JPH09232757A - Manufacture of multilayered circuit board - Google Patents

Manufacture of multilayered circuit board

Info

Publication number
JPH09232757A
JPH09232757A JP3916996A JP3916996A JPH09232757A JP H09232757 A JPH09232757 A JP H09232757A JP 3916996 A JP3916996 A JP 3916996A JP 3916996 A JP3916996 A JP 3916996A JP H09232757 A JPH09232757 A JP H09232757A
Authority
JP
Japan
Prior art keywords
holes
circuit
printed wiring
wiring board
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3916996A
Other languages
Japanese (ja)
Inventor
Shigeru Kurumaya
茂 車谷
Masayuki Noda
雅之 野田
Masataka Hasegawa
雅孝 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP3916996A priority Critical patent/JPH09232757A/en
Publication of JPH09232757A publication Critical patent/JPH09232757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the generation of warpage, to increase heat resistance and to enhance the reliable connection between circuits on insulating layers through non-through holes in a multilayered circuit board of a structure, wherein the connection between the circuits on the insulating layers is made through the non-through holes and a high-density wiring is provided. SOLUTION: In a method, wherein circuits are piled up on both surface or one surface of a core material printed-wiring board 1 via insulative layers 10 and 11 and the connection between36m or smaller.) is made to contain in the layers 10 and 11 to make a plating adhere uniformly to the wall surfaces of the holes 4 and 6. Moreover, the diameter of a glass fiber constituting the nonwoven glass faber is set in a diameter of 13μm or smaller to make glass, which is molten by the laser irradiation, hardly turn into recesses and projections on the wall surfaces of the holes at the time of the formation of the holes 4 and 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、芯材プリント配線
板の両面もしくは片面上に、絶縁層を介して回路を積み
上げていく多層回路板の製造法であって、積み上げた回
路の絶縁層間の接続を非貫通の穴で行なうことにより高
密度配線を可能にした多層回路板の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer circuit board in which circuits are stacked on both sides or one side of a core printed wiring board via insulating layers, and The present invention relates to a method for manufacturing a multilayer circuit board that enables high-density wiring by making connections through non-through holes.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、多機能化への
要求は著しく高まっており、電子機器に組込んで使用す
るプリント配線板の配線密度が高くなっている。配線密
度を高くするために、プリント配線板を、絶縁層を介し
て内層にも回路を配置した多層回路板とし、その層数を
増やしたり回路線幅の微細化を行なってきたがこれに伴
って、絶縁層間の回路を電気的に接続するスルーホール
(多層回路板を貫通する穴)の個数も多くなっている。
このスルーホールの個数が多くなると回路の配置に利用
できる面積が減少するので、高密度配線ができなくな
る。
2. Description of the Related Art In recent years, demands for miniaturization and multi-functionality of electronic devices have been remarkably increasing, and wiring densities of printed wiring boards incorporated and used in electronic devices have been increasing. In order to increase the wiring density, the printed wiring board is a multi-layer circuit board in which circuits are also arranged in the inner layers via insulating layers, and the number of layers has been increased and the circuit line width has been reduced. Therefore, the number of through holes (holes penetrating the multilayer circuit board) for electrically connecting circuits between insulating layers is also increasing.
If the number of the through holes increases, the area available for arranging the circuits decreases, so that high density wiring cannot be performed.

