JPH03116894A - Multilayer printed wiring board - Google Patents

Multilayer printed wiring board

Info

Publication number
JPH03116894A
JPH03116894A JP25452789A JP25452789A JPH03116894A JP H03116894 A JPH03116894 A JP H03116894A JP 25452789 A JP25452789 A JP 25452789A JP 25452789 A JP25452789 A JP 25452789A JP H03116894 A JPH03116894 A JP H03116894A
Authority
JP
Japan
Prior art keywords
insulating layer
circuit board
circuit
layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25452789A
Other languages
Japanese (ja)
Other versions
JPH0734506B2 (en
Inventor
Shigeru Ito
繁 伊藤
Kazunori Mitsuhashi
光橋 一紀
Tatsu Sakaguchi
坂口 達
Ichirou Suirenya
翠簾屋 一郎
Hiromitsu Kimura
木村 裕光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP25452789A priority Critical patent/JPH0734506B2/en
Publication of JPH03116894A publication Critical patent/JPH03116894A/en
Publication of JPH0734506B2 publication Critical patent/JPH0734506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To obtain a multilayer printed wiring board which is excellent in dimensional stability and interlaminar adhesion by a method wherein specific inorganic filler is contained in the resin of an inner circuit board and also in the resin of an inner insulating layer. CONSTITUTION:Hydrated alumina is used as inorganic filler, a glass nonwoven cloth containing 30-50% by weight of hydrated alumina is impregnated with bisphenol type epoxy resin varnish, which is dried up to be served as a prepreg, and an a thick copper foil is laid on both sides of the prepreg, which is formed into a double side copper clad laminated board 2 which serves as an inner circuit board through a thermocompression forming process. A circuit is provided to the laminated body 2 through etching as usual, fine irregularities are provided to the surface of the circuit through a photographic processing to enable the board 2 to be served as an inner circuit board. A glass nonwoven cloth containing 5-20% by weight of hydrated alumina is impregnated with epoxy resin varnish, which is dried up into a prepreg which serves as an inner insulating layer 5, and the insulating layer 5 is piled on both the sides of the inner circuit board 2. The surface of filler filled into the inner insulating layer 5 is treated with a silane coupling agent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子、電気機器に組込んで使用される多層プ
リント配線板に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multilayer printed wiring board that is incorporated into electronic or electrical equipment.

従来の技術 多層プリント配線板の機械加工性を考慮して、内層の回
路板の基板を構成する基材、内層の回路板同士の間の絶
縁層(内層絶縁層)を構成する基材、内層の回路板と表
面の回路間の絶縁層を構成する基材に、ガラス不織布と
ガラス織布を適宜組合せたコンポジット多層プリント配
線板が提案されている。
Conventional technology Considering the machinability of multilayer printed wiring boards, the base material constituting the substrate of the inner layer circuit board, the base material constituting the insulating layer between the inner layer circuit boards (inner layer insulation layer), and the inner layer A composite multilayer printed wiring board has been proposed in which a glass nonwoven fabric and a glass woven fabric are appropriately combined as a base material that constitutes an insulating layer between the circuit board and the circuit on the surface.

これに関して、特開昭61−40094号公報に開示さ
れている技術は、内層の回路板の基板をエポキシ樹脂含
浸ガラス織布基材で構成している。
In this regard, the technique disclosed in Japanese Patent Application Laid-Open No. 61-40094 consists of a substrate of an inner layer circuit board made of an epoxy resin-impregnated glass woven fabric base material.

そして表面層のエポキシ樹脂含浸ガラス織布基材と前記
内層の回路板との間に、充填材の配合量が異なる2種類
のエポキシ樹脂含浸ガラス不織布基材(内層絶縁層)を
介在させて一体化したものである。
Then, two types of epoxy resin-impregnated glass non-woven fabric base materials (inner layer insulating layer) having different amounts of filler are interposed between the epoxy resin-impregnated glass woven fabric base material of the surface layer and the circuit board of the inner layer. It has become.

