposited are affected by the thickness of the negative electrode material layer in the negative electrode. When the negative electrode material layer is thick, the concentration of [Zn (OH) 4 ] 2 eluted from the negative electrode material layer becomes high, and accordingly, when the negative electrode material layer is thick, the amount of ZnO precipitated on the negative electrode material layer is high. Will also increase. Since ZnO is slightly soluble in the electrolytic solution, [Zn (OH) 4 ] 2 exists in a supersaturated state in the vicinity of the ZnO particles, and the precipitation of ZnO is further promoted.

負極には、集電体の両面にそれぞれ負極材層が設けられた、いわゆる両面塗工型の負極が存在する。上述のとおり、負極材層の厚みが大きいほどZnOの析出量は増加するため、両面塗工型の負極において、一方面の負極材層と他方面の負極材層との間で厚みの差が大きいと、厚みの大きな負極材層の表面に偏ってZnOが析出しやすい環境が作られ、更に電池のサイクル数の経過に伴い、同一負極における表裏で厚みの差が拡大すると考えられる。 The negative electrode includes a so-called double-sided coating type negative electrode in which negative electrode material layers are provided on both sides of the current collector. As described above, the larger the thickness of the negative electrode material layer, the greater the amount of ZnO deposited. Therefore, in the double-sided coating type negative electrode, there is a difference in thickness between the negative electrode material layer on one side and the negative electrode material layer on the other side. If it is large, an environment is created in which ZnO is likely to be deposited unevenly on the surface of the thick negative electrode material layer, and it is considered that the difference in thickness between the front and back surfaces of the same negative electrode increases as the number of battery cycles elapses.

図1は、従来の両面塗工型の負極において、電池のサイクル数の経過に伴う負極の断面の様子を観察した顕微鏡写真(走査型電子顕微鏡使用、倍率200倍)である。図1(a)は使用前の負極の様子を示しており、図1(b)、図1(c)、及び図1(d)の順にサイクル数が増加していることを示している。図1に示す両面塗工型の負極10では、図1(a)に示すように、負極集電体11の一方面に設けられた第1の負極材層12と、負極集電体1の他方面に設けられた第2の負極材層13の厚みに差が生じている。すなわち、第1の負極材層12が、第2の負極材層13よりも厚くなっている。このような負極10では、図1(b)〜図1(d)に示すように、サイクル数の経過に伴い、第1の負極材層12と第2の負極材層13との間で厚みの差が拡大していく。これは、上述の理由により、負極材層の厚みが大きいほどZnOが偏って析出するためであると考えられる。 FIG. 1 is a photomicrograph (using a scanning electron microscope, magnification of 200 times) of a conventional double-sided coating type negative electrode in which the state of the cross section of the negative electrode is observed as the number of battery cycles elapses. FIG. 1 (a) shows the state of the negative electrode before use, and shows that the number of cycles is increasing in the order of FIGS. 1 (b), 1 (c), and 1 (d). In the double-sided coating type negative electrode 10 shown in FIG. 1, as shown in FIG. 1A, the first negative electrode material layer 12 provided on one surface of the negative electrode current collector 11 and the negative electrode current collector 1 There is a difference in the thickness of the second negative electrode material layer 13 provided on the other surface. That is, the first negative electrode material layer 12 is thicker than the second negative electrode material layer 13. In such a negative electrode 10, as shown in FIGS. 1 (b) to 1 (d), the thickness between the first negative electrode material layer 12 and the second negative electrode material layer 13 increases as the number of cycles elapses. The difference between the two is widening. It is considered that this is because ZnO is unevenly deposited as the thickness of the negative electrode material layer is increased for the above-mentioned reason.

亜鉛電池では、微多孔膜、不織布等のセパレータを介して対向する正極と負極間を電荷キャリアである水酸化物イオン(OH)を拡散させることで充放電反応が進行する。図1のように、負極の一方の負極材層が偏って減量した場合、対向する正極との円滑なOHの授受ができなくなるため、充放電反応が阻害されると考えられる。 In a zinc battery, a charge / discharge reaction proceeds by diffusing hydroxide ions (OH ), which are charge carriers, between the positive electrode and the negative electrode facing each other via a separator such as a microporous membrane or a non-woven fabric. As shown in FIG. 1, when one of the negative electrode material layers of the negative electrode is unevenly reduced in weight, it is considered that the charge / discharge reaction is hindered because smooth transfer of OH − to and from the opposite positive electrode cannot be performed.

より具体的には、まず放電反応では、正極から拡散してきたOHを負極で消費するため、正極と対向する負極材層中の活物質が最も円滑に反応できる。しかし、正極と対向する負極材層が減量した場合には、OHがパンチングメタル等の負極集電体を介して、正極対向面と反対側の負極材層中の活物質まで拡散する必要性が高まる。そのため、拡散抵抗が増加し、徐々に放電容量が損なわれていくと推定される。また、充電反応は放電反応と逆方向の反応であり、負極から正極側にOHを拡散させる必要がある。そのため、正極と対向する負極材層が減量した場合には、放電反応と同様に、拡散抵抗が増加することによって充電容量が損なわれる。充電容量が損なわれると、放電容量の低下を更に加速させると考えられる。 More specifically, in the discharge reaction, since the OH diffused from the positive electrode is consumed by the negative electrode, the active material in the negative electrode material layer facing the positive electrode can react most smoothly. However, when the amount of the negative electrode material layer facing the positive electrode is reduced, it is necessary for OH to diffuse to the active material in the negative electrode material layer opposite to the positive electrode facing surface via the negative electrode current collector such as punching metal. Will increase. Therefore, it is estimated that the diffusion resistance increases and the discharge capacity is gradually impaired. Further, the charging reaction is a reaction in the opposite direction to the discharging reaction, and it is necessary to diffuse OH from the negative electrode side to the positive electrode side. Therefore, when the amount of the negative electrode material layer facing the positive electrode is reduced, the charge capacity is impaired by increasing the diffusion resistance as in the discharge reaction. When the charge capacity is impaired, it is considered that the decrease in the discharge capacity is further accelerated.

一方、本実施形態に係る製造方法により得られる負極は、負極集電体の一方面に設けられた第1の負極材層の厚みと、負極集電体の他方面に設けられた第2の負極材層との厚みの差が小さいため、一方の負極材層に偏ってZnOが析出することを抑制できる。したがって、対向する正極との円滑なOHの授受が可能となり、充放電反応が阻害されることを抑制できる。結果として、亜鉛電池における寿命性能を向上できると考えられる。 On the other hand, the negative electrode obtained by the manufacturing method according to the present embodiment has the thickness of the first negative electrode material layer provided on one surface of the negative electrode current collector and the second negative electrode material layer provided on the other surface of the negative electrode current collector. Since the difference in thickness from the negative electrode material layer is small, it is possible to suppress the precipitation of ZnO biased to one negative electrode material layer. Therefore, smooth transfer of OH − to and from the opposite positive electrode is possible, and inhibition of the charge / discharge reaction can be suppressed. As a result, it is considered that the life performance of the zinc battery can be improved.

<亜鉛電池用負極の製造方法>
一実施形態に係る亜鉛電池用負極の製造方法は、負極集電体の両面に負極材ペーストが付着した状態で、互いに対向する第1の壁面及び第2の壁面に両面の負極材ペーストを接触させながら第1の壁面と第2の壁面との間に負極集電体を通過させて、第1の負極材層及び第2の負極材層を形成する負極材層形成工程を備える。
<Manufacturing method of negative electrode for zinc battery>
In the method for manufacturing a negative electrode for a zinc battery according to one embodiment, the negative electrode material pastes on both sides are brought into contact with the first wall surface and the second wall surface facing each other in a state where the negative electrode material pastes are attached to both sides of the negative electrode current collector. A negative electrode material layer forming step is provided in which a negative electrode current collector is passed between the first wall surface and the second wall surface to form a first negative electrode material layer and a second negative electrode material layer.