【0003】そこで、絶縁層間の回路の接続を非貫通穴
で行ない、回路設計の自由度を高めた多層回路板が提案
されている。これは、図2に示すように、芯材プリント
配線板1上に絶縁樹脂層2(樹脂のみからなる)を介し
て回路3を設け、絶縁樹脂層2に非貫通穴4をあけて、
非貫通穴4において回路3と内層の回路(図2では芯材
プリント配線板1の回路)とを接続したものである。さ
らに回路の層数を増やす場合には、絶縁樹脂層2と回路
3の積み上げと、非貫通穴4における絶縁層間の回路の
接続を繰り返して行なう。必要に応じて、最後にスルー
ホール5を設ける。絶縁樹脂層2は、樹脂のみで構成す
るほか、熱硬化性樹脂を含浸した有機繊維不織布で構成
することもある。また、回路3は、絶縁樹脂層2と一体
化された銅箔をエッチングして形成したり、絶縁樹脂層
2上に無電解メッキや導電性塗料の印刷により形成す
る。しかしながら、芯材となるプリント配線板の上下に
順次積み重ねる絶縁樹脂層に熱硬化性樹脂のみからなる
層を使用すると、無機充填材の配合が難しいため、厚み
方向の熱膨張率が大きくなる。また、回路と絶縁樹脂層
の接着強度もあまり大きくない。表面の絶縁樹脂層は吸
湿しやすく、部品実装時のリフロー炉内の熱で絶縁樹脂
層が剥離する心配があるし、熱硬化性樹脂を含浸した有
機繊維不織布で絶縁樹脂層を構成した場合にも、リフロ
ー炉内の熱で有機繊維不織布が溶融もしくは軟化するこ
とにより、熱硬化性樹脂と有機繊維不織布がその界面で
剥離するかもしれない。このような剥離が起こると、吸
湿によって絶縁抵抗が著しく低下することになる。さら
に、上記多層回路板は、芯材プリント配線板に機械的強
度の低い絶縁樹脂層を積み重ねて構成するため、機械的
強度が小さくリフロー炉内の熱等でそりが発生してしま
う。特に、芯材プリント配線板の板厚が薄くなると、そ
の傾向が顕著になる。
Therefore, there has been proposed a multilayer circuit board in which circuits between insulating layers are connected by non-through holes to enhance the degree of freedom in circuit design. As shown in FIG. 2, a circuit 3 is provided on a core printed wiring board 1 via an insulating resin layer 2 (made of resin only), and a non-through hole 4 is formed in the insulating resin layer 2.
The circuit 3 and the inner layer circuit (the circuit of the core material printed wiring board 1 in FIG. 2) are connected through the non-through holes 4. When the number of layers of the circuit is further increased, the stacking of the insulating resin layer 2 and the circuit 3 and the connection of the circuit between the insulating layers in the non-through holes 4 are repeated. If necessary, the through hole 5 is provided at the end. The insulating resin layer 2 may be made of only a resin, or may be made of an organic fiber nonwoven fabric impregnated with a thermosetting resin. In addition, the circuit 3 is formed by etching a copper foil integrated with the insulating resin layer 2, or by forming electroless plating or printing a conductive paint on the insulating resin layer 2. However, if a layer made of only a thermosetting resin is used for the insulating resin layers that are sequentially stacked above and below the printed wiring board that serves as the core material, it is difficult to mix the inorganic filler, and the coefficient of thermal expansion in the thickness direction increases. Also, the adhesive strength between the circuit and the insulating resin layer is not so great. The insulating resin layer on the surface easily absorbs moisture, and there is a risk that the insulating resin layer will peel off due to the heat in the reflow oven during component mounting.If the insulating resin layer is composed of an organic fiber nonwoven fabric impregnated with a thermosetting resin, However, the heat in the reflow furnace may melt or soften the organic fiber nonwoven fabric, so that the thermosetting resin and the organic fiber nonwoven fabric may be separated at the interface. When such peeling occurs, moisture absorption causes a significant decrease in insulation resistance. Furthermore, since the multilayer circuit board is formed by stacking an insulating resin layer having low mechanical strength on a core material printed wiring board, the mechanical strength is low and warpage occurs in the reflow furnace. In particular, the tendency becomes remarkable as the thickness of the core printed wiring board becomes thin.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、絶縁層間の回路の接続を非貫通の穴で行な
うことにより高密度配線を可能にした多層回路板におい
て、そりを抑制し、耐熱性を改善することである。ま
た、絶縁層間の回路の接続信頼性、殊に、非貫通穴にお
ける接続信頼性を高めることである。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to suppress warpage in a multilayer circuit board which enables high density wiring by connecting circuits between insulating layers with non-through holes. , To improve heat resistance. Further, it is to improve the connection reliability of the circuit between the insulating layers, particularly the connection reliability in the non-through holes.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明に係る多層回路板の製造法は、芯材プリント配
線板の両面もしくは片面上に、絶縁層を介して回路を一
層以上形成し、絶縁層を介する回路間の接続を非貫通穴
で行なう工程を有する方法において、前記絶縁層のうち
少なくとも回路間の接続を非貫通穴で行なう絶縁層を、
熱硬化性樹脂含浸ガラス不織布で構成する。上記のよう
に製造した多層回路板は、熱硬化性樹脂含浸ガラス不織
布からなる絶縁層に含まれる樹脂分は50〜97重量%
である。ガラス不織布を絶縁層に配置した構造は、多層
回路板の機械的強度を大きくしてそりを抑制する。ま
た、耐熱性もよくなる。さらに、絶縁層の厚さ方向の熱
膨張率が小さくなることから、非貫通穴における回路間
の接続信頼性を高めることができる。熱硬化性樹脂含浸
ガラス不織布からなる絶縁層は、芯材プリント配線板に
積み上げていく絶縁層の全てに採用することが望ましい
が、少なくとも絶縁層を介する回路間の接続を非貫通穴
で行なう絶縁層を、熱硬化性樹脂含浸ガラス不織布から
なる絶縁層とすればよい。
In order to solve the above-mentioned problems, a method for manufacturing a multilayer circuit board according to the present invention comprises forming one or more circuits on both sides or one side of a core printed wiring board with an insulating layer interposed therebetween. In the method having the step of connecting the circuits through the insulating layer with the non-through holes, the insulating layer for connecting at least the circuits among the insulating layers with the non-through holes,
It is composed of thermosetting resin impregnated glass nonwoven fabric. In the multilayer circuit board manufactured as described above, the resin content in the insulating layer made of the thermosetting resin-impregnated glass nonwoven fabric is 50 to 97% by weight.
It is. The structure in which the glass non-woven fabric is arranged in the insulating layer increases the mechanical strength of the multilayer circuit board and suppresses warpage. Also, the heat resistance is improved. Furthermore, since the coefficient of thermal expansion in the thickness direction of the insulating layer is small, the connection reliability between the circuits in the non-through holes can be improved. An insulating layer made of thermosetting resin impregnated glass non-woven fabric should be used for all the insulating layers that are stacked on the core printed wiring board, but at least insulation between circuits through the insulating layer should be performed with non-through holes. The layer may be an insulating layer made of a thermosetting resin-impregnated glass nonwoven fabric.

【0006】非貫通穴の形成は、次の(a)と(b)の
工程を経て行なう。 (a)芯材プリント配線板の両面もしくは片面上に、熱
硬化性樹脂含浸ガラス不織布層を介して回路を1層以上
形成する工程。 (b)熱硬化性樹脂含浸ガラス不織布からなる絶縁層へ
の非貫通穴あけ加工をレーザ照射により行なう工程。 絶縁層の穴あけには、フォトリソのような光エネルギは
使用できないが、レーザ光のように高エネルギの光を使
用すれば容易にφ0.1mmの非貫通穴を形成できる。特
に、ガラス不織布は、ガラス繊維が分散されているの
で、レーザ照射であけた穴壁面の凹凸が少ない。
The non-through hole is formed through the following steps (a) and (b). (A) A step of forming one or more circuits on both sides or one side of a core printed wiring board via a thermosetting resin-impregnated glass nonwoven fabric layer. (B) A step of performing non-through hole drilling on the insulating layer made of a thermosetting resin-impregnated glass nonwoven fabric by laser irradiation. Although light energy such as photolithography cannot be used for drilling holes in the insulating layer, non-through holes of φ0.1 mm can be easily formed by using high-energy light such as laser light. In particular, since glass fibers are dispersed in the glass non-woven fabric, there are few irregularities on the hole wall surface formed by laser irradiation.

