JPH0679481B2 - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPH0679481B2
JPH0679481B2 JP58043746A JP4374683A JPH0679481B2 JP H0679481 B2 JPH0679481 B2 JP H0679481B2 JP 58043746 A JP58043746 A JP 58043746A JP 4374683 A JP4374683 A JP 4374683A JP H0679481 B2 JPH0679481 B2 JP H0679481B2
Authority
JP
Japan
Prior art keywords
zinc
electrode
electrode plate
storage battery
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58043746A
Other languages
Japanese (ja)
Other versions
JPS59169066A (en
Inventor
修弘 古川
修三 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58043746A priority Critical patent/JPH0679481B2/en
Publication of JPS59169066A publication Critical patent/JPS59169066A/en
Publication of JPH0679481B2 publication Critical patent/JPH0679481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、ニッケル−亜鉛蓄電池、銀−亜鉛蓄電池など
のように負極活物質として亜鉛を用いるアルカリ亜鉛蓄
電池に関するものである。
TECHNICAL FIELD The present invention relates to an alkaline zinc storage battery using zinc as a negative electrode active material such as a nickel-zinc storage battery and a silver-zinc storage battery.

(ロ) 従来技術 負極活物質としての亜鉛は、単位重量当りのエネルギー
密度が大きく且つ安価である利点を有する反面、放電時
に亜鉛がアルカリ電解液に溶出して亜鉛酸イオンとな
り、充電時にその亜鉛酸イオンが亜鉛極表面に樹枝状或
いは海綿状に電析するため、充放電を繰返すと、電析亜
鉛がセパレータを貫通して対極に接して内部短絡を惹起
するためサイクル寿命が短い欠点がある。
(B) Prior art Zinc as a negative electrode active material has the advantage that it has a large energy density per unit weight and is inexpensive, but on the other hand, zinc is eluted into the alkaline electrolyte solution during discharge to become zincate ions, and during charging, the zinc Since acid ions are electrodeposited on the surface of the zinc electrode in a dendritic or spongy fashion, repeated charging and discharging causes the electrodeposited zinc to penetrate the separator and come into contact with the counter electrode to cause an internal short circuit, resulting in a short cycle life. .

このサイクル寿命を改善するため、電解液量を規制して
亜鉛酸イオンの拡散を防止すると共に複数板の有機セパ
レータあるいは無機セパレータを積合したり、一体化し
たものを使用することによりサイクル寿命がかなり向上
する。しかしながら放電時に一且亜鉛酸イオンとして溶
解した亜鉛は、充電時に元の位置に電析することがほと
んどないため、更に充放電を繰り返すと、亜鉛極の極板
変形が著しくなり、容量低下を招いてより長期にわたる
充放電に耐えられなくなっていた。
In order to improve this cycle life, the amount of electrolyte is regulated to prevent the diffusion of zincate ions, and a plurality of organic separators or inorganic separators are piled up, or the integrated product is used to improve the cycle life. Considerably improved. However, zinc, which has been once dissolved as zincate ions during discharge, hardly deposits at the original position during charging, and therefore, when the charge and discharge are further repeated, the electrode plate of the zinc electrode becomes noticeably deformed, resulting in a decrease in capacity. In addition, it could not withstand long-term charge and discharge.

亜鉛極の極板変形が最も著しい箇所は極板周縁であり、
これはエッジ効果に起因すると共に極板周縁に電解液が
たまり易いことにも起因する。一般に正極、セパレータ
及び負極からなる電池においては、正極と負極間に圧力
がかかった状態にあり、電極及びセパレータ中に含液さ
れた電解液は、電極周縁部に押し出される傾向にある。
このため亜鉛極の周縁部にも電池反応には基本的には必
要でない電解液が存在することになり、亜鉛活物質の電
解液への溶出が促進されることになる。
The area where the electrode plate deformation of the zinc electrode is most remarkable is the electrode plate periphery,
This is due to the edge effect and also to the fact that the electrolytic solution easily accumulates on the periphery of the electrode plate. Generally, in a battery composed of a positive electrode, a separator and a negative electrode, a pressure is applied between the positive electrode and the negative electrode, and the electrolytic solution contained in the electrode and the separator tends to be pushed out to the peripheral portion of the electrode.
For this reason, an electrolytic solution that is basically unnecessary for the battery reaction also exists in the peripheral portion of the zinc electrode, and the elution of the zinc active material into the electrolytic solution is promoted.