発明が解決しようとする課題 しかしながら、上記多層プリント配線板は、内層の回路
板と表面層にガラス織布基材を使用しているので、その
複数枚を重ねてドリル穴あけ加工を行なうと、ドリル穴
の位置ずれを起こしやすい。この位置ずれは、下方に重
ねた多層プリント配線板はど顕著になる。内層の回路板
の基材をガラス不織布に置き換えれば、ドリル穴あけ加
工性はよくなるが、寸法安定性が低下してしまう。内層
の回路と表面の回路は、多層化の後スルーホールにより
導通させることになるので、製造工程中に内層の回路板
が寸法変化を起こすことは致命的な問題である。
Problems to be Solved by the Invention However, since the above-mentioned multilayer printed wiring board uses a glass woven fabric base material for the inner layer circuit board and the surface layer, when multiple sheets are stacked and drilled, the drill It is easy to cause the hole position to shift. This positional shift becomes more noticeable in multilayer printed wiring boards stacked below. If the base material of the inner layer circuit board is replaced with a glass nonwoven fabric, the drilling processability will be improved, but the dimensional stability will be reduced. Since the circuits on the inner layer and the circuit on the surface are connected to each other through through holes after multilayering, it is a fatal problem that the inner layer circuit board undergoes dimensional changes during the manufacturing process.

また、上記公報における技術では、内層絶縁層であるエ
ポキシ樹脂含浸ガラス不織布基材として、寸法安定性や
層間密着性、ボイドの発生を考慮して、充填材の配合量
が異なる2種類を併用しているが、多層化の作業が煩雑
になる。
In addition, in the technology in the above publication, two types of fillers with different blending amounts are used in combination for the epoxy resin-impregnated glass nonwoven fabric base material that is the inner insulating layer, taking into consideration dimensional stability, interlayer adhesion, and void generation. However, the work of creating multiple layers becomes complicated.

本発明の課題は、ガラス織布基材の使用を表面層のみと
し、内層に使用する基材をガラス不織布としながら、寸
法安定性に優れ、層間密着性(特に内層回路表面と内層
絶縁層の密着性)の良好な多層プリント配線板を捉供す
ることである。
The object of the present invention is to use a glass woven fabric base material only for the surface layer, and use a glass nonwoven fabric as the base material for the inner layer, while achieving excellent dimensional stability and interlayer adhesion (particularly between the inner layer circuit surface and the inner layer insulating layer). The objective is to provide a multilayer printed wiring board with good adhesion.

課題を解決するための手段 上記課題を解するために、本発明に係る多層プリント配
線板は、次のような一体になった層構成を採用した。
Means for Solving the Problems In order to solve the above problems, the multilayer printed wiring board according to the present invention employs the following integrated layer structure.

(イ)  回路1の表面が化学処理により微細に凹凸化
されている内層回路板の基板2を熱硬化性樹脂含浸ガラ
ス不織布基材で構成する。その樹脂中に30〜50重量
%の無機充填材を含有する。
(a) The substrate 2 of the inner layer circuit board whose surface of the circuit 1 is made finely uneven by chemical treatment is composed of a glass nonwoven fabric substrate impregnated with a thermosetting resin. The resin contains 30-50% by weight of inorganic filler.

(ロ)表面回路3のv!!、Ii層(表面絶縁層4)を
熱硬化性樹脂含浸ガラス織布基材で構成する。
(b) v of surface circuit 3! ! , the Ii layer (surface insulating layer 4) is composed of a glass woven fabric base material impregnated with a thermosetting resin.

(ハ)表面絶縁層4と内層回路板間の絶縁層(内層絶縁
層5)を熱硬化性樹脂含浸ガラス不織布基材で構成する
。その樹脂中に5〜20重壇%の無機充填材を含有する
(c) The insulating layer (inner insulating layer 5) between the surface insulating layer 4 and the inner circuit board is composed of a glass nonwoven fabric substrate impregnated with a thermosetting resin. The resin contains 5 to 20% inorganic filler.