【0007】[0007]

【発明の実施の形態】本発明に係る製造法において、芯
材プリント配線板は、片面又は両面に回路を形成した配
線板や内層にも回路を有する多層回路板などである。こ
れらは、リジッドプリント配線板、フレキシブルプリン
ト配線板及び金属コアプリント配線板のいずれであって
もよい。リジッドプリント配線板は、ガラス織布、ガラ
ス不織布等を基材として、これに熱硬化性樹脂や耐熱性
熱可塑性樹脂を含浸乾燥したプリプレグを加熱加圧成形
したものを絶縁基板とする硬質のプリント配線板であ
る。フレキシブルプリント配線板は、ポリエステルやポ
リイミド等のフィルムを絶縁基板とする柔軟性のあるプ
リント配線板である。金属コアプリント配線板は、銅、
アルミニウム、鉄などの金属板に熱硬化性樹脂を塗布し
て絶縁基板としたプリント配線板である。これら芯材プ
リント配線板の回路形成法は、通常用いられるサブトラ
クティブ法、アディティブ法など特に限定するものでな
い。熱硬化性樹脂は、ポリイミド、フェノール樹脂、シ
アネート樹脂、シアン酸エステル樹脂、エポキシ樹脂、
不飽和ポリエステルなどを特に限定することなく使用で
きる。
BEST MODE FOR CARRYING OUT THE INVENTION In the manufacturing method according to the present invention, the core printed wiring board is, for example, a wiring board having a circuit formed on one side or both sides or a multilayer circuit board having a circuit in an inner layer. These may be any of a rigid printed wiring board, a flexible printed wiring board and a metal core printed wiring board. Rigid printed wiring boards are made of glass woven fabric, glass non-woven fabric, etc. as a base material, and are impregnated with thermosetting resin or heat resistant thermoplastic resin. It is a wiring board. The flexible printed wiring board is a flexible printed wiring board using a film such as polyester or polyimide as an insulating substrate. The metal core printed wiring board is copper,
This is a printed wiring board which is used as an insulating substrate by coating a thermosetting resin on a metal plate such as aluminum or iron. A circuit forming method for these core material printed wiring boards is not particularly limited, such as a subtractive method and an additive method which are usually used. Thermosetting resins include polyimide, phenol resin, cyanate resin, cyanate ester resin, epoxy resin,
Unsaturated polyester can be used without particular limitation.

【0008】上記のような芯材プリント配線板に、熱硬
化性樹脂含浸ガラス不織布からなる絶縁層を介して回路
を順次積み上げていくが、この絶縁層に無機充填材を含
有させることにより、そりの抑制効果がさらに大きくな
る。無機充填材の種類は、水酸化アルミニウム、クレ
ー、シリカ、タルク等一般に使用するものであり、特に
限定するものではない。ガラス不織布のガラス組成は、
Eガラス、Dガラス、Qガラス、Sガラスなどの組成で
あり、特に限定しない。また、ガラス組成の異なるガラ
ス繊維を混合したガラスチョップを抄造したガラス不織
布を採用してもよい。熱硬化性樹脂含浸ガラス不織布か
らなる絶縁層上の回路は、この絶縁層に一体化した金属
箔をエッチングしたり、導電性塗料を所定の回路模様に
印刷したり、無電解メッキにより形成することができ
る。金属箔は、銅箔、アルミニウム箔、ニッケル箔等で
あり、導電性の良好な金属箔であれば種類、厚みとも特
に限定しない。また、必要により接着剤付き金属箔を用
いることができる。この場合、接着剤としては、フェノ
ール樹脂系、エポキシ樹脂系、ブチラール樹脂系、ポリ
エステル系、ポリウレタン系およびその混合物など、汎
用の金属箔用接着剤を用いることができる。
Circuits are sequentially stacked on the core printed wiring board as described above through an insulating layer made of a thermosetting resin-impregnated glass nonwoven fabric. By adding an inorganic filler to the insulating layer, the sled is formed. The effect of suppressing is further increased. The type of the inorganic filler is generally used such as aluminum hydroxide, clay, silica, talc and is not particularly limited. The glass composition of the glass nonwoven fabric is
The composition is E glass, D glass, Q glass, S glass, or the like, and is not particularly limited. Further, a glass non-woven fabric formed by making glass chops into which glass fibers having different glass compositions are mixed may be adopted. The circuit on the insulating layer made of thermosetting resin impregnated glass non-woven fabric should be formed by etching the metal foil integrated with this insulating layer, printing conductive paint on the specified circuit pattern, or by electroless plating. You can The metal foil is a copper foil, an aluminum foil, a nickel foil, or the like, and the kind and thickness of the metal foil are not particularly limited as long as they have good conductivity. If necessary, a metal foil with an adhesive can be used. In this case, as the adhesive, a general-purpose adhesive for metal foil such as phenol resin, epoxy resin, butyral resin, polyester, polyurethane, or a mixture thereof can be used.

【0009】熱硬化性樹脂含浸ガラス不織布からなる絶
縁層上の回路とその絶縁層より内層にある回路を接続す
るために、絶縁層にレーザ照射により非貫通穴をあけ、
当該穴壁に銅メッキを行なう。当該絶縁層に含有させる
無機充填材の平均粒径を20μm以下にしておくと、非
貫通穴壁は勿論のこと、最後の工程で設けた貫通穴の壁
面にも均一にメッキを付着させることができ、非貫通穴
及びスルーホールにおける接続信頼性が高くなる。ま
た、ガラス不織布を構成するガラス繊維の径を13μm
以下にしておくと、非貫通穴形成の際にレーザ照射によ
り溶融したガラスが穴壁面で凹凸になりにくく、穴壁面
に均一に銅メッキを付着させる上で有利である。
In order to connect a circuit on an insulating layer made of a thermosetting resin-impregnated glass non-woven fabric and a circuit on an inner layer of the insulating layer, a non-through hole is opened in the insulating layer by laser irradiation.
Copper plating is applied to the hole wall. When the average particle diameter of the inorganic filler contained in the insulating layer is set to 20 μm or less, the plating can be applied uniformly not only to the wall of the non-through hole but also to the wall surface of the through hole formed in the last step. Therefore, the connection reliability in the non-through hole and the through hole is improved. In addition, the diameter of the glass fiber forming the glass nonwoven fabric is 13 μm.
In the following case, the glass melted by the laser irradiation during the formation of the non-through holes is unlikely to become uneven on the wall surface of the hole, which is advantageous in uniformly depositing the copper plating on the wall surface of the hole.