かかる問題に対して、種々の方法が提案されているが、
その1つに、亜鉛極の周縁を耐アルカリ性の合成樹脂も
しくはゴムを塗布して撥水性を持たせる提案がある。こ
の提案による方法は亜鉛極周縁での撥水性を高めて上記
問題を抑制するので、サイクル寿命の向上に寄与する。
Although various methods have been proposed for this problem,
As one of them, there is a proposal that the periphery of the zinc electrode is coated with an alkali-resistant synthetic resin or rubber so as to have water repellency. The method according to this proposal enhances the water repellency at the periphery of the zinc electrode and suppresses the above problems, thus contributing to the improvement of the cycle life.

ところがこの方法もさらに長期にわたる充放電サイクル
には耐えられなくなる。この理由は、亜鉛活物質と耐ア
ルカリ性の合成樹脂あるいはゴムとの密着性が劣化する
ため、徐々に両者が離れ始めて両者間に電解液の浸透が
起り始め、その結果、亜鉛活物質の溶出を抑えきれなく
なると考えられる。
However, this method also cannot endure a longer-term charge / discharge cycle. The reason for this is that the adhesion between the zinc active material and the alkali-resistant synthetic resin or rubber deteriorates, so that the two gradually begin to separate and the electrolyte begins to penetrate between them, resulting in the elution of the zinc active material. It is thought that it cannot be suppressed.

(ハ) 発明の目的 本発明はかかる点に鑑み発明されたものにして、亜鉛極
の極板変形が周縁部から始まることに着目して亜鉛極中
央部を周縁部の結着剤濃度を変えて亜鉛極の極板変形を
より一層少なくし、より長期にわたるサイクル寿命に耐
え得るアルカリ亜鉛蓄電池を提供せんとするものであ
る。
(C) Object of the invention The present invention has been made in view of the above point, and changes in the binder concentration in the central part of the zinc electrode, focusing on the fact that the electrode plate deformation of the zinc electrode starts from the peripheral part. It is intended to provide an alkaline zinc storage battery which can further reduce the electrode plate deformation of the zinc electrode and withstand a longer cycle life.

(ニ) 発明の構成 かかる目的を達成するため、本発明によるアルカリ亜鉛
蓄電池は、金属亜鉛及び酸化亜鉛を主成分とし、耐アル
カリ性、撥水性の繊維化された合成樹脂からなる結着剤
を含有し、且当該結着剤の極板周縁部における含有濃度
が極板中央部における含有濃度より大きい亜鉛極を備え
て構成される。
(D) Structure of the Invention In order to achieve the above object, the alkaline zinc storage battery according to the present invention contains a binder composed mainly of metallic zinc and zinc oxide, and composed of an alkali-resistant and water-repellent fibrous synthetic resin. In addition, the zinc electrode is configured so that the concentration of the binder in the peripheral portion of the electrode plate is higher than that in the central portion of the electrode plate.

(ホ) 実施例 以下本発明の一実施例を説明し、比較例との対比に言及
する。
(E) Example Hereinafter, one example of the present invention will be described to refer to comparison with a comparative example.

〔実施例〕〔Example〕

酸化亜鉛粉末80重量%、金属亜鉛粉末10重量%、添加剤
として酸化カドミウム5重量%及び結着剤として耐アル
カリ性、撥水性の繊維化されたフッ素樹脂粉末(PTFE)
5重量%よりなる混合粉末に、水を加えて混練した後、
ローラにより加圧して縦45mm横36mmの第1シートを作成
した。上記混練によりフッ素樹脂が繊維化される。
80% by weight of zinc oxide powder, 10% by weight of metallic zinc powder, 5% by weight of cadmium oxide as an additive, and alkali resistant and water-repellent fibrous fluororesin powder (PTFE) as a binder.
After adding water to the mixed powder of 5% by weight and kneading,
A first sheet having a length of 45 mm and a width of 36 mm was prepared by pressing with a roller. By the above kneading, the fluororesin is made into fibers.