また、内層回路板が2つ以上存在する場合には、内層回
路板同士の間も上記(ハ)の内層絶縁層5で構成する。
Furthermore, when there are two or more inner layer circuit boards, the inner layer insulating layer 5 described in (c) above is also formed between the inner layer circuit boards.

内層絶縁層に含まれる無機充填材は、表面をシラン処理
しであるのが好ましい。
The surface of the inorganic filler contained in the inner insulating layer is preferably treated with silane.

作用 内層回路板と内層絶縁層5の密着力は、基板2の表面が
露出している部分では化学的結合によっている。しかし
、回路1の部分では、内層絶縁層5の樹脂が加熱加圧成
形のときに流動して、回路1表面の化学処理による微細
な凹凸に入り込み、その投#1品効果による物理的な結
合によって、密着力を得ている。
The adhesion between the working inner circuit board and the inner insulating layer 5 is due to chemical bonding in the exposed portion of the surface of the substrate 2. However, in the part of the circuit 1, the resin of the inner insulating layer 5 flows during heating and pressure molding and enters the fine irregularities caused by the chemical treatment on the surface of the circuit 1, resulting in physical bonding due to the cast #1 product effect. This gives the adhesive strength.

内層絶縁層5の基材がガラス織布のときは、前記投錨効
果による物理的な結合力は大きいのであるが、基材がガ
ラス不織布のときには、この結合力が十分に大きくない
。これは、次のような理由によると推測される。すなわ
ち、ガラス不織布はかさ高く空隙部分が多いので、加熱
加圧成形のときに流動する樹脂が前記空隙を埋めること
に優先的に使われ、回路1表面の微細な凹凸にば十分に
流れ込まない(流れ込みにくい)ためと推測される。 
このような知見に基づき、本発明に係る多層プリント配
線板は、内層絶縁層5の樹脂中に無機充填材を含有させ
たのであり、回路1表面の微細な凹凸に比べて十分に大
きい前記充填材粒子が、回路1を構成する金属箔を加熱
加圧成形のときに変形させ、これにくい込む。その投錨
効果が回路1表面の微細な凹凸への樹脂の流入による投
錨効果と相まって、回路1と内層絶縁層5の良好な密着
力を保持させることができるものと推測される。
When the base material of the inner insulating layer 5 is a glass woven fabric, the physical bonding force due to the anchoring effect is large, but when the base material is a glass nonwoven fabric, this bonding force is not sufficiently large. This is presumed to be due to the following reasons. In other words, since the glass nonwoven fabric is bulky and has many voids, the resin that flows during heating and pressure molding is preferentially used to fill the voids, and does not flow sufficiently into the fine irregularities on the surface of the circuit 1 ( It is assumed that this is because it is difficult to flow into the water.
Based on such knowledge, the multilayer printed wiring board according to the present invention contains an inorganic filler in the resin of the inner insulating layer 5, and the filler is sufficiently large compared to the fine irregularities on the surface of the circuit 1. The material particles deform the metal foil constituting the circuit 1 during heating and pressure molding, and are embedded in it. It is presumed that this anchoring effect, combined with the anchoring effect caused by the resin flowing into the fine irregularities on the surface of the circuit 1, makes it possible to maintain good adhesion between the circuit 1 and the inner insulating layer 5.

この場合、内層絶縁層5の樹脂中に含有させる無機充填
材の量が5重量%に達しないと前記投錨効果を発揮でき
ない。一方、無機充填材の量が20重鼠%を越えると、
充填材粒子同士を結着する樹脂分が少な(なって、充填
材粒子間で剥れやすくなる。無機充填材の含有量を5〜
20重量%の範囲とすることにより、初めて回路1と内
層絶縁層5の良好な密着力を確保できるのである。
In this case, the anchoring effect cannot be exhibited unless the amount of inorganic filler contained in the resin of the inner insulating layer 5 reaches 5% by weight. On the other hand, when the amount of inorganic filler exceeds 20%,
The resin content that binds the filler particles to each other is small (and the filler particles tend to peel off between each other).
By setting the amount within the range of 20% by weight, good adhesion between the circuit 1 and the inner insulating layer 5 can be ensured.