負極集電体は、例えば、平板状、シート状等の形状を有している。負極集電体は、発泡金属、エキスパンドメタル、パンチングメタル、金属繊維のフェルト状物等によって構成された3次元網目構造の集電体などであってもよい。負極集電体は、導電性及び耐アルカリ性を有する材料で構成されている。このような材料としては、例えば、負極の反応電位でも安定である材料(負極の反応電位よりも貴な酸化還元電位を有する材料、アルカリ水溶液中で基材表面に酸化被膜等の保護被膜を形成して安定化する材料など)を用いることができる。また、負極においては、副反応として電解液の分解反応が進行し水素が発生するが、水素過電圧の高い材料はこのような副反応の進行を抑制できる点で好ましい。負極集電体を構成する材料の具体例としては、亜鉛、鉛、スズ、スズ等の金属メッキを施した金属材料(銅、真鍮、鋼、ニッケル等)などが挙げられる。 The negative electrode current collector has a shape such as a flat plate shape or a sheet shape. The negative electrode current collector may be a current collector having a three-dimensional network structure composed of foamed metal, expanded metal, punching metal, felt-like material of metal fibers, or the like. The negative electrode current collector is made of a material having conductivity and alkali resistance. Examples of such a material include a material that is stable even at the reaction potential of the negative electrode (a material having an oxidation-reduction potential noble than the reaction potential of the negative electrode, and a protective film such as an oxide film is formed on the surface of the base material in an alkaline aqueous solution. A material that stabilizes the material) can be used. Further, in the negative electrode, the decomposition reaction of the electrolytic solution proceeds as a side reaction to generate hydrogen, and a material having a high hydrogen overvoltage is preferable in that the progress of such a side reaction can be suppressed. Specific examples of the material constituting the negative electrode current collector include metal materials (copper, brass, steel, nickel, etc.) plated with metals such as zinc, lead, tin, and tin.

負極材ペーストは、負極材層を構成する成分を含有するペーストである。負極材ペーストは、例えば、負極材層を構成する成分を水等の分散媒に加えて混錬されたペーストであってよい。 The negative electrode material paste is a paste containing components constituting the negative electrode material layer. The negative electrode material paste may be, for example, a paste obtained by adding the components constituting the negative electrode material layer to a dispersion medium such as water and kneading the paste.

負極材ペーストは、亜鉛を含む負極活物質を含有する。負極活物質としては、金属亜鉛、酸化亜鉛、水酸化亜鉛等が挙げられる。負極材ペーストは、例えば、満充電状態では金属亜鉛を含有し、放電末状態では酸化亜鉛及び水酸化亜鉛を含有する。 The negative electrode material paste contains a negative electrode active material containing zinc. Examples of the negative electrode active material include metallic zinc, zinc oxide, zinc hydroxide and the like. The negative electrode material paste contains, for example, metallic zinc in a fully charged state, and zinc oxide and zinc hydroxide in a discharge end state.

負極活物質の量は、負極材ペーストの不揮発分(負極材ペーストから分散媒を除いた成分)の全質量を基準として下記の範囲が好ましい。負極活物質の量は、優れた寿命性能と放電性能とを両立しやすい観点から、50質量%以上が好ましく、70質量%以上がより好ましく、75質量%以上が更に好ましい。負極活物質の量は、優れた寿命性能と放電性能とを両立しやすい観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましい。これらの観点から、負極活物質の量は、50〜95質量%が好ましい。 The amount of the negative electrode active material is preferably in the following range based on the total mass of the non-volatile content (component of the negative electrode material paste excluding the dispersion medium) of the negative electrode material paste. The amount of the negative electrode active material is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 75% by mass or more, from the viewpoint of easily achieving both excellent life performance and discharge performance. The amount of the negative electrode active material is preferably 95% by mass or less, more preferably 90% by mass or less, still more preferably 85% by mass or less, from the viewpoint of easily achieving both excellent life performance and discharge performance. From these viewpoints, the amount of the negative electrode active material is preferably 50 to 95% by mass.

負極材ペーストは、負極活物質以外の添加剤を含有することができる。添加剤としては、結着剤、導電剤等が挙げられる。結着剤としては、ポリテトラフルオロエチレン、ヒドロキシエチルセルロース、ポリエチレンオキシド、ポリエチレン、ポリプロピレン等が挙げられる。結着剤の量は、例えば、負極活物質100質量部に対して0.5〜10質量部であってもよい。導電剤としては、インジウム化合物(酸化インジウム等)などが挙げられる。導電剤の量は、例えば、負極活物質100質量部に対して1〜20質量部であってもよい。 The negative electrode material paste can contain additives other than the negative electrode active material. Examples of the additive include a binder, a conductive agent and the like. Examples of the binder include polytetrafluoroethylene, hydroxyethyl cellulose, polyethylene oxide, polyethylene, polypropylene and the like. The amount of the binder may be, for example, 0.5 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material. Examples of the conductive agent include indium compounds (indium oxide and the like). The amount of the conductive agent may be, for example, 1 to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material.

図2は、本実施形態に係る亜鉛電池用負極の製造方法に用いられる装置の一例を示す模式図である。本実施形態に係る亜鉛電池用負極は、例えば、図2に示す装置を用いて製造することができる。 FIG. 2 is a schematic view showing an example of an apparatus used in the method for manufacturing a negative electrode for a zinc battery according to the present embodiment. The negative electrode for a zinc battery according to the present embodiment can be manufactured by using, for example, the apparatus shown in FIG.

この製造方法では、まず、ロール状の負極集電体21を巻き出し部30により巻き出してから、この負極集電体21を負極材ペーストが投入された槽40を通過させることにより、負極集電体21に負極材ペーストを付着させる。この製造方法では、ロール状の負極集電体21を巻き出し部30によって巻き出しているが、平板状又はシート状の負極集電体を用意して、この負極集電体を槽40に投入してもよい。続いて、槽40から負極集電体を引き上げる。引き上げられた負極集電体21の両面(負極集電体21の一方面及び他方面)には、負極材ペーストが付着する。これにより、負極材ペーストが両面に付着した負極集電体22を得ることができる。負極材ペーストが両面に付着した負極集電体22においては、負極材ペーストは、負極集電体21の一方面及び他方面の一部に付着していてもよく、全面に付着していてもよい。 In this manufacturing method, first, the roll-shaped negative electrode current collector 21 is unwound by the unwinding portion 30, and then the negative electrode current collector 21 is passed through the tank 40 in which the negative electrode material paste is charged to collect the negative electrode. The negative electrode material paste is attached to the electric body 21. In this manufacturing method, the roll-shaped negative electrode current collector 21 is unwound by the unwinding portion 30, but a flat plate-shaped or sheet-shaped negative electrode current collector is prepared and the negative electrode current collector is put into the tank 40. You may. Subsequently, the negative electrode current collector is pulled up from the tank 40. The negative electrode material paste adheres to both surfaces of the pulled-up negative electrode current collector 21 (one surface and the other surface of the negative electrode current collector 21). Thereby, the negative electrode current collector 22 in which the negative electrode material paste is adhered to both surfaces can be obtained. In the negative electrode current collector 22 in which the negative electrode material paste is adhered to both sides, the negative electrode material paste may be adhered to one surface and a part of the other surface of the negative electrode current collector 21, or may be adhered to the entire surface. Good.

次に、負極材ペーストが両面に付着した負極集電体22を、層形成部50に通過させる。 Next, the negative electrode current collector 22 to which the negative electrode material paste is adhered on both sides is passed through the layer forming portion 50.

図3は、図2に示す装置における、層形成部50を示す模式断面図である。層形成部50は、互いに対向する第1の壁面51及び第2の壁面52から形成される間隙53を有している。この間隙53に、負極材ペーストが両面に付着した負極集電体22を、矢印方向に通過させる。このとき、負極集電体21の一方面21aに付着した負極材ペースト23aを、第1の壁面51に接触させて、かつ、負極集電体21の他方面21bに付着した負極材ペースト23bを、第2の壁面52に接触させながら、負極材ペーストが両面に付着した負極集電体22を間隙53に通過させる。 FIG. 3 is a schematic cross-sectional view showing a layer forming portion 50 in the apparatus shown in FIG. The layer forming portion 50 has a gap 53 formed from a first wall surface 51 and a second wall surface 52 facing each other. The negative electrode current collector 22 with the negative electrode material paste adhered to both sides is passed through the gap 53 in the direction of the arrow. At this time, the negative electrode material paste 23a attached to the one surface 21a of the negative electrode current collector 21 is brought into contact with the first wall surface 51, and the negative electrode material paste 23b attached to the other surface 21b of the negative electrode current collector 21 is applied. The negative electrode current collector 22 with the negative electrode material paste adhered to both sides is passed through the gap 53 while being in contact with the second wall surface 52.