この第1シートにおけるフッ素樹脂粉末を15重量%と
し、の増量分だけ酸化亜鉛粉末の量を減らし、第1シー
トへ同様にして、巾4mmの縦桟、巾5mmの横桟の枠状の第
2シートを作成した。
Fluorine resin powder in this first sheet was set to 15% by weight, and the amount of zinc oxide powder was reduced by an increase amount of, and in the same manner as in the first sheet, a vertical bar with a width of 4 mm and a horizontal bar with a width of 5 mm were formed into a frame shape. Two sheets were created.

銅等よりなる縦50mm、横40mmの集電体の両面に、第1シ
ートを中央部に、第2シートをその周縁部に夫々配して
付着させ、加圧成型し乾燥して亜鉛極を作成した。
The first sheet is placed in the center and the second sheet is placed on the periphery of both sides of a current collector made of copper or the like having a length of 50 mm and a width of 40 mm. Created.

このようにして得た亜鉛極と公知の焼結式ニッケル極と
を組合せて角型ニッケル−亜鉛蓄電池(A)を作成し
た。第1図は上記亜鉛極の正面図であり、(1)は亜鉛
極にして、中央部の第1シート(2)と周縁部の第2シ
ート(3)を有する。(4)は集電体に設けたリード部
である。
A rectangular nickel-zinc storage battery (A) was prepared by combining the zinc electrode thus obtained with a known sintered nickel electrode. FIG. 1 is a front view of the zinc electrode, wherein (1) is a zinc electrode, and has a central first sheet (2) and a peripheral second sheet (3). (4) is a lead portion provided on the current collector.

〔比較例1〕 比較のため、実施例の第1シートの構成比からなり、大
きさが実施例の集電体の大きさに一致するシートを作成
し、このシートを実施例と同じ大きさの集電体の両面に
加圧成型し、乾燥して亜鉛極を作成した。この亜鉛極を
用いることを除いて他は実施例と同一の比較電池(B)
を作成した。
[Comparative Example 1] For comparison, a sheet having the same composition ratio as that of the first sheet of the example and having a size corresponding to the size of the current collector of the example was prepared, and the sheet having the same size as that of the example was prepared. Both sides of the current collector were pressure-molded and dried to prepare a zinc electrode. Comparative battery (B) which is the same as the embodiment except that this zinc electrode is used.
It was created.

〔比較例2〕 比較例1で得られた亜鉛極の周縁部、即ち実施例の第2
シート(3)に該当する位置に、フッ素樹脂ディスパー
ジョン(60重量%)を5回塗布した後、乾燥して作成し
た亜鉛極を用いる点を除いて、他は実施例と同一の比較
電池(C)を作成した。
[Comparative Example 2] The peripheral portion of the zinc electrode obtained in Comparative Example 1, that is, the second electrode of Example.
A comparative battery which is the same as that of the example except that a zinc electrode prepared by applying a fluororesin dispersion (60% by weight) 5 times to a position corresponding to the sheet (3) and then drying the same ( C) was created.

〔対 比〕[Comparison]

第2図は本発明による蓄電池(A)と比較電池(B)
(C)のサイクル特性図であり、蓄電池の初期容量を10
0%として示す。サイクル条件は、150mAで5時間充電し
た後、150mAで放電し電池電圧が1.2Vに達する時点で放
電停止するものである。この図から明らかなように本発
明による蓄電池(A)は、比較電池(B)(C)に対し
サイクル寿命が改善されていることがわかる。
FIG. 2 shows a storage battery (A) and a comparative battery (B) according to the present invention.
It is a cycle characteristic diagram of (C), the initial capacity of the storage battery is 10
Shown as 0%. The cycle condition is that the battery is charged at 150 mA for 5 hours, then discharged at 150 mA and stopped when the battery voltage reaches 1.2 V. As is clear from this figure, it is understood that the storage battery (A) according to the present invention has improved cycle life as compared with the comparative batteries (B) and (C).

この理由は、比較電池(B)(C)では亜鉛活物質が電
解液に溶出していくのを抑えきれず、亜鉛極の極板変形
が進行し、容量低下していくに対し、実施例による蓄電
池(A)では、繊維化された結着剤が互いに絡まって強
固な骨格を形成し、特に亜鉛極の極板周縁の結着剤含有
濃度が極板中央部より大であるため、極板周縁部におけ
る亜鉛活物質を繊維の網目の中に堅固に保持しており、
又極板周縁部の結着剤含有濃度が高いことにより、極板
周縁部の撥水性が増大し、極板周縁部に余分な電解液が
存在し難くなる。このため実施例による蓄電池(A)の
サイクル寿命が大巾に向上したものと考えられる。
The reason for this is that in the comparative batteries (B) and (C), the zinc active material cannot be suppressed from eluting into the electrolytic solution, the electrode plate of the zinc electrode is deformed, and the capacity is decreased. In the storage battery (A) according to the above, the fibrous binders are entangled with each other to form a strong skeleton, and since the concentration of the binder in the periphery of the electrode plate of the zinc electrode is higher than that in the central part of the electrode plate, The zinc active material in the peripheral portion of the plate is firmly held in the mesh of fibers,
Further, the high concentration of the binder contained in the peripheral portion of the electrode plate increases the water repellency of the peripheral portion of the electrode plate and makes it difficult for excess electrolytic solution to exist in the peripheral portion of the electrode plate. Therefore, it is considered that the cycle life of the storage battery (A) according to the example is significantly improved.

尚実施例では、耐アルカリ性、耐撥水性の繊維化された
合成樹脂として、フッ素樹脂を用いたが、繊維化された
ポリエチレン繊維、ポリプロピレン繊維あるいはナイロ
ン繊維等の分散液を用いることができる。また実施例で
は、第2シートの巾を極板寸法の1/10にしたが、極板形
状により1/20乃至1/5にすることが考えられ、さらに本
発明は角型極板に限らず、渦巻電極にも適用できること
は明らかである。
In the examples, a fluororesin is used as the synthetic resin having alkali resistance and water repellency, which is fiberized, but a dispersion liquid of fiberized polyethylene fiber, polypropylene fiber, nylon fiber or the like can be used. In the embodiment, the width of the second sheet is set to 1/10 of the electrode plate size, but it may be set to 1/20 to 1/5 depending on the electrode plate shape. Further, the present invention is not limited to the square electrode plate. However, it is obvious that it can also be applied to spiral electrodes.

(ヘ) 発明の効果 以上の如く本発明は、金属亜鉛及び及び酸化亜鉛を主成
分とし、耐アルカリ性、撥水性の繊維化された合成樹脂
からなる結着剤を含有し、且当該結着剤の極板周縁部に
おける含有濃度が極板中央部における含有濃度より大き
い亜鉛極を備えるから、亜鉛極の極板周縁部に極板中央
部より含有濃度大なる繊維化された結着剤が存在し、こ
のため極板周縁部における亜鉛活物質が極板中央部に比
しより堅固に捕縛されて電解液への溶出を抑える。ま
た、極板周縁部の撥水性の結着剤の含有濃度が大である
ため、撥水性により極板周縁部における電解液を少なく
するので、亜鉛活物質の溶出を抑えることになり、亜鉛
極の極板周縁部における極板変形を抑制して、より長期
にわたるサイクル寿命に耐え得るアルカリ亜鉛蓄電池を
提供することができる。
(F) Effect of the Invention As described above, the present invention contains a binder composed mainly of metallic zinc and zinc oxide, and made of a synthetic resin in the form of fibers, which is alkali-resistant and water-repellent. Since there is a zinc electrode whose content concentration in the periphery of the electrode plate is higher than that in the center of the electrode plate, there is a fibrous binder having a higher content concentration in the periphery of the electrode plate of the zinc electrode than in the center of the electrode plate. Therefore, the zinc active material in the peripheral portion of the electrode plate is more firmly trapped than in the central portion of the electrode plate, and the elution into the electrolytic solution is suppressed. In addition, since the content concentration of the water-repellent binder in the peripheral portion of the electrode plate is high, the electrolyte solution is reduced in the peripheral portion of the electrode plate due to the water repellency, so that the elution of the zinc active material is suppressed. It is possible to provide an alkaline zinc storage battery that can withstand a longer cycle life by suppressing electrode plate deformation in the electrode plate peripheral portion.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の亜鉛極の正面図、第2図は
実施例による蓄電池と比較電池のサイクル特性図であ
る。
FIG. 1 is a front view of a zinc electrode according to an embodiment of the present invention, and FIG. 2 is a cycle characteristic diagram of a storage battery according to the embodiment and a comparative battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属亜鉛及び酸化亜鉛を主成分とし、耐ア
ルカリ性、撥水性の繊維化された合成樹脂からなる結着
剤を含有し、且当該結着剤の極板周縁部における含有濃
度が極板中央部における含有濃度より大きい亜鉛極を備
えたアルカリ亜鉛蓄電池。
1. A binder containing, as a main component, metallic zinc and zinc oxide, a synthetic resin having alkali resistance and water repellency and made into fibers, and the concentration of the binder in the periphery of the electrode plate is An alkaline zinc storage battery having a zinc electrode having a concentration higher than that of the central portion of the electrode plate.
JP58043746A 1983-03-15 1983-03-15 Alkaline zinc storage battery Expired - Lifetime JPH0679481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58043746A JPH0679481B2 (en) 1983-03-15 1983-03-15 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58043746A JPH0679481B2 (en) 1983-03-15 1983-03-15 Alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS59169066A JPS59169066A (en) 1984-09-22
JPH0679481B2 true JPH0679481B2 (en) 1994-10-05

Family

ID=12672320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58043746A Expired - Lifetime JPH0679481B2 (en) 1983-03-15 1983-03-15 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPH0679481B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011660B2 (en) * 2005-06-02 2012-08-29 パナソニック株式会社 Battery electrode and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124854A (en) * 1981-01-27 1982-08-03 Shin Kobe Electric Mach Co Ltd Production method of positive electrode of primary cell

Also Published As

Publication number Publication date
JPS59169066A (en) 1984-09-22

Similar Documents

Publication Publication Date Title
JPH0679481B2 (en) Alkaline zinc storage battery
JPH0582023B2 (en)
JP2589150B2 (en) Alkaline zinc storage battery
JPH0311807Y2 (en)
JPS58163172A (en) Alkaline zinc storage battery
JPS58163162A (en) Alkaline zinc storage battery
JPS6014757A (en) Alkali zinc battery
JP3185244B2 (en) Zinc negative electrode plate for alkaline batteries
JPH06101331B2 (en) Alkaline zinc storage battery
JPS59151757A (en) Alkaline zinc storage battery
JPH0685322B2 (en) Alkaline zinc storage battery
JPH0552028B2 (en)
JPS6191872A (en) Alkaline zinc storage battery
JPH0619986B2 (en) Alkaline zinc storage battery
JPS6037662A (en) Zinc electrode
JPS60264049A (en) Alkali zinc battery
JPH0566718B2 (en)
JPH073793B2 (en) Alkaline zinc storage battery
JPH0410709B2 (en)
JPH0576743B2 (en)
JPH0568073B2 (en)
JPH061693B2 (en) Alkaline zinc storage battery
JPS6161366A (en) Alkaline zinc storage battery
JPS58176870A (en) Alkaline-zinc battery
JPH0544142B2 (en)