また、基板2の樹脂中の無機充填材含有量が30重置%
に達しないと寸法変化を十分に抑制できず、50重量%
を越えると基板2と回路1の密着力が低下するし、絶縁
抵抗も悪くなる。尚、回路1と基板2の密着力について
は、回路1を構成する金属箔の裏面を機械的に粗填材含
有量が多くても、樹脂の投錨効果を十分に期待できる。
In addition, the inorganic filler content in the resin of substrate 2 is 30%
If it does not reach 50% by weight, dimensional changes cannot be sufficiently suppressed.
If it exceeds this, the adhesion between the substrate 2 and the circuit 1 will decrease, and the insulation resistance will also deteriorate. Regarding the adhesion between the circuit 1 and the substrate 2, even if the back surface of the metal foil constituting the circuit 1 has a large mechanically coarse filler content, a sufficient anchoring effect of the resin can be expected.

実施例 以下、本発明の実施例を比較例と共に説明する。無機充
填材として、水和アルミナを使用した例を説明するが、
他の無機充填材を使用した場合も同様の1頃向を示すこ
とを確認している。
EXAMPLES Hereinafter, examples of the present invention will be described together with comparative examples. An example of using hydrated alumina as an inorganic filler will be explained.
It has been confirmed that the same direction of 1 is exhibited when other inorganic fillers are used.

実施例1〜6、比較例1〜4 (1)エポキシシランで処理した水和アルミナ(エポキ
シシランは水和アルミナの重量に対して1%)を、それ
ぞれ、3重量%(A)、5重量%(B)、10重量%(
C)、15重量%(D)、20重量%(E)、25重量
%(F)、35重量%(G)、40重攪%(11)、4
5重量%(1)、55重i1%(J)、含有するビスフ
ェノール型エポキシ樹脂を用意した。このワニスを、水
和アルミナを含む樹脂含有量が88重量%となるように
ガラス不織布(41g/r+()に含浸乾燥し、上記水
和アルミナ含有量に対応するプリプレグ(八)〜(J)
を得た。
Examples 1 to 6, Comparative Examples 1 to 4 (1) Hydrated alumina treated with epoxy silane (epoxy silane is 1% based on the weight of hydrated alumina), 3% by weight (A) and 5% by weight, respectively. % (B), 10% by weight (
C), 15% by weight (D), 20% by weight (E), 25% by weight (F), 35% by weight (G), 40% by weight (11), 4
A bisphenol type epoxy resin containing 5% by weight (1) and 55% by weight (J) was prepared. This varnish was impregnated into a glass nonwoven fabric (41g/r+()) so that the resin content including hydrated alumina was 88% by weight and dried.
I got it.

水和アルミナを含まない上記エポキシ樹脂のワニスを、
樹脂含有量40重量%となるようにガラス織布(215
g/rrf)に含浸乾燥し、プリプレグ(X)を得た。
The above epoxy resin varnish that does not contain hydrated alumina,
A glass woven fabric (215
g/rrf) and dried to obtain a prepreg (X).

(2)プリプレグ(I’)〜(J)のそれぞれについて
、その4プライの両側に35μ厚銅箔を載置して、加熱
加圧成形により内層回路板用の0 、8 m厚両面銅張
り積層板を得た。銅箔は、プリプレグに面する側を機械
的に粗化して凹凸を付したものを用いた。
(2) For each of the prepregs (I') to (J), 35 μ thick copper foil was placed on both sides of the 4 plies, and 0.8 m thick double-sided copper foil for inner layer circuit board was formed by heat and pressure molding. A laminate was obtained. The copper foil used was one whose side facing the prepreg was mechanically roughened to have irregularities.

この両面銅張り積層板を常法によりエツチングして回路
形成を行ない、黒化処理により回路表面に微細な凹凸を
付して内層回路板とした。
This double-sided copper-clad laminate was etched using a conventional method to form a circuit, and a blackening treatment was applied to form fine irregularities on the circuit surface to form an inner layer circuit board.