【0010】多層回路板の各絶縁層(芯材プリント配線
板の絶縁層も含む)の樹脂には、耐燃性をもたせるため
に、ハロゲン含有有機化合物や酸化アンチモン等の耐燃
助剤、その他の有機充填材、着色剤等を添加してもよ
い。
The resin of each insulating layer of the multilayer circuit board (including the insulating layer of the core printed wiring board) contains a halogen-containing organic compound, a flame-retardant aid such as antimony oxide, and other organic substances in order to impart flame resistance. Fillers, colorants and the like may be added.

【0011】[0011]

【実施例】【Example】

実施例1 (芯材プリント配線板の製造)エポキシ樹脂(油化シェ
ル製「Ep−1001」、エポキシ当量:480)10
0重量部、ジシアンジアミド3重量部、触媒として2−
エチル4−メチルイミダゾール0.2重量部を配合しワ
ニス(A)を調製した。厚さ200μmのガラス織布
(旭シュエーベル製「7628」、ガラス繊維径9μ
m)に、ワニス(A)を含浸乾燥し、樹脂含有量42重
量%のプリプレグ(A)を用意した。プリプレグ(A)
を4枚重ね合わせその上下に銅箔(厚さ18μm)を載
置し温度170℃、圧力40kgf/cm2の条件で60分間
加熱加圧成形して、板厚0.4mmの銅張り積層板(A)
を得た。銅張り積層板(A)に所定の回路をエッチング
で形成し、後工程での接着性を向上させるために回路表
面に黒化処理を行なって、芯材プリント配線板1とした
(図1(a))。
Example 1 (Production of core printed wiring board) Epoxy resin (“Ep-1001” manufactured by Yuka Shell, epoxy equivalent: 480) 10
0 parts by weight, dicyandiamide 3 parts by weight, 2-
0.2 parts by weight of ethyl 4-methylimidazole was mixed to prepare a varnish (A). 200 μm thick glass woven cloth (“7628” manufactured by Asahi Schwebel, glass fiber diameter 9 μm
The m) was impregnated with the varnish (A) and dried to prepare a prepreg (A) having a resin content of 42% by weight. Prepreg (A)
Copper foil (thickness 18 μm) is placed on the top and bottom of the four sheets and heat-pressed for 60 minutes at a temperature of 170 ° C. and a pressure of 40 kgf / cm 2 to form a copper-clad laminate with a thickness of 0.4 mm. (A)
I got A predetermined circuit is formed on the copper-clad laminate (A) by etching, and the surface of the circuit is blackened in order to improve the adhesiveness in a later step to obtain a core printed wiring board 1 (Fig. 1 ( a)).

【0012】(多層化工程1)ワニス(A)を厚さ35
0μmのガラス不織布(日本バイリーン製「EPM44
45」,ガラス繊維径10μm)に含浸乾燥し、樹脂量
78重量%のプリプレグ(B)を用意した。芯材プリン
ト配線板1の上下面にプリプレグ(B)を1枚ずつ重ね
合わせ、その上下面に銅箔(厚さ18μm)を載置し、
温度170℃、圧力40kgf/cm2の条件で60分間加熱
加圧成形して銅張り積層板(B)を得た(図1
(b))。銅張り積層板(B)の非貫通穴を開ける部分
の銅をエッチングで除去し、その部分にレーザ照射によ
り非貫通穴をあけ、芯材プリント配線板1の回路を露出
させる。そして、同回路と穴壁と表面の銅箔に銅メッキ
を行なった。メッキした表面の銅箔をエッチングして所
定の回路を形成し、後工程での接着性を向上させるため
に回路表面に黒化処理を行なった。これが、芯材プリン
ト配線板1の両面に、エポキシ樹脂含浸ガラス不織布か
らなる絶縁層10を介して回路3を設けた構成である。
回路3と芯材プリント配線板1の回路とは、適宜絶縁層
10の非貫通穴4(エポキシ樹脂含浸ガラス不織布から
なる絶縁層10のみにあけた穴)において接続されてい
る(図1(c))。
(Multilayering process 1) The thickness of the varnish (A) is set to 35
0 μm glass non-woven fabric (“EPM44
45 ", glass fiber diameter 10 μm) and dried to prepare a prepreg (B) having a resin amount of 78% by weight. The prepreg (B) is superposed on the upper and lower surfaces of the core printed wiring board 1 one by one, and copper foil (thickness 18 μm) is placed on the upper and lower surfaces thereof,
A copper-clad laminate (B) was obtained by heat-press molding for 60 minutes at a temperature of 170 ° C. and a pressure of 40 kgf / cm 2 (FIG. 1).
(B)). Copper in a portion of the copper-clad laminate (B) where a non-through hole is formed is removed by etching, and a non-through hole is opened in the portion by laser irradiation to expose the circuit of the core printed wiring board 1. Then, the same circuit, the hole wall and the copper foil on the surface were plated with copper. The copper foil on the plated surface was etched to form a predetermined circuit, and the circuit surface was subjected to blackening treatment in order to improve the adhesiveness in a later step. This is a configuration in which the circuits 3 are provided on both surfaces of the core printed wiring board 1 with the insulating layer 10 made of an epoxy resin-impregnated glass nonwoven fabric interposed therebetween.
The circuit 3 and the circuit of the core printed wiring board 1 are appropriately connected to each other through non-through holes 4 in the insulating layer 10 (holes formed only in the insulating layer 10 made of epoxy resin-impregnated glass nonwoven fabric) (FIG. 1 (c)). )).