槽40から引き上げられた直後(層形成部50を通過させる前)の負極材ペーストが両面に付着した負極集電体22においては、図3に示すように、負極材ペーストの表面に凹凸が生じていたり、負極材ペーストの付着量にムラがあったりする場合がある。これを層形成部50における第1の壁面51と第2の壁面52に接触させながら層形成部50を通過させるよって、負極材ペースト23a、23bの表面の凹凸を均一にすることができる。 In the negative electrode current collector 22 in which the negative electrode material paste immediately after being pulled up from the tank 40 (before passing through the layer forming portion 50) adheres to both sides, unevenness is generated on the surface of the negative electrode material paste as shown in FIG. In some cases, the amount of the negative electrode material paste adhered may be uneven. By passing this through the layer forming portion 50 while contacting the first wall surface 51 and the second wall surface 52 of the layer forming portion 50, the surface irregularities of the negative electrode material pastes 23a and 23b can be made uniform.

また、本実施形態の製造方法においては、第1の壁面51と負極集電体21の一方面21aとの距離Dに対する、第2の壁面52と負極集電体21の他方面21bとの距離Dの比(D/D)が、0.7〜1である。これにより、最終的に負極集電体21の一方面21a上に形成される第1の負極材層の厚みと、負極集電体21の他方面21b上に形成される第2の負極材層の厚みとの差が小さい負極を得ることができる。第1の壁面51と負極集電体21の一方面21aとの距離Dは、第2の壁面52と負極集電体21の他方面21bとの距離Dよりも長い距離であるか、第2の壁面52と負極集電体21の他方面21bとの距離Dと同じ距離である。 Further, in the manufacturing method of this embodiment, with respect to the distance D 1 of the the one surface 21a of the first wall 51 and the anode current collector 21, the other surface 21b of the second wall 52 and the anode current collector 21 The ratio of the distances D 2 (D 2 / D 1 ) is 0.7 to 1 . As a result, the thickness of the first negative electrode material layer finally formed on one surface 21a of the negative electrode current collector 21 and the second negative electrode material layer formed on the other surface 21b of the negative electrode current collector 21. It is possible to obtain a negative electrode having a small difference from the thickness of. Is the distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 longer than the distance D 2 between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21? The distance between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21 is the same as the distance D 2 .

距離の比(D/D)は、寿命性能に優れた亜鉛電池用負極を得やすくする観点から、好ましくは0.8以上、より好ましくは0.9以上、更に好ましくは0.95以上である。距離の比(D/D)は、1であることが特に好ましいが、1未満であってもよい。 The distance ratio (D 2 / D 1 ) is preferably 0.8 or more, more preferably 0.9 or more, still more preferably 0.95 or more, from the viewpoint of facilitating the acquisition of a negative electrode for zinc batteries having excellent life performance. Is. The distance ratio (D 2 / D 1 ) is particularly preferably 1 but may be less than 1.

第1の壁面51と負極集電体21の一方面21aとの距離Dに対する、第2の壁面52と負極集電体21の他方面21bとの距離Dの比は、間隙53において、負極集電体21が通過する位置を調節することにより調整することができる。 The ratio of the distance D 2 between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21 to the distance D 1 between the first wall surface 51 and the one surface 21a of the negative electrode current collector 21 is in the gap 53. It can be adjusted by adjusting the position through which the negative electrode current collector 21 passes.

第1の壁面51と負極集電体21の一方面21aとの距離D、及び負極集電体21の他方面21bとの距離Dの差は、寿命性能に優れた亜鉛電池用負極を得やすくする観点から、好ましくは0.03mm以下、より好ましくは0.02mm以下、更に好ましくは0.01mm以下である。第1の壁面51と負極集電体21の一方面21aとの距離D、及び負極集電体21の他方面21bとの距離Dの差は0であることが特に好ましいが、0より大きくてもよい。 The difference between the distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 and the distance D 2 between the other surface 21b of the negative electrode current collector 21 is a negative electrode for a zinc battery having excellent life performance. From the viewpoint of making it easy to obtain, it is preferably 0.03 mm or less, more preferably 0.02 mm or less, and further preferably 0.01 mm or less. The difference between the distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 and the distance D 2 between the other surface 21b of the negative electrode current collector 21 is particularly preferably 0, but more than 0. It may be large.

第1の壁面51と負極集電体21の一方面21aとの距離D、及び第2の壁面52と負極集電体21の他方面21bとの距離Dは、充電リザーブ(負極側において過剰に充電可能な容量)確保の観点から、それぞれ、好ましくは0.2mm以上、より好ましくは0.3mm以上、更に好ましくは0.35mm以上である。第1の壁面51と負極集電体21の一方面21aとの距離D、及び第2の壁面52と負極集電体21の他方面21bとの距離Dは、エネルギー密度確保の観点から、それぞれ、好ましくは0.5mm以下、より好ましくは0.45mm以下、更に好ましくは0.4mm以下である。 The distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 and the distance D 2 between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21 are charge reserves (on the negative electrode side). From the viewpoint of securing (capacity that can be overcharged), each is preferably 0.2 mm or more, more preferably 0.3 mm or more, and further preferably 0.35 mm or more. The distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 and the distance D 2 between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21 are from the viewpoint of ensuring energy density. , Each is preferably 0.5 mm or less, more preferably 0.45 mm or less, still more preferably 0.4 mm or less.

第1の壁面51と負極集電体21の一方面21aとの距離D、及び第2の壁面52と負極集電体21の他方面21bとの距離Dは、例えば、層形成部50に設けられた、間隙調節部54により調整できる。間隙調節部54は、第1の壁面51及び第2の壁面52の位置を変更することができ、間隙53の大きさを調整することができる。結果として、第1の壁面51と負極集電体21の一方面21aとの距離D、及び第2の壁面52と負極集電体21の他方面21bとの距離Dの大きさも調整される。第1の壁面51と負極集電体21の一方面21aとの距離D、及び第2の壁面52と負極集電体21の他方面21bとの距離Dを調節する方法はこれに限定されない。 The distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 and the distance D 2 between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21 are, for example, the layer forming portion 50. It can be adjusted by the gap adjusting portion 54 provided in. The gap adjusting portion 54 can change the positions of the first wall surface 51 and the second wall surface 52, and can adjust the size of the gap 53. As a result, the magnitude of the distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 and the distance D 2 between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21 are also adjusted. To. The method of adjusting the distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 and the distance D 2 between the second wall surface 52 and the other surface 21b of the negative electrode current collector 21 is limited to this. Not done.

続いて、図2に示すように、層形成部50を通過後の、負極材ペーストが両面に付着した負極集電体22を、乾燥炉60に通過させる。乾燥炉60としては、例えば、減圧乾燥炉、赤外線ヒータを備えた乾燥炉等が挙げられる。 Subsequently, as shown in FIG. 2, the negative electrode current collector 22 to which the negative electrode material paste adheres to both sides after passing through the layer forming portion 50 is passed through the drying furnace 60. Examples of the drying oven 60 include a vacuum drying oven, a drying oven equipped with an infrared heater, and the like.

乾燥炉60内の温度は、例えば、90℃以上、100℃以上、又は110℃以上であってよく、150℃以下、140℃以下、又は130℃以下であってよい。乾燥炉60を通過させる時間(乾燥時間)は、例えば、1分以上、3分以上、又は5分以上であってよく、60分以下、30分以下、又は20分以下であってよい。 The temperature in the drying oven 60 may be, for example, 90 ° C. or higher, 100 ° C. or higher, or 110 ° C. or higher, and may be 150 ° C. or lower, 140 ° C. or lower, or 130 ° C. or lower. The time (drying time) for passing through the drying oven 60 may be, for example, 1 minute or more, 3 minutes or more, or 5 minutes or more, and may be 60 minutes or less, 30 minutes or less, or 20 minutes or less.

乾燥炉60を通過させることにより、負極材ペースト中に含まれる分散媒が揮発して、負極集電体21の一方面に第1の負極材層が形成され、他方面に第2の負極材層が形成された、未化成の負極24を得ることができる。図2に示すように連続的に製造された負極24は、所定の大きさに切断されて、亜鉛電池の製造に用いることができる。 By passing through the drying furnace 60, the dispersion medium contained in the negative electrode material paste is volatilized, a first negative electrode material layer is formed on one surface of the negative electrode current collector 21, and a second negative electrode material is formed on the other surface. It is possible to obtain an unchemical negative electrode 24 on which a layer is formed. As shown in FIG. 2, the continuously manufactured negative electrode 24 can be cut into a predetermined size and used for manufacturing a zinc battery.

以上説明した実施形態に係る亜鉛電池用負極の製造方法は、種々の変形例をとり得る。 The method for manufacturing a negative electrode for a zinc battery according to the above-described embodiment can take various modifications.