(3)内層絶縁層を、プリプレグ(八)〜(F)より選
tRする。上記内層回路板の両側に、(八)〜(F)よ
り選択したプリプレグ1プライ、プリプレグ(×)1プ
ライ、18μm厚銅箔をこの順に載置し、加熱加圧成形
して一体化した(厚さ1.6mm)。
(3) Select the inner insulating layer from prepregs (8) to (F). One ply of prepreg selected from (8) to (F), one ply of prepreg (x), and 18 μm thick copper foil were placed in this order on both sides of the inner layer circuit board, and were integrally formed by heating and pressure forming ( Thickness: 1.6mm).

(4)上記一体出した複合板に、所定パターンに合せて
ドリル穴あけを行ない、常法により内層の回路と表面の
銅箔を導通するスルーホールメツキを行なった。
(4) Holes were drilled in the integrated composite board according to a predetermined pattern, and through-hole plating was performed using a conventional method to connect the circuit in the inner layer to the copper foil on the surface.

(5)表面の銅箔を常法によりエツチングして表面回路
の形成を行ない、4層の回路を有するプリント配線板と
した。
(5) The copper foil on the surface was etched using a conventional method to form a surface circuit, resulting in a printed wiring board having four layers of circuits.

内層回rlB板の基板に用いたプリプレグ七内層絶縁層
に用いたプリプレグの種類の組合せを、第1表、第2表
に示す。
Table 1 and Table 2 show the combinations of prepreg types used for the inner insulating layer.

!181表 第 2 表 実施例7 水和アルミナをエポキシシランで処理していない点を除
いて、実施例2と同様に4層のプリント配線板とした。
! Table 181 Table 2 Example 7 A four-layer printed wiring board was prepared in the same manner as in Example 2, except that the hydrated alumina was not treated with epoxy silane.

比較例5 内層回路板の基板をプリプレグ(X)4ブライで構成し
た。他は実施例2と同様に4層のプリント配線板とした
Comparative Example 5 The substrate of the inner layer circuit board was made of prepreg (X) 4Bly. The rest was a four-layer printed wiring board similar to Example 2.

実施例2と比較例5について、それぞれ3枚を重ねてド
リル穴あけをしたときの加工性を第3表に示す。
Table 3 shows the workability of Example 2 and Comparative Example 5 when three sheets were stacked and drilled.

第 表 加工条件 ドリル径 1 、0 mm 回転数  60.00Orpm 送り速度  50μ/rev また、内層絶縁層の充填材含有量と、ビール強度(内層
の回路面と内層絶縁層との密着力)の関係を第2図に示
す。内層回路板の基板の充填材含有量と基板の寸法変化
ならびに絶縁抵抗の関係を第3図に示す。寸法変化は、
工、ンチング→0.5/150処理前後の試料対角方向
の寸法変化率で示した。また、絶縁抵抗は、プレッシャ
ークツカー(2気圧、121″C)8時間処理後に測定
した。
Table Machining conditions Drill diameter: 1,0 mm Rotation speed: 60.00 Orpm Feed rate: 50 μ/rev Also, the relationship between the filler content of the inner insulating layer and beer strength (adhesion between the circuit surface of the inner layer and the inner insulating layer) is shown in Figure 2. FIG. 3 shows the relationship between the filler content of the substrate of the inner layer circuit board, the dimensional change of the substrate, and the insulation resistance. The dimensional change is
It is shown as the rate of dimensional change in the diagonal direction of the sample before and after processing and nitching → 0.5/150 processing. Insulation resistance was measured after treatment in a pressure cooker (2 atm, 121''C) for 8 hours.