【0013】(多層化工程2)多層化工程1を経たプリ
ント配線板の上下面にプリプレグ(B)と銅箔(厚さ1
8μm)をこの順に重ね、上記と同様に加熱加圧成形し
て銅張積層板(C)を得た(図1(d))。銅張り積層
板(C)の非貫通穴をあける部分の銅をエッチングで除
去し、その部分にレーザ照射により非貫通穴6をあけ、
内層の回路を露出させた。また、NCドリルマシンによ
りスルーホール5をあけた。そして、露出させた内層の
回路と非貫通穴6及びスルーホール5の穴壁と表面の銅
箔に銅メッキを行なった。メッキした表面の銅箔をエッ
チングして所定の回路7を形成した。表面の回路7とそ
の一つ内層にある回路とは、エポキシ樹脂含浸ガラス不
織布からなる絶縁層11の非貫通穴6(エポキシ樹脂含
浸ガラス不織布からなる絶縁層11のみにあけた穴)に
おいて接続されている。また、各層の回路がスルーホー
ル5によって適宜接続されている(図1(e))。
(Multilayering step 2) A prepreg (B) and a copper foil (thickness 1) are formed on the upper and lower surfaces of the printed wiring board which has undergone the multilayering step 1.
8 μm) in this order and heat-pressed in the same manner as above to obtain a copper-clad laminate (C) (FIG. 1 (d)). The copper of the copper-clad laminate (C) where the non-through holes are to be formed is removed by etching, and the non-through holes 6 are opened in that portion by laser irradiation.
The inner layer circuit was exposed. Moreover, the through hole 5 was opened by the NC drill machine. Then, the exposed inner layer circuit, the non-through holes 6 and the hole walls of the through holes 5 and the copper foil on the surface were plated with copper. The copper foil on the plated surface was etched to form a predetermined circuit 7. The circuit 7 on the surface and the circuit in one of the inner layers are connected to each other through a non-penetrating hole 6 (a hole formed only in the insulating layer 11 made of the epoxy resin-impregnated glass nonwoven fabric) of the insulating layer 11 made of the epoxy resin-impregnated glass nonwoven fabric. ing. Further, the circuits of the respective layers are appropriately connected by the through holes 5 (FIG. 1 (e)).

【0014】本実施例では、多層化工程を2回しか実施
していないが、回路の層数を増やす場合は、同様の多層
化工程をさらに繰り返す。
In this embodiment, the multi-layering process is carried out only twice, but when the number of layers in the circuit is increased, the same multi-layering process is further repeated.

【0015】実施例2 実施例1におけるワニス(A)として、平均粒径18μ
mのタルク40重量部をさらに配合したものを使用し
た。それ以外は、実施例1と同様にして多層プリント配
線板を製造した。
Example 2 The varnish (A) used in Example 1 had an average particle size of 18 μm.
A mixture of 40 parts by weight of talc of m was used. A multilayer printed wiring board was manufactured in the same manner as in Example 1 except for the above.

【0016】実施例3 実施例1におけるワニス(A)として、平均粒径8μm
のタルク40重量部をさらに配合したものを使用した。
それ以外は、実施例1と同様にして多層プリント配線板
を製造した。
Example 3 The varnish (A) used in Example 1 had an average particle size of 8 μm.
Was further mixed with 40 parts by weight of talc.
A multilayer printed wiring board was manufactured in the same manner as in Example 1 except for the above.

【0017】実施例4 実施例1におけるワニス(A)として、平均粒径20μ
mのタルク40重量部をさらに配合したものを使用し
た。それ以外は、実施例1と同様にして多層プリント配
線板を製造した。
Example 4 The varnish (A) used in Example 1 had an average particle size of 20 μm.
A mixture of 40 parts by weight of talc of m was used. A multilayer printed wiring board was manufactured in the same manner as in Example 1 except for the above.

【0018】実施例5 実施例1におけるワニス(A)として、平均粒径22μ
mのタルク40重量部をさらに配合したものを使用し
た。それ以外は、実施例1と同様にして多層プリント配
線板を製造した。
Example 5 The varnish (A) used in Example 1 has an average particle size of 22 μm.
A mixture of 40 parts by weight of talc of m was used. A multilayer printed wiring board was manufactured in the same manner as in Example 1 except for the above.

【0019】実施例6 ガラス不織布として、ガラス不織布を構成するガラス繊
維径が7μmのものを使用した。それ以外は、実施例1
と同様にして多層プリント配線板を製造した。
Example 6 A glass nonwoven fabric having a glass fiber diameter of 7 μm was used as the glass nonwoven fabric. Otherwise, Example 1
A multilayer printed wiring board was manufactured in the same manner as in.

【0020】実施例7 ガラス不織布として、ガラス不織布を構成するガラス繊
維径が13μmのものを使用した。それ以外は、実施例
1と同様にして多層プリント配線板を製造した。
Example 7 A glass nonwoven fabric having a glass fiber diameter of 13 μm was used as the glass nonwoven fabric. A multilayer printed wiring board was manufactured in the same manner as in Example 1 except for the above.

【0021】実施例8 ガラス不織布として、ガラス不織布を構成するガラス繊
維径が15μmのものを使用した。それ以外は、実施例
1と同様にして多層プリント配線板を製造した。
Example 8 A glass nonwoven fabric having a glass fiber diameter of 15 μm was used as the glass nonwoven fabric. A multilayer printed wiring board was manufactured in the same manner as in Example 1 except for the above.