例えば、亜鉛電池用負極の製造方法において、負極集電体に負極材ペーストを付着させる方法は、アプリケータ等による塗布であってもよい。または、既に負極材ペーストが付着した負極集電体を用意してもよい。 For example, in the method for manufacturing a negative electrode for a zinc battery, the method for adhering the negative electrode material paste to the negative electrode current collector may be coating with an applicator or the like. Alternatively, a negative electrode current collector to which the negative electrode material paste has already adhered may be prepared.

層形成部は、分離した2つの部材を含んでいてもよく、これらの分離した2つの部材のそれぞれの壁面に負極材ペーストを接触させながら、2つの部材の間に負極材ペーストが付着した負極集電体を通過させてもよい。 The layer forming portion may include two separated members, and the negative electrode material paste adheres between the two members while the negative electrode material paste is brought into contact with the wall surface of each of the two separated members. It may be passed through a current collector.

両面に負極材ペーストが付着した負極集電体を層形成部に通過させた後、必要に応じてプレス等を行ってもよい。これにより、負極材層の密度を高めた負極を得ることができる。 After passing the negative electrode current collector with the negative electrode material paste adhering to both sides through the layer forming portion, pressing or the like may be performed if necessary. As a result, it is possible to obtain a negative electrode having an increased density of the negative electrode material layer.

負極材ペーストを乾燥させる方法では、乾燥炉を用いずに、例えば室温環境下に負極材ペーストの層が形成された負極集電体を静置してもよい。 In the method of drying the negative electrode material paste, for example, the negative electrode current collector on which the negative electrode material paste layer is formed may be allowed to stand in a room temperature environment without using a drying furnace.

上述した実施形態では、図2に示すような、一連の工程によって亜鉛電池用負極を製造できる装置を用いたが、負極集電体に負極材ペーストを付着させる工程、負極材ペーストを層形成部に通過させる工程、及び負極材ペーストを乾燥させる工程を別々の装置で行ってもよい。 In the above-described embodiment, an apparatus capable of manufacturing a negative electrode for a zinc battery is used as shown in FIG. 2, but a step of adhering a negative electrode material paste to a negative electrode current collector and a layer forming portion of the negative electrode material paste. The step of passing the paste through the negative electrode material and the step of drying the negative electrode material paste may be performed by separate devices.

<亜鉛電池用負極>
一実施形態に係る亜鉛電池用負極は、負極集電体の一方面に設けられた第1の負極材層と、負極集電体の他方面に設けられた第2の負極材層と、を備える亜鉛電池用負極であって、第1の負極材層の厚みに対する、第2の負極材層の厚みの比が、0.7〜1である。亜鉛電池用負極は、化成後又は未化成のいずれであってもよい。未化成の亜鉛電池用負極は、例えば、上述した亜鉛電池用負極の製造方法によって得ることができる。
<Negative electrode for zinc battery>
The negative electrode for a zinc battery according to one embodiment includes a first negative electrode material layer provided on one surface of the negative electrode current collector and a second negative electrode material layer provided on the other surface of the negative electrode current collector. The negative electrode for a zinc battery is provided, and the ratio of the thickness of the second negative electrode material layer to the thickness of the first negative electrode material layer is 0.7 to 1. The negative electrode for a zinc battery may be either post-chemical or non-chemical. The negative electrode for unchemical zinc batteries can be obtained, for example, by the above-mentioned method for manufacturing a negative electrode for zinc batteries.

負極集電体の態様は、上述した亜鉛電池用負極の製造方法における負極集電体の態様と同様であってよい。 The mode of the negative electrode current collector may be the same as that of the negative electrode current collector in the above-described method for manufacturing a negative electrode for a zinc battery.

負極材層は、亜鉛を含む負極活物質を含有する。負極活物質の態様は上述した負極材ペーストに含まれる負極活物質と同様であってよい。負極材層は、負極活物質以外に、上述した添加剤を添加することもできる。 The negative electrode material layer contains a negative electrode active material containing zinc. The mode of the negative electrode active material may be the same as that of the negative electrode active material contained in the negative electrode material paste described above. In addition to the negative electrode active material, the above-mentioned additives may be added to the negative electrode material layer.

本明細書における「負極材層の厚み」とは、負極集電体の一方面と、一方面上に設けられた負極材層の負極集電体とは反対側の表面との距離であり、負極材層上における9箇所において測定された平均値を意味する。9箇所の測定箇所は、負極を積層方向から見たときの、左上隅部、上中央部、右上隅部、左中央部、中央部、右中央部、左下隅部、下中央部、及び右下中央部の9箇所であってよい。図4は、負極材層の厚みの測定箇所の一例を示す平面図である。図4に示すように、負極集電体21に設けられた負極材層25の厚みは、左上隅部a、上中央部b、右上隅部c、左中央部d、中央部e、右中央部f、左下隅部g、下中央部h、及び右下中央部iの9箇所において測定され、それら測定値の平均値とすることができる。負極の各箇所における厚みは、例えば、マイクロメータを用いて測定することができる。 The "thickness of the negative electrode material layer" in the present specification is the distance between one surface of the negative electrode current collector and the surface of the negative electrode material layer provided on the one surface opposite to the negative electrode current collector. It means the average value measured at 9 points on the negative electrode material layer. The nine measurement points are the upper left corner, upper center, upper right corner, left center, center, right center, lower left corner, lower center, and right when the negative electrode is viewed from the stacking direction. There may be nine locations in the lower center. FIG. 4 is a plan view showing an example of a measurement location of the thickness of the negative electrode material layer. As shown in FIG. 4, the thickness of the negative electrode material layer 25 provided on the negative electrode current collector 21 is as follows: upper left corner a, upper center b, upper right corner c, left center d, center e, right center. It is measured at nine points, a portion f, a lower left corner portion g, a lower central portion h, and a lower right central portion i, and can be an average value of these measured values. The thickness at each location of the negative electrode can be measured using, for example, a micrometer.

第1の負極材層の厚みに対する、第2の負極材層の厚みの比(第2の負極材層の厚み/第1の負極材層の厚み)は、寿命性能に優れた亜鉛電池用負極を得やすくする観点から、好ましくは0.8以上、より好ましくは0.9以上、更に好ましくは0.95以上である。厚みの比(第2の負極材層の厚み/第1の負極材層の厚み)は、1であることが特に好ましいが、1未満であってもよい。第1の負極材層の厚みは、第2の負極材層の厚みよりも厚い(厚みが大きい)か、第2の負極材層と同じ厚みである。 The ratio of the thickness of the second negative electrode material layer to the thickness of the first negative electrode material layer (thickness of the second negative electrode material layer / thickness of the first negative electrode material layer) is the negative electrode for zinc batteries having excellent life performance. From the viewpoint of making it easy to obtain, it is preferably 0.8 or more, more preferably 0.9 or more, still more preferably 0.95 or more. The thickness ratio (thickness of the second negative electrode material layer / thickness of the first negative electrode material layer) is particularly preferably 1 but may be less than 1. The thickness of the first negative electrode material layer is thicker (larger) than the thickness of the second negative electrode material layer, or is the same thickness as the second negative electrode material layer.

第1の負極材層の厚みと第2の負極材層の厚みとの差は、寿命性能に優れた亜鉛電池用負極を得やすくする観点から、好ましくは0.03mm以下、より好ましくは0.02mm以下、更に好ましくは0.01mm以下である。第1の負極材層の厚みと第2の負極材層の厚みとの差は0であることが特に好ましいが、0より大きくてもよい。 The difference between the thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer is preferably 0.03 mm or less, more preferably 0., from the viewpoint of facilitating the acquisition of a negative electrode for a zinc battery having excellent life performance. It is 02 mm or less, more preferably 0.01 mm or less. The difference between the thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer is particularly preferably 0, but may be larger than 0.

第1の負極材層の厚み、及び第2の負極材層の厚みは、充電リザーブ確保の観点から、それぞれ、好ましくは0.2mm以上、より好ましくは0.3mm以上、更に好ましくは0.35mm以上である。第1の負極材層の厚み、及び第2の負極材層の厚みは、エネルギー密度確保の観点から、それぞれ、好ましくは0.6mm以下、より好ましくは0.5mm以下、更に好ましくは0.4mm以下である。第1の負極材層の厚み、及び第2の負極材層の厚みは、上述した製造方法における、第1の壁面51と負極集電体21の一方面21aとの距離D、及び第2の壁面52と負極集電体21の他方面21bとの距離Dにそれぞれ対応してよい。 The thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer are preferably 0.2 mm or more, more preferably 0.3 mm or more, and further preferably 0.35 mm, respectively, from the viewpoint of ensuring the charge reserve. That is all. The thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer are preferably 0.6 mm or less, more preferably 0.5 mm or less, still more preferably 0.4 mm, respectively, from the viewpoint of ensuring energy density. It is as follows. The thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer are the distance D 1 between the first wall surface 51 and one surface 21a of the negative electrode current collector 21 in the above-described manufacturing method, and the second. It may correspond to the distance D 2 between the wall surface 52 and the other surface 21b of the negative electrode current collector 21.

<亜鉛電池>
以下、本実施形態に係る亜鉛電池の一例として、ニッケル亜鉛電池を例として説明する。一実施形態に係るニッケル亜鉛電池は、例えば、電槽、電解液及び電極群(例えば極板群)を備えている。電極群及び電解液は、電槽内に収容されている。
<Zinc battery>
Hereinafter, a nickel-zinc battery will be described as an example of the zinc battery according to the present embodiment. The nickel-zinc battery according to one embodiment includes, for example, an electric tank, an electrolytic solution, and an electrode group (for example, a plate group). The electrode group and the electrolytic solution are housed in the electric tank.

電極群は、例えば、セパレータと、当該セパレータを介して対向する正極(正極板等)及び負極(負極板等)によって構成されている。電極群において、正極同士及び負極同士は、例えば、ストラップで連結されている。負極は、上述した実施形態に係る亜鉛電池用負極であってよい。 The electrode group is composed of, for example, a separator and a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like) facing each other via the separator. In the electrode group, the positive electrodes and the negative electrodes are connected by, for example, a strap. The negative electrode may be the negative electrode for a zinc battery according to the above-described embodiment.

正極は、例えば、正極集電体と、正極集電体の一方面に設けられた第1の正極材層と、正極集電体の他方面に設けられた第2の正極材層と、を備える。正極は、化成前及び化成後のいずれであってもよい。 The positive electrode includes, for example, a positive electrode current collector, a first positive electrode material layer provided on one surface of the positive electrode current collector, and a second positive electrode material layer provided on the other surface of the positive electrode current collector. Be prepared. The positive electrode may be either pre-chemical or post-chemical.

正極集電体は、例えば、平板状、シート状等の形状を有している。正極集電体は、発泡金属、エキスパンドメタル、パンチングメタル、金属繊維のフェルト状物等によって構成された3次元網目構造の集電体などであってもよい。正極集電体は、導電性及び耐アルカリ性を有する材料で構成されている。このような材料としては、例えば、正極の反応電位でも安定である材料(正極の反応電位よりも貴な酸化還元電位を有する材料、アルカリ水溶液中で基材表面に酸化被膜等の保護被膜を形成して安定化する材料など)を用いることができる。また、正極においては、副反応として電解液の分解反応が進行し酸素ガスが発生するが、酸素過電圧の高い材料はこのような副反応の進行を抑制できる点で好ましい。正極集電体を構成する材料の具体例としては、白金;ニッケル(発泡ニッケル等);ニッケル等の金属メッキを施した金属材料(銅、真鍮、鋼等)などが挙げられる。これらの中でも、発泡ニッケルで構成される正極集電体が好ましく用いられる。高率放電性能を更に向上させることができる観点から、少なくとも正極集電体における正極材を支持する部分(正極材支持部)が発泡ニッケルで構成されていることが好ましい。 The positive electrode current collector has a shape such as a flat plate shape or a sheet shape. The positive electrode current collector may be a current collector having a three-dimensional network structure composed of foamed metal, expanded metal, punching metal, felt-like material of metal fibers, or the like. The positive electrode current collector is made of a material having conductivity and alkali resistance. Examples of such a material include a material that is stable even at the reaction potential of the positive electrode (a material having an oxidation-reduction potential noble than the reaction potential of the positive electrode, and a protective film such as an oxide film is formed on the surface of the substrate in an alkaline aqueous solution. A material that stabilizes the material) can be used. Further, in the positive electrode, the decomposition reaction of the electrolytic solution proceeds as a side reaction to generate oxygen gas, and a material having a high oxygen overvoltage is preferable in that the progress of such a side reaction can be suppressed. Specific examples of the material constituting the positive electrode current collector include platinum; nickel (foamed nickel, etc.); and a metal material plated with metal such as nickel (copper, brass, steel, etc.). Among these, a positive electrode current collector composed of foamed nickel is preferably used. From the viewpoint of further improving the high rate discharge performance, it is preferable that at least the portion of the positive electrode current collector that supports the positive electrode material (positive electrode material supporting portion) is made of foamed nickel.

正極材層は、ニッケルを含む正極活物質を含有する。正極活物質としては、オキシ水酸化ニッケル(NiOOH)、水酸化ニッケル等が挙げられる。正極材層は、例えば、満充電状態ではオキシ水酸化ニッケルを含有し、放電末状態では水酸化ニッケルを含有する。正極活物質の含有量は、例えば、正極材層の全質量を基準として50〜95質量%であってもよい。 The positive electrode material layer contains a positive electrode active material containing nickel. Examples of the positive electrode active material include nickel oxyhydroxide (NiOOH) and nickel hydroxide. The positive electrode material layer contains, for example, nickel oxyhydroxide in a fully charged state and nickel hydroxide in a discharge end state. The content of the positive electrode active material may be, for example, 50 to 95% by mass based on the total mass of the positive electrode material layer.

正極材層は、添加剤として、正極活物質以外の他の成分を更に含有してよい。添加剤としては、結着剤、導電剤、膨張抑制剤等が挙げられる。 The positive electrode material layer may further contain components other than the positive electrode active material as additives. Examples of the additive include a binder, a conductive agent, an expansion inhibitor and the like.

結着剤としては、親水性又は疎水性のポリマー等が挙げられる。具体的には、例えば、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルメチルセルロース(HPMC)、ポリアクリル酸ナトリウム(SPA)、フッ素系ポリマー(ポリテトラフルオロエチレン(PTFE)等)などを結着剤として用いることができる。結着剤の含有量は、例えば、正極活物質100質量部に対して0.01〜5質量部である。 Examples of the binder include hydrophilic or hydrophobic polymers. Specifically, for example, carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), sodium polyacrylate (SPA), fluoropolymer (polytetrafluoroethylene (PTFE), etc.) and the like are bound. It can be used as a coating agent. The content of the binder is, for example, 0.01 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.

導電剤としては、コバルト化合物(金属コバルト、酸化コバルト、水酸化コバルト等)などが挙げられる。導電剤の含有量は、例えば、正極活物質100質量部に対して1〜20質量部である。 Examples of the conductive agent include cobalt compounds (metal cobalt, cobalt oxide, cobalt hydroxide, etc.) and the like. The content of the conductive agent is, for example, 1 to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material.

膨張抑制剤としては、酸化亜鉛等が挙げられる。膨張抑制剤の含有量は、例えば、正極活物質100質量部に対して0.01〜5質量部である。 Examples of the expansion inhibitor include zinc oxide and the like. The content of the expansion inhibitor is, for example, 0.01 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.

セパレータは、例えば、平板状、シート状等の形状を有するセパレータであってもよい。セパレータとしては、ポリオレフィン系微多孔膜、ナイロン系微多孔膜、耐酸化性のイオン交換樹脂膜、セロハン系再生樹脂膜、無機−有機セパレータ、ポリオレフィン系不織布等が挙げられる。セパレータは、正極及び/又は負極を収容可能なように、袋状に加工されていてもよい。この場合、正極及び/又は負極はセパレータに収容されていてよい。セパレータは一種を単独で又は二種以上を組み合わせて用いてよい。 The separator may be, for example, a separator having a shape such as a flat plate or a sheet. Examples of the separator include a polyolefin-based microporous membrane, a nylon-based microporous membrane, an oxidation-resistant ion exchange resin membrane, a cellophane-based recycled resin membrane, an inorganic-organic separator, and a polyolefin-based non-woven fabric. The separator may be processed into a bag shape so as to accommodate a positive electrode and / or a negative electrode. In this case, the positive electrode and / or the negative electrode may be housed in the separator. The separator may be used alone or in combination of two or more.

以上説明したニッケル亜鉛電池の製造方法は、亜鉛電池の構成部材を得る構成部材製造工程と、構成部材を組み立てて亜鉛電池を得る組立工程と、を備える。構成部材製造工程では、少なくとも電極(正極及び負極)を得る。負極の製造方法は、上述した亜鉛電池用負極の製造方法である。 The method for manufacturing a nickel-zinc battery described above includes a component manufacturing step for obtaining a component of the zinc battery and an assembly step for assembling the component to obtain a zinc battery. In the component manufacturing process, at least electrodes (positive electrode and negative electrode) are obtained. The method for manufacturing the negative electrode is the above-mentioned method for manufacturing the negative electrode for zinc batteries.

正極は、正極材層の原料に対して分散媒(例えば、水)を加えて混錬することにより得られる正極材ペーストを用いる。正極を得る方法としては、例えば、上述した亜鉛電池用負極の製造方法と同様の方法、正極材ペーストを正極集電体に塗布又は浸漬した後に乾燥する方法等が挙げられる。 As the positive electrode, a positive electrode material paste obtained by adding a dispersion medium (for example, water) to the raw material of the positive electrode material layer and kneading is used. Examples of the method for obtaining a positive electrode include the same method as the above-described method for manufacturing a negative electrode for a zinc battery, a method in which a positive electrode material paste is applied or immersed in a positive electrode current collector, and then dried.

組立工程では、例えば、構成部材製造工程で得られた正極及び負極を、セパレータを介して交互に積層した後、正極同士及び負極同士をストラップで連結させて電極群を作製する。次いで、この電極群を電槽内に配置した後、電槽の上面に蓋体を接着して未化成の亜鉛電池(ニッケル亜鉛電池)を得る。 In the assembly process, for example, the positive electrodes and the negative electrodes obtained in the component manufacturing process are alternately laminated via a separator, and then the positive electrodes and the negative electrodes are connected by a strap to prepare an electrode group. Next, after arranging this electrode group in the battery case, a lid is adhered to the upper surface of the battery case to obtain a non-chemical zinc battery (nickel-zinc battery).

続いて、電解液を未化成の亜鉛電池の電槽内に注入した後、一定時間放置する。次いで、所定の条件にて充電を行うことで化成することにより亜鉛電池(ニッケル亜鉛電池)を得る。化成条件は、正極活物質及び負極活物質の性状に応じて調整することができる。 Subsequently, the electrolytic solution is injected into the battery case of the unchemical zinc battery, and then left for a certain period of time. Next, a zinc battery (nickel-zinc battery) is obtained by chemical conversion by charging under predetermined conditions. The chemical conversion conditions can be adjusted according to the properties of the positive electrode active material and the negative electrode active material.

以上、正極がニッケル電極であるニッケル亜鉛電池(例えばニッケル亜鉛二次電池)の例を説明したが、亜鉛電池は、正極が空気極である空気亜鉛電池(例えば空気亜鉛二次電池)であってもよく、正極が酸化銀極である銀亜鉛電池(例えば銀亜鉛二次電池)であってもよい。 The example of a nickel-zinc battery (for example, a nickel-zinc secondary battery) in which the positive electrode is a nickel electrode has been described above, but the zinc battery is an air zinc battery (for example, an air zinc secondary battery) in which the positive electrode is an air electrode. It may be a silver-zinc battery in which the positive electrode is a silver oxide electrode (for example, a silver-zinc secondary battery).

以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.

(実施例1)
<亜鉛電池用負極の作製>
酸化亜鉛、金属亜鉛、酸化ビスマス、ヒドロキシエチルセルロース及びイオン交換水を所定量秤量して混合し、得られた混合液を撹拌することにより負極材ペーストを作製した。この際、負極材ペーストにおける不揮発分の質量比を「酸化亜鉛:金属亜鉛:酸化ビスマス:ヒドロキシエチルセルロース=72:20.5:5:2.5」に調整した。ヒドロキシエチルセルロースとしては、住友精化株式会社製のAV−15F(商品名)を使用した。負極材ペーストの水分量は、負極材ペーストの全質量基準で20.5質量%に調整した。
(Example 1)
<Manufacturing negative electrode for zinc batteries>
A predetermined amount of zinc oxide, metallic zinc, bismuth oxide, hydroxyethyl cellulose and ion-exchanged water were weighed and mixed, and the obtained mixed solution was stirred to prepare a negative electrode material paste. At this time, the mass ratio of the non-volatile content in the negative electrode material paste was adjusted to "zinc oxide: metallic zinc: bismuth oxide: hydroxyethyl cellulose = 72: 20.5: 5: 2.5". As the hydroxyethyl cellulose, AV-15F (trade name) manufactured by Sumitomo Seika Chemical Co., Ltd. was used. The water content of the negative electrode material paste was adjusted to 20.5% by mass based on the total mass of the negative electrode material paste.

図2に示す装置を用いて、亜鉛電池用負極を製造した。巻き出し部30にロール状の負極集電体(銅製パンチングメタル)をセットした。負極集電体を、負極材ペーストを入れた槽40に通過させて、負極集電体の両面に負極材ペーストを付着させた。次に、負極材ペーストが付着した負極集電体を層形成部50に通過させた。このとき、層形成部50における第1の壁面51と負極集電体の一方面との距離D、及び第2の壁面52と負極集電体の他方面との距離Dの距離が0.4mmになるように、層形成部50における間隙53の幅及び負極集電体の通過する位置を調整した。続いて、炉内の温度が110℃である乾燥炉に、層形成部50を通過した負極集電体を10分かけて通過させて、負極材ペーストに含まれる水を揮発させた。乾燥後の負極を50mm×60mmの矩形状となるように切断して、実施例1に係る、未化成の亜鉛電池用負極を得た。 A negative electrode for a zinc battery was manufactured using the apparatus shown in FIG. A roll-shaped negative electrode current collector (copper punching metal) was set in the unwinding portion 30. The negative electrode current collector was passed through a tank 40 containing the negative electrode material paste, and the negative electrode material paste was adhered to both sides of the negative electrode current collector. Next, the negative electrode current collector to which the negative electrode material paste was attached was passed through the layer forming portion 50. At this time, the distance of the distance D 2 between the other surface of the first wall 51 and the distance D 1 of the the one surface of the negative electrode current collector, and the second wall 52 and the anode current collector in a layer forming unit 50 0 The width of the gap 53 in the layer forming portion 50 and the position through which the negative electrode current collector passes were adjusted so as to be 0.4 mm. Subsequently, the negative electrode current collector that had passed through the layer forming portion 50 was passed through a drying furnace having a temperature of 110 ° C. in the furnace over 10 minutes to volatilize the water contained in the negative electrode material paste. The dried negative electrode was cut into a rectangular shape having a size of 50 mm × 60 mm to obtain a negative electrode for an unchemical zinc battery according to Example 1.

実施例1に係る負極について、第1の負極材層及び第2の負極材層の厚みを測定した。厚みの測定は、図4における9箇所、すなわち、当該負極を積層方向からみて、左上隅部a、上中央部b、右上隅部c、左中央部d、中央部e、右中央部f、左下隅部g、下中央部h、及び右下中央部iの9箇所について、マイクロメータ(PMU150−25MX、(株)ミツトヨ製)を用いて厚みを測定した。各箇所における厚み、第1の負極材層の厚みと第2の負極材層の厚みとの差、及び、第1の負極材層の厚みに対する第2の負極材層の厚みの比(第2の負極材層の厚み/第1の負極材層の厚み)を表1に示す。 With respect to the negative electrode according to Example 1, the thicknesses of the first negative electrode material layer and the second negative electrode material layer were measured. The thickness is measured at nine points in FIG. 4, that is, when the negative electrode is viewed from the stacking direction, the upper left corner portion a, the upper center portion b, the upper right corner portion c, the left center portion d, the center portion e, and the right center portion f. The thickness of 9 points of the lower left corner g, the lower center h, and the lower right center i was measured using a micrometer (PMU150-25MX, manufactured by Mitutoyo Co., Ltd.). The thickness at each location, the difference between the thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer, and the ratio of the thickness of the second negative electrode material layer to the thickness of the first negative electrode material layer (second). (Thickness of the negative electrode material layer / thickness of the first negative electrode material layer) is shown in Table 1.

<亜鉛電池の作製>
空隙率95%の発泡ニッケルからなる格子体を用意し、格子体を加圧成形することで正極集電体を得た。次いで、コバルトコート水酸化ニッケル粉末、金属コバルト、水酸化コバルト、酸化イットリウム、カルボキシメチルセルロース、ポリテトラフルオロエチレン、イオン交換水を所定量秤量して混合し、混合液を攪拌することにより、正極材ペーストを作製した。この際、固形分の質量比を、「水酸化ニッケル:金属コバルト:酸化イットリウム:水酸化コバルト:カルボキシメチルセルロース:ポリテトラフルオロエチレン=88:10.3:1:0.3:0.3:0.1」に調整した。正極材ペーストの水分量は、正極材ペーストの全質量基準で27.5質量%に調整した。次いで、正極材ペーストを正極集電体の両面に塗布した後、80℃で30分乾燥した。その後、ロールプレスにて加圧成形し、正極材層を有する未化成の正極を得た。
<Making zinc batteries>
A lattice body made of foamed nickel having a porosity of 95% was prepared, and the lattice body was pressure-molded to obtain a positive electrode current collector. Next, a predetermined amount of cobalt-coated nickel hydroxide powder, metallic cobalt, cobalt hydroxide, yttrium oxide, carboxymethyl cellulose, polytetrafluoroethylene, and ion-exchanged water are weighed and mixed, and the mixed solution is stirred to prepare a positive electrode material paste. Was produced. At this time, the mass ratio of the solid content was changed to "nickel hydroxide: metallic cobalt: yttrium oxide: cobalt hydroxide: carboxymethyl cellulose: polytetrafluoroethylene = 88: 10.3: 1: 0.3: 0.3: 0. .1 ”was adjusted. The water content of the positive electrode material paste was adjusted to 27.5% by mass based on the total mass of the positive electrode material paste. Next, the positive electrode material paste was applied to both sides of the positive electrode current collector, and then dried at 80 ° C. for 30 minutes. Then, it was pressure-molded by a roll press to obtain an unchemical positive electrode having a positive electrode material layer.

セパレータには、微多孔膜として、UP3355(宇部興産社製、商品名、透気度:440秒/100mL)、不織布として、不織布(ニッポン高度紙工業株式会社製、商品名:VL−100、透気度:0.3秒/100mL)を、それぞれ用いた。微多孔膜は、電池組立て前に、界面活性剤Triton−X100(シグマアルドリッチジャパン合同会社製)で、親水化処理した。親水化処理は、Triton−X100が1質量%の量で含まれる水溶液に微多孔膜を24時間浸漬した後、室温で1時間乾燥する方法で行った。なお、微多孔膜の透気度は親水化処理後の値を示す。さらに、微多孔膜は、所定の大きさに裁断し、それを半分に折り、側面を熱溶着することで袋状に加工した。不織布は、所定の大きさに裁断したものを使用した。 The separator is UP3355 (manufactured by Ube Industries, Ltd., trade name, air permeability: 440 seconds / 100 mL) as a microporous membrane, and non-woven fabric (manufactured by Nippon Kodoshi Kogyo Co., Ltd., trade name: VL-100, transparent) as a non-woven fabric. Air temper: 0.3 seconds / 100 mL) was used respectively. The microporous membrane was hydrophilized with a surfactant Triton-X100 (manufactured by Sigma-Aldrich Japan LLC) before assembling the battery. The hydrophilization treatment was carried out by immersing the microporous membrane in an aqueous solution containing Triton-X100 in an amount of 1% by mass for 24 hours and then drying at room temperature for 1 hour. The air permeability of the microporous membrane shows the value after the hydrophilic treatment. Further, the microporous membrane was cut into a predetermined size, folded in half, and heat-welded on the side surface to process it into a bag shape. The non-woven fabric used was cut to a predetermined size.

袋状に加工した微多孔膜に、正極及び負極のそれぞれを1枚収納した。袋状の微多孔膜に収納された正極と、袋状の微多孔膜に収納された負極と、不織布とを積層した後、同極性の極板同士をストラップで連結させて電極群(極板群)を作製した。電極群は、正極が11枚及び負極が12枚で、正極と負極の間(正極側の微多孔膜と負極側の微多孔膜との間)に不織布を1枚ずつ配置した構成とした。この電極群を電槽内に配置した後、電槽の上面に蓋体を接着し、上記電解液を電槽内に注入することにより、未化成のニッケル亜鉛電池を得た。その後、800mA、15時間の条件で充電を行い、公称容量が8000mAhのニッケル亜鉛電池を作製した。 One positive electrode and one negative electrode were housed in a microporous membrane processed into a bag shape. After laminating a positive electrode housed in a bag-shaped microporous membrane, a negative electrode stored in a bag-shaped microporous membrane, and a non-woven fabric, electrode groups (pole plates) of the same polarity are connected with a strap. Group) was prepared. The electrode group consisted of 11 positive electrodes and 12 negative electrodes, and one non-woven fabric was arranged between the positive electrode and the negative electrode (between the microporous film on the positive electrode side and the microporous film on the negative electrode side). After arranging this electrode group in the electric tank, a lid was adhered to the upper surface of the electric tank, and the electrolytic solution was injected into the electric tank to obtain an unchemical nickel-zinc battery. Then, the battery was charged at 800 mA for 15 hours to prepare a nickel-zinc battery having a nominal capacity of 8000 mAh.

(比較例1)
<亜鉛電池用負極の準備>
従来の方法によって製造された、未化成の亜鉛電池用負極を用意した。この負極は、負極集電体の両面に負極材ペーストを付着させた後、付着した負極材ペースト23a及び23bを、第1の壁面51又は第2の壁面52に接触させながら、負極材ペーストが両面に付着した負極集電体22を間隙53に通過させる工程自体は実施例1と同様であるが、第1の壁面51と負極集電体21の一方面21aとの距離Dに対する、第2の壁面52と負極集電体21の他方面21bとの距離Dの比は、調節することなく目視で負極集電体が間隙53の中央付近にくるように配置し製造された。
(Comparative Example 1)
<Preparation of negative electrode for zinc battery>
A negative electrode for an unchemical zinc battery manufactured by a conventional method was prepared. In this negative electrode, the negative electrode material paste is attached to both sides of the negative electrode current collector, and then the negative electrode material paste is applied while bringing the adhered negative electrode material pastes 23a and 23b into contact with the first wall surface 51 or the second wall surface 52. Although the process itself passing the anode current collector 22 attached to both sides of the gap 53 is the same as the first embodiment, with respect to the distance D 1 of the the one surface 21a of the first wall 51 and the anode current collector 21, the The ratio of the distance D 2 between the wall surface 52 of 2 and the other surface 21b of the negative electrode current collector 21 was manufactured by visually arranging the negative electrode current collector near the center of the gap 53 without adjusting.

実施例1と同様の方法により、第1の負極材層及び第2の負極材層の厚みを測定した。各箇所における厚み、第1の負極材層の厚みと第2の負極材層の厚みとの差、及び第1の負極材層の厚みに対する第2の負極材層の厚みの比(第2の負極材層の厚み/第1の負極材層の厚み)を表1に示す。 The thicknesses of the first negative electrode material layer and the second negative electrode material layer were measured by the same method as in Example 1. The thickness at each location, the difference between the thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer, and the ratio of the thickness of the second negative electrode material layer to the thickness of the first negative electrode material layer (second). Table 1 shows the thickness of the negative electrode material layer / the thickness of the first negative electrode material layer).

<亜鉛電池の作製>
実施例1における負極を、上述した比較例1に係る負極に変更した以外は、実施例1と同様の方法によってニッケル亜鉛電池を作製した。
<Making zinc batteries>
A nickel-zinc battery was produced by the same method as in Example 1 except that the negative electrode in Example 1 was changed to the negative electrode according to Comparative Example 1 described above.

<寿命性能の評価>
25℃、8000mA(1C)、1.9Vの定電圧で、電流値が400mA(0.05C)に減衰するまでニッケル亜鉛電池の充電を行った後、電池電圧が1.1Vに到達するまで8000mA(1C)の定電流でニッケル亜鉛電池の放電を行うことを1サイクルとする試験を行った。放電容量が1サイクル目の放電容量に対して60%を下回った場合に試験を終了し、試験終了までに行ったサイクル数によってサイクル寿命性能を評価した。試験終了までに行ったサイクル数を表1に示す。表1に示すように、実施例1に係るニッケル亜鉛電池は、比較例1に係るニッケル亜鉛電池と比較して、サイクル数が増加しており、寿命性能に優れていた。
<Evaluation of life performance>
After charging the nickel-zinc battery at a constant voltage of 8000 mA (1C) and 1.9 V at 25 ° C. until the current value attenuates to 400 mA (0.05 C), 8000 mA until the battery voltage reaches 1.1 V. A test was conducted in which one cycle was to discharge the nickel-zinc battery at the constant current of (1C). The test was completed when the discharge capacity was less than 60% of the discharge capacity of the first cycle, and the cycle life performance was evaluated by the number of cycles performed until the end of the test. Table 1 shows the number of cycles performed until the end of the test. As shown in Table 1, the nickel-zinc battery according to Example 1 had an increased number of cycles and was excellent in life performance as compared with the nickel-zinc battery according to Comparative Example 1.

21…負極集電体、21a…負極集電体の一方面、21b…負極集電体の他方面、50…層形成部、51…第1の壁面、52…第2の壁面、23a、23b…負極材ペースト、24…負極(亜鉛電池用負極)。 21 ... Negative electrode current collector, 21a ... One surface of the negative electrode current collector, 21b ... The other surface of the negative electrode current collector, 50 ... Layer forming portion, 51 ... First wall surface, 52 ... Second wall surface, 23a, 23b ... Negative electrode material paste, 24 ... Negative electrode (negative electrode for zinc batteries).

Claims (6)

負極集電体と、前記負極集電体の一方面に設けられた第1の負極材層と、前記負極集電体の他方面に設けられた第2の負極材層と、を備える亜鉛電池用負極の製造方法であって、
前記負極集電体の両面に負極材ペーストが付着した状態で、互いに対向する第1の壁面及び第2の壁面に前記両面の前記負極材ペーストを接触させながら前記第1の壁面と前記第2の壁面との間に前記負極集電体を通過させて、前記第1の負極材層及び前記第2の負極材層を形成する負極材層形成工程を備え、
前記負極材層形成工程において、前記第1の壁面と前記負極集電体の前記一方面との距離に対する、前記第2の壁面と前記負極集電体の前記他方面との距離の比が0.7〜1である、亜鉛電池用負極の製造方法。
A zinc battery including a negative electrode current collector, a first negative electrode material layer provided on one surface of the negative electrode current collector, and a second negative electrode material layer provided on the other surface of the negative electrode current collector. It is a manufacturing method of the negative electrode for
With the negative electrode material paste adhered to both sides of the negative electrode current collector, the first wall surface and the second wall surface are brought into contact with the negative electrode material pastes on both sides while being in contact with the first wall surface and the second wall surface facing each other. A negative electrode material layer forming step for forming the first negative electrode material layer and the second negative electrode material layer by passing the negative electrode current collector through the wall surface of the negative electrode material is provided.
In the negative electrode material layer forming step, the ratio of the distance between the second wall surface and the other surface of the negative electrode current collector to the distance between the first wall surface and the one surface of the negative electrode current collector is 0. A method for manufacturing a negative electrode for a zinc battery, which is 7-1.
前記比が1未満である、請求項1に記載の亜鉛電池用負極の製造方法。 The method for manufacturing a negative electrode for a zinc battery according to claim 1, wherein the ratio is less than 1. 前記第1の壁面と前記負極集電体の前記一方面との距離と、前記第2の壁面と前記負極集電体の前記他方面との距離の差が0.03mm以下である、請求項1又は2に記載の製造方法。 Claim that the difference between the distance between the first wall surface and the one surface of the negative electrode current collector and the distance between the second wall surface and the other surface of the negative electrode current collector is 0.03 mm or less. The manufacturing method according to 1 or 2. 負極集電体と、前記負極集電体の一方面に設けられた第1の負極材層と、前記負極集電体の他方面に設けられた第2の負極材層と、を備える亜鉛電池用負極であって、
前記第1の負極材層の厚みに対する前記第2の負極材層の厚みの比が0.7〜1である、亜鉛電池用負極。
A zinc battery including a negative electrode current collector, a first negative electrode material layer provided on one surface of the negative electrode current collector, and a second negative electrode material layer provided on the other surface of the negative electrode current collector. Negative electrode for
A negative electrode for a zinc battery, wherein the ratio of the thickness of the second negative electrode material layer to the thickness of the first negative electrode material layer is 0.7 to 1.
前記比が1未満である、請求項4に記載の亜鉛電池用負極。 The negative electrode for a zinc battery according to claim 4, wherein the ratio is less than 1. 前記第1の負極材層の厚みと前記第2の負極材層の厚みとの差が0.03mm以下である、請求項4又は5に記載の亜鉛電池用負極。 The negative electrode for a zinc battery according to claim 4 or 5, wherein the difference between the thickness of the first negative electrode material layer and the thickness of the second negative electrode material layer is 0.03 mm or less.
JP2019071905A 2019-04-04 2019-04-04 Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery Pending JP2020170652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019071905A JP2020170652A (en) 2019-04-04 2019-04-04 Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071905A JP2020170652A (en) 2019-04-04 2019-04-04 Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery

Publications (1)

Publication Number Publication Date
JP2020170652A true JP2020170652A (en) 2020-10-15

Family

ID=72746033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071905A Pending JP2020170652A (en) 2019-04-04 2019-04-04 Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery

Country Status (1)

Country Link
JP (1) JP2020170652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195959A1 (en) * 2021-03-15 2022-09-22 日本碍子株式会社 Negative electrode and zinc secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177255A (en) * 1984-09-20 1986-04-19 Sanyo Electric Co Ltd Cylindrical alkaline zinc storage battery
JPH01194265A (en) * 1988-01-26 1989-08-04 Sony Corp Coating device and its method for use
JPH0794175A (en) * 1993-09-21 1995-04-07 Yuasa Corp Manufacturing device for zinc plate of alkaline zinc storage battery
JPH10509555A (en) * 1995-04-24 1998-09-14 エア エナジー リソースィズ インコーポレイテッド Dual air electrode battery
JPH11242957A (en) * 1998-02-25 1999-09-07 Toshiba Battery Co Ltd Electrode-paste applying device
JP2002043192A (en) * 2000-07-24 2002-02-08 Awi Mach:Kk Manufacturing method of sheet-like electrode
WO2014156433A1 (en) * 2013-03-25 2014-10-02 シャープ株式会社 Metal-air cell
WO2018147226A1 (en) * 2017-02-08 2018-08-16 凸版印刷株式会社 Positive electrode for alkali secondary battery and alkali secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177255A (en) * 1984-09-20 1986-04-19 Sanyo Electric Co Ltd Cylindrical alkaline zinc storage battery
JPH01194265A (en) * 1988-01-26 1989-08-04 Sony Corp Coating device and its method for use
JPH0794175A (en) * 1993-09-21 1995-04-07 Yuasa Corp Manufacturing device for zinc plate of alkaline zinc storage battery
JPH10509555A (en) * 1995-04-24 1998-09-14 エア エナジー リソースィズ インコーポレイテッド Dual air electrode battery
JPH11242957A (en) * 1998-02-25 1999-09-07 Toshiba Battery Co Ltd Electrode-paste applying device
JP2002043192A (en) * 2000-07-24 2002-02-08 Awi Mach:Kk Manufacturing method of sheet-like electrode
WO2014156433A1 (en) * 2013-03-25 2014-10-02 シャープ株式会社 Metal-air cell
WO2018147226A1 (en) * 2017-02-08 2018-08-16 凸版印刷株式会社 Positive electrode for alkali secondary battery and alkali secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195959A1 (en) * 2021-03-15 2022-09-22 日本碍子株式会社 Negative electrode and zinc secondary battery
DE112021006933T5 (en) 2021-03-15 2023-11-30 Ngk Insulators, Ltd. NEGATIVE ELECTRODE AND ZINC SECONDARY BATTERY

Similar Documents

Publication Publication Date Title
US20140220434A1 (en) Nickel iron battery employing a coated iron electrode
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
US10079385B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP6819402B2 (en) Electrolyte and zinc battery
JP2019216057A (en) Porous membrane, battery member, and zinc battery
US20150162601A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
JP2020170652A (en) Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
US7976982B2 (en) Alkaline storage battery
JP2022081421A (en) Negative electrode body for zinc battery and zinc battery
JP7105525B2 (en) zinc battery
JP2020061222A (en) Negative electrode for nickel zinc battery and nickel zinc battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP2019139986A (en) Negative electrode for zinc battery and zinc battery
JP7412143B2 (en) Negative electrode for zinc batteries
JP2019106284A (en) Zinc battery negative electrode and zinc battery
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery
US20150162570A1 (en) Beveled cell design for an alkaline battery to remove gas
WO2023038033A1 (en) Zinc battery
JP2023039628A (en) Zinc battery negative electrode and zinc battery
JP2021185560A (en) Negative electrode for zinc battery and zinc battery
JP2022108077A (en) Electrolyte for zinc battery and zinc battery
JP2022154484A (en) Electrolyte for zinc battery and zinc battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20221227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231222