発明の効果 上述のように、本発明に係る多層プリント配線板は、内
層絶縁層の基材にガラス不織布を使いながら、無機充填
材の含有量を特定の範囲とすることにより、内層の回路
と内層絶縁層の良好な密着力を保持している。この密着
力は、充填材をシランカップリング剤で処理しておくこ
とにより一層良好となる。そして、内層回路板の基板の
基材にもガラス不織布を使いながら寸法安定性が良好で
あり、機械加工性が優れている点、その工業的価値は極
めて大である。
Effects of the Invention As described above, the multilayer printed wiring board according to the present invention uses a glass nonwoven fabric as the base material of the inner insulating layer and sets the content of the inorganic filler within a specific range, so that the inner layer circuit and Maintains good adhesion of the inner insulating layer. This adhesion can be further improved by treating the filler with a silane coupling agent. Furthermore, although glass nonwoven fabric is used as the base material for the substrate of the inner layer circuit board, it has good dimensional stability and excellent machinability, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多層プリント配線板の6層回路の
例を示す断面図、第2図は内層絶縁層の充填材含有量と
ビール強度(内層の回路面と内層絶縁層の密着力)との
関係を示す曲線図、第3図は、内層回路板の基板の充填
材含有量と寸法変化率ならびに絶縁抵抗との関係を示す
曲線図である。 lは回路、 2は基板、 3は表面回路、 4は表 面絶縁層、 5は内層絶縁層
FIG. 1 is a cross-sectional view showing an example of a six-layer circuit of a multilayer printed wiring board according to the present invention, and FIG. FIG. 3 is a curve diagram showing the relationship between the filler content of the substrate of the inner layer circuit board, the dimensional change rate, and the insulation resistance. l is the circuit, 2 is the substrate, 3 is the surface circuit, 4 is the surface insulation layer, 5 is the inner insulation layer

Claims (3)

【特許請求の範囲】[Claims] 1.回路表面が化学処理により微細に凹凸化されている
内層回路板の基板を熱硬化性樹脂含浸ガラス不織布基材
で構成し、 表面回路の絶縁層(表面絶縁層)を熱硬化性樹脂含浸ガ
ラス織布基材で構成し、 前記表面絶縁層と内層回路板間の絶縁層(内層絶縁層)
を熱硬化性樹脂含浸ガラス不織布基材で構成し、 これらが加熱加圧成形により一体化されたものであって
、 内層回路板の基板の樹脂中に30〜50重量%の無機充
填材を含有し、 内層絶縁層の樹脂中に5〜20重量%の無機充填材を含
有した多層プリント配線板。
1. The inner circuit board substrate, whose circuit surface is finely textured by chemical treatment, is made of a thermosetting resin-impregnated glass nonwoven fabric base material, and the surface circuit insulation layer (surface insulation layer) is made of a thermosetting resin-impregnated glass woven fabric. An insulating layer (inner insulating layer) composed of a cloth base material, between the surface insulating layer and the inner layer circuit board.
is composed of a glass nonwoven fabric substrate impregnated with a thermosetting resin, and these are integrated by heat and pressure molding, and the resin of the substrate of the inner layer circuit board contains 30 to 50% by weight of an inorganic filler. A multilayer printed wiring board containing 5 to 20% by weight of an inorganic filler in the resin of the inner insulating layer.
2.回路表面が化学処理により微細凹凸化されている内
層回路板の基板を熱硬化性樹脂含浸ガラス不織布基材で
構成し、 表面回路の絶縁層(表面絶縁層)を熱硬化性樹脂含浸ガ
ラス織布基材で構成し、 前記表面絶縁層と内層回路板間の絶縁層および複数の内
層回路板同士の間の絶縁層(内層絶縁層)を熱硬化性樹
脂含浸ガラス不織布基材で構成し、 これらが加熱加圧成形により一体化されたものであって
、 内層回路板の基板の樹脂中に30〜50重量%の無機充
填材を含有し、内層絶縁層の樹脂中に5〜20重量%の
無機充填材を含有した多層プリント配線板。
2. The substrate of the inner layer circuit board, whose circuit surface is made finely uneven by chemical treatment, is made of a glass nonwoven fabric substrate impregnated with a thermosetting resin, and the insulation layer (surface insulation layer) of the surface circuit is made of a glass woven fabric impregnated with a thermosetting resin. The insulating layer between the surface insulating layer and the inner circuit board and the insulating layer between the plurality of inner circuit boards (inner insulating layer) are composed of a thermosetting resin-impregnated glass nonwoven fabric base material, and these are integrated by heating and pressure molding, and the resin of the inner circuit board substrate contains 30 to 50% by weight of an inorganic filler, and the resin of the inner insulating layer contains 5 to 20% by weight of an inorganic filler. Multilayer printed wiring board containing inorganic filler.
3.内層絶縁層の充填材の表面がシランカップリング材
で処理されている請求項1または2に記載の多層プリン
ト配線板。
3. 3. The multilayer printed wiring board according to claim 1, wherein the surface of the filler in the inner insulating layer is treated with a silane coupling material.
JP25452789A 1989-09-29 1989-09-29 Multilayer printed wiring board Expired - Fee Related JPH0734506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25452789A JPH0734506B2 (en) 1989-09-29 1989-09-29 Multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25452789A JPH0734506B2 (en) 1989-09-29 1989-09-29 Multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPH03116894A true JPH03116894A (en) 1991-05-17
JPH0734506B2 JPH0734506B2 (en) 1995-04-12