【0022】従来例1 実施例1で用いたワニス(A)を銅箔の粗化面に塗布
し、乾燥して50μm厚の絶縁樹脂層付銅箔(A)を用
意した。実施例1で用いた芯材プリント配線板の上下面
に、絶縁樹脂層付銅箔(A)の絶縁樹脂層面を重ね合わ
せ、温度170℃、圧力40kgf/cm2の条件で60分間
加熱加圧成形して銅張り積層板(D)を得た。銅張り積
層板(D)の非貫通穴をあける部分の銅をエッチングで
除去し、その部分にレーザ照射により非貫通穴をあけ、
芯材プリント配線板の回路を露出させる。そして、同回
路と穴壁と表面の銅箔に銅メッキを行なった。メッキし
た表面の銅箔をエッチングして所定の回路を形成し、後
工程での接着性を向上させるために回路表面に黒化処理
を行なった。さらに、上記工程を経たプリント配線板の
上下面に、絶縁樹脂層付銅箔(A)の絶縁樹脂層面を重
ね合わせ、温度170℃、圧力40kgf/cm2の条件で6
0分間加熱加圧成形して銅張り積層板(E)を得た。銅
張り積層板(E)の非貫通穴をあける部分の銅をエッチ
ングで除去し、その部分にレーザ照射により非貫通穴を
あけ、内層の回路を露出させた。また、NCドリルマシ
ンによりスルーホールをあけた。そして、非貫通穴及び
スルーホールの穴壁と表面の銅箔に銅メッキを行なっ
た。メッキした表面の銅箔をエッチングして所定の回路
を形成した。
Conventional Example 1 The varnish (A) used in Example 1 was applied to the roughened surface of a copper foil and dried to prepare a copper foil with an insulating resin layer (A) having a thickness of 50 μm. The insulating resin layer surface of the copper foil with an insulating resin layer (A) is overlaid on the upper and lower surfaces of the core printed wiring board used in Example 1, and heated and pressed for 60 minutes under the conditions of a temperature of 170 ° C. and a pressure of 40 kgf / cm 2. It shape | molded and the copper clad laminated board (D) was obtained. The copper of the copper-clad laminate (D) where the non-through holes are to be formed is removed by etching, and the non-through holes are made in that portion by laser irradiation.
The core printed circuit board circuit is exposed. Then, the same circuit, the hole wall and the copper foil on the surface were plated with copper. The copper foil on the plated surface was etched to form a predetermined circuit, and the circuit surface was subjected to blackening treatment in order to improve the adhesiveness in a later step. Furthermore, the insulating resin layer surface of the copper foil (A) with an insulating resin layer is laid on the upper and lower surfaces of the printed wiring board that has undergone the above steps, and the temperature is 170 ° C. and the pressure is 40 kgf / cm 2.
It was heated and pressed for 0 minutes to obtain a copper-clad laminate (E). Copper was removed by etching from the portion of the copper-clad laminate (E) where a non-through hole was to be formed, and a non-through hole was opened in that portion by laser irradiation to expose the inner layer circuit. In addition, through holes were opened with an NC drill machine. Then, copper was plated on the hole walls of the non-through holes and the through holes and the copper foil on the surface. The copper foil on the plated surface was etched to form a predetermined circuit.

【0023】従来例2 実施例1で用いたワニス(A)を厚さ150μmのアラ
ミド繊維不織布に含浸乾燥し、樹脂量85重量%のプリ
プレグ(C)を用意した。実施例1で用いた芯材プリン
ト配線板の上下面に、プリプレグ(C)、さらに銅箔の
粗化面を重ね合わせ、温度170℃、圧力40kgf/cm2
の条件で60分間加熱加圧成形して銅張り積層板(F)
を得た。銅張り積層板(F)の非貫通穴をあける部分の
銅をエッチングで除去し、その部分にレーザ照射により
非貫通穴をあけ、芯材プリント配線板の回路を露出させ
る。そして、同回路と穴壁と表面の銅箔に銅メッキを行
なった。メッキした表面の銅箔をエッチングして所定の
回路を形成し、後工程での接着性を向上させるために回
路表面に黒化処理を行なった。さらに、上記工程を経た
プリント配線板の上下面に、プリプレグ(C)、さらに
銅箔の粗化面を重ね合わせ、温度170℃、圧力40kg
f/cm2の条件で60分間加熱加圧成形して銅張り積層板
(G)を得た。銅張り積層板(G)の非貫通穴をあける
部分の銅をエッチングで除去し、その部分にレーザ照射
により非貫通穴をあけ、内層の回路を露出させた。ま
た、NCドリルマシンによりスルーホールをあけた。そ
して、非貫通穴及びスルーホールの穴壁と表面の銅箔に
銅メッキを行なった。メッキした表面の銅箔をエッチン
グして所定の回路を形成した。
Conventional Example 2 The varnish (A) used in Example 1 was impregnated into an aramid fiber nonwoven fabric having a thickness of 150 μm and dried to prepare a prepreg (C) having a resin amount of 85% by weight. A prepreg (C) and a roughened surface of a copper foil were overlaid on the upper and lower surfaces of the core printed wiring board used in Example 1, and the temperature was 170 ° C. and the pressure was 40 kgf / cm 2.
Copper-clad laminate (F) by heat and pressure molding for 60 minutes under the conditions
I got Copper in a portion of the copper-clad laminate (F) where a non-through hole is to be formed is removed by etching, and a non-through hole is opened in the portion by laser irradiation to expose the circuit of the core printed wiring board. Then, the same circuit, the hole wall and the copper foil on the surface were plated with copper. The copper foil on the plated surface was etched to form a predetermined circuit, and the circuit surface was subjected to blackening treatment in order to improve the adhesiveness in a later step. Furthermore, the prepreg (C) and the roughened surface of the copper foil are overlaid on the upper and lower surfaces of the printed wiring board that has undergone the above steps, and the temperature is 170 ° C. and the pressure is 40 kg.
A copper-clad laminate (G) was obtained by heat-press molding for 60 minutes under the condition of f / cm 2 . Copper was removed by etching from a portion of the copper-clad laminate (G) where a non-through hole was to be formed, and a non-through hole was opened in that portion by laser irradiation to expose the inner layer circuit. In addition, through holes were opened with an NC drill machine. Then, copper was plated on the hole walls of the non-through holes and the through holes and the copper foil on the surface. The copper foil on the plated surface was etched to form a predetermined circuit.

【0024】従来例3 実施例1で用いたワニス(A)を厚さ100μmのガラ
ス織布に含浸乾燥し、樹脂量42%重量のプリプレグ
(D)を用意した。実施例1で用いた芯材プリント配線
板の上下面にプリプレグ(D)、さらに銅箔の粗化面を
重ね合わせ、温度170℃、圧力40kgf/cm2の条件で
60分間加熱加圧成形して銅張り積層板(H)を得た。
銅張り積層板(H)の非貫通穴をあける部分の銅をエッ
チングで除去し、その部分にレーザ照射により非貫通穴
をあけ、芯材プリント配線板の回路を露出させる。そし
て、同回路と穴壁と表面の銅箔に銅メッキを行なった。
メッキした表面の銅箔をエッチングして所定の回路を形
成し、後工程での接着性を向上させるために回路表面に
黒化処理を行なった。さらに、上記工程を経たプリント
配線板の上下面に、プリプレグ(D)、さらに銅箔の粗
化面を重ね合わせ、温度170℃、圧力40kgf/cm2
条件で60分間加熱加圧成形して銅張り積層板(I)を
得た。銅張り積層板(I)の非貫通穴をあける部分の銅
をエッチングで除去し、その部分にレーザ照射により非
貫通穴をあけ、内層の回路を露出させた。また、NCド
リルマシンによりスルーホールをあけ、スルーホールの
穴壁と表面の銅箔に銅メッキを行った。メッキした表面
の銅箔をエッチングして所定の回路を形成した。
Conventional Example 3 A glass woven cloth having a thickness of 100 μm was impregnated with the varnish (A) used in Example 1 and dried to prepare a prepreg (D) having a resin amount of 42% by weight. The prepreg (D) and the roughened surface of the copper foil are overlaid on the upper and lower surfaces of the core printed wiring board used in Example 1 and heat-pressed for 60 minutes under the conditions of a temperature of 170 ° C. and a pressure of 40 kgf / cm 2. To obtain a copper-clad laminate (H).
Copper in a portion of the copper-clad laminate (H) where a non-through hole is to be formed is removed by etching, and a non-through hole is opened in the portion by laser irradiation to expose the circuit of the core printed wiring board. Then, the same circuit, the hole wall and the copper foil on the surface were plated with copper.
The copper foil on the plated surface was etched to form a predetermined circuit, and the circuit surface was subjected to blackening treatment in order to improve the adhesiveness in a later step. Further, a prepreg (D) and a roughened surface of a copper foil are superposed on the upper and lower surfaces of the printed wiring board that has undergone the above steps, and heated and pressed for 60 minutes under the conditions of a temperature of 170 ° C. and a pressure of 40 kgf / cm 2. A copper-clad laminate (I) was obtained. Copper in a portion of the copper-clad laminate (I) where a non-through hole was formed was removed by etching, and a non-through hole was opened in the portion by laser irradiation to expose an inner layer circuit. Further, through holes were opened by an NC drill machine, and copper was plated on the hole walls of the through holes and the copper foil on the surface. The copper foil on the plated surface was etched to form a predetermined circuit.

【0025】以上の実施例及び従来例の多層プリント配
線板の評価結果を表1に示す。評価方法は、次のとおり
である。 そり量:長さ300mm、幅10mmの試験片をリフロー装
置(最大温度250℃)に通した後に、試験片を平なと
ころにおいて、その四隅の浮き上がり量の最大値を測定 耐熱性:長さ300mm、幅10mmの試験片をリフロー装
置(最大温度250℃)に通した後に、試験片の表面層
の剥離の有無を観察 ○:剥離なし ×:剥離あり 接続信頼性:断面の回路パターンが図3に示すような評
価用多層回路板を用意し、20℃−20秒と260℃−
10秒の冷熱サイクルを繰り返して導通抵抗が初期値か
ら10%上昇するまでのサイクル(非貫通穴径:0.2
mm、スルーホール径:0.4mm)
Table 1 shows the evaluation results of the multilayer printed wiring boards of the above examples and conventional examples. The evaluation method is as follows. Deflection: After passing a test piece with a length of 300 mm and a width of 10 mm through a reflow device (maximum temperature of 250 ° C), measure the maximum value of the lifted amount at the four corners of the test piece in a flat place. Heat resistance: length 300 mm After passing a test piece with a width of 10 mm through a reflow device (maximum temperature 250 ° C.), the presence or absence of peeling of the surface layer of the test piece is observed. ○: No peeling ×: With peeling Connection reliability: The circuit pattern of the cross section is shown in FIG. Prepare a multi-layer circuit board for evaluation as shown in Fig.
A cycle until the conduction resistance increases by 10% from the initial value by repeating the 10 second cooling / heating cycle (non-through hole diameter: 0.2
mm, through hole diameter: 0.4 mm)

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】表1から明らかなように、本発明に係る
方法で製造した多層板は、絶縁層間の回路接続を非貫通
穴で行なった構成において、そり、絶縁層間の回路の接
続信頼性及び耐熱性を優れたものにできる。絶縁樹脂層
に無機充填材を含有させれば、そりをさらに小さくする
ことができ(実施例2,3,4,5)、無機充填材の平
均粒径を20μm以下にすれば、スルーホール及び非貫
通穴で接続した絶縁層間の回路接続信頼性を一層高くす
ることができる(実施例2,3,4)。また、レーザ照
射により非貫通穴をあける場合、表面絶縁層のガラス織
布のガラス繊維径を10μm以下にすれば、非貫通穴で
接続した絶縁層間の回路接続信頼性を一層高くすること
ができる(実施例1,6)。
As is apparent from Table 1, in the multilayer board manufactured by the method according to the present invention, in the structure in which the circuit connection between the insulating layers is performed by the non-through hole, the connection reliability of the circuit between the warp and the insulating layer is improved. Also, the heat resistance can be made excellent. If the insulating resin layer contains an inorganic filler, the warp can be further reduced (Examples 2, 3, 4, 5), and if the average particle diameter of the inorganic filler is 20 μm or less, through holes and The circuit connection reliability between the insulating layers connected by the non-through holes can be further improved (Examples 2, 3 and 4). Further, when making a non-through hole by laser irradiation, if the glass fiber diameter of the glass woven fabric of the surface insulating layer is 10 μm or less, the circuit connection reliability between the insulating layers connected by the non-through hole can be further enhanced. (Examples 1 and 6).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例の製造工程を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a manufacturing process of an example according to the present invention.

【図2】従来の多層プリント配線板の断面図である。FIG. 2 is a cross-sectional view of a conventional multilayer printed wiring board.

【図3】絶縁層間の回路の接続信頼性を評価する多層プ
リント配線板の断面回路パターンの説明図である。
FIG. 3 is an explanatory diagram of a cross-sectional circuit pattern of a multilayer printed wiring board for evaluating connection reliability of a circuit between insulating layers.

【符号の説明】[Explanation of symbols]

1:芯材プリント配線板 2:絶縁樹脂層 3:回路 4:非貫通穴 5:スルーホール 6:非貫通穴 7:回路 10,11:絶縁層 1: Core printed wiring board 2: Insulating resin layer 3: Circuit 4: Non-through hole 5: Through hole 6: Non-through hole 7: Circuit 10, 11: Insulating layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】芯材プリント配線板の両面もしくは片面上
に、絶縁層を介して回路を一層以上形成し、絶縁層を介
する回路間の接続を非貫通穴で行なう工程を有する多層
回路板の製造において、前記絶縁層のうち少なくとも回
路間の接続を非貫通穴で行なう絶縁層を、熱硬化性樹脂
含浸ガラス不織布で構成することを特徴とする多層回路
板の製造法。
1. A multilayer circuit board having a step of forming one or more circuits on both sides or one side of a core printed wiring board via an insulating layer and connecting circuits via the insulating layer with non-through holes. In the manufacturing method, a method for manufacturing a multilayer circuit board, characterized in that at least an insulating layer of the insulating layers for connecting circuits with a non-through hole is made of a thermosetting resin-impregnated glass nonwoven fabric.
【請求項2】熱硬化性樹脂含浸ガラス不織布からなる絶
縁層に無機充填材を含有させる請求項1記載の多層回路
板の製造法。
2. The method for producing a multilayer circuit board according to claim 1, wherein the insulating layer made of a thermosetting resin-impregnated glass nonwoven fabric contains an inorganic filler.
【請求項3】無機充填材の平均粒径を20μm以下にし
た請求項2記載の多層回路板の製造法。
3. The method for producing a multilayer circuit board according to claim 2, wherein the average particle diameter of the inorganic filler is 20 μm or less.
【請求項4】次の(a)と(b)の工程を経ることを特
徴とする多層回路板の製造法。 (a)芯材プリント配線板の両面もしくは片面上に、熱
硬化性樹脂含浸ガラス不織布層を介して回路を1層以上
形成する工程。 (b)熱硬化性樹脂含浸ガラス不織布からなる表面絶縁
層への非貫通穴あけ加工をレーザ照射により行なう工
程。
4. A method for manufacturing a multilayer circuit board, which comprises the following steps (a) and (b). (A) A step of forming one or more circuits on both sides or one side of a core printed wiring board via a thermosetting resin-impregnated glass nonwoven fabric layer. (B) A step of performing non-penetrating drilling on the surface insulating layer made of a thermosetting resin-impregnated glass nonwoven fabric by laser irradiation.
【請求項5】ガラス不織布を構成するガラス繊維の径を
13μm以下にした請求項4記載の多層回路板の製造
法。
5. The method for producing a multilayer circuit board according to claim 4, wherein the glass fiber constituting the glass nonwoven fabric has a diameter of 13 μm or less.
JP3916996A 1996-02-27 1996-02-27 Manufacture of multilayered circuit board Pending JPH09232757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3916996A JPH09232757A (en) 1996-02-27 1996-02-27 Manufacture of multilayered circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3916996A JPH09232757A (en) 1996-02-27 1996-02-27 Manufacture of multilayered circuit board

Publications (1)

Publication Number Publication Date
JPH09232757A true JPH09232757A (en) 1997-09-05

Family

ID=12545624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3916996A Pending JPH09232757A (en) 1996-02-27 1996-02-27 Manufacture of multilayered circuit board

Country Status (1)

Country Link
JP (1) JPH09232757A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001740A1 (en) * 1999-06-25 2001-01-04 Alliedsignal Inc. Microfiber dielectrics which facilitate laser via drilling
JP2006332578A (en) * 2005-04-28 2006-12-07 Hitachi Chem Co Ltd Printed wiring board and its manufacturing method
WO2011027558A1 (en) * 2009-09-02 2011-03-10 パナソニック株式会社 Printed wiring board, build-up multi-layer board, and production method therefor
CN103155145A (en) * 2010-10-13 2013-06-12 高通股份有限公司 Method and apparatus for improving substrate warpage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001740A1 (en) * 1999-06-25 2001-01-04 Alliedsignal Inc. Microfiber dielectrics which facilitate laser via drilling
JP2006332578A (en) * 2005-04-28 2006-12-07 Hitachi Chem Co Ltd Printed wiring board and its manufacturing method
WO2011027558A1 (en) * 2009-09-02 2011-03-10 パナソニック株式会社 Printed wiring board, build-up multi-layer board, and production method therefor
CN102484951A (en) * 2009-09-02 2012-05-30 松下电器产业株式会社 Printed wiring board, build-up multi-layer board, and production method therefor
US8866022B2 (en) 2009-09-02 2014-10-21 Panasonic Corporation Printed wiring board, build-up multi-layer board, and production method therefor
CN103155145A (en) * 2010-10-13 2013-06-12 高通股份有限公司 Method and apparatus