Family

ID=17266279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25452789A Expired - Fee Related JPH0734506B2 (en) 1989-09-29 1989-09-29 Multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JPH0734506B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254543A (en) * 2000-12-28 2002-09-11 Shin Kobe Electric Mach Co Ltd Composite laminated sheet and method for manufacturing the same
JP2002305374A (en) * 2001-04-05 2002-10-18 Hitachi Chem Co Ltd Printed wiring board
JP2013187460A (en) * 2012-03-09 2013-09-19 Sumitomo Bakelite Co Ltd Temporary substrate for metal foil-clad substrate and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254543A (en) * 2000-12-28 2002-09-11 Shin Kobe Electric Mach Co Ltd Composite laminated sheet and method for manufacturing the same
JP2002305374A (en) * 2001-04-05 2002-10-18 Hitachi Chem Co Ltd Printed wiring board
JP2013187460A (en) * 2012-03-09 2013-09-19 Sumitomo Bakelite Co Ltd Temporary substrate for metal foil-clad substrate and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0734506B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
JP2993065B2 (en) Metal foil-clad laminate with smooth surface
US20070062640A1 (en) Method of manufacturing copper foil with insulating layer, copper foil with insulating layer obtained with the same method, and printed circuit board using the same copper foil with insulating layer
US6268070B1 (en) Laminate for multi-layer printed circuit
JP3760771B2 (en) Circuit forming substrate and method of manufacturing circuit forming substrate
JPH03116894A (en) Multilayer printed wiring board
JP2006182918A (en) Prepreg, rigid flexible board and multilayer circuit board
JP2002252470A (en) Interlayer insulating material film for printed wiring board and multilayer printed wiring board using it
JPH0697670A (en) Board for multilayer printed wiring
JP2003347743A (en) Prepreg, multilayer printed circuit board and method for its manufacture
JP4092862B2 (en) Prepreg manufacturing method, prepreg, printed wiring board and laminate
JP2557325B2 (en) Multilayer copper clad laminate
JP2001085838A (en) Method for manufacturing multilayer laminated plate
JP2917579B2 (en) Multilayer printed wiring board
JPH09254331A (en) Laminated sheet
JPH09232757A (en) Manufacture of multilayered circuit board
JPS6216599A (en) Glass woven base material for multilayer printed wiring board
JP3013500B2 (en) Metal foil clad laminate
JPH1027961A (en) Production of multilayer flexible wiring board
JPH06260765A (en) Multilayer wiring board and manufacture thereof
JPH0878854A (en) Multilayered printed wiring board
JPH115276A (en) Laminated plate
JPH07142831A (en) Copper-clad laminated board
JPH04263933A (en) Manufacture of metal foil clad laminated sheet having smooth surface
JPH05318638A (en) Laminated sheet
JPH0374895A (en) Multilayer copper coated laminated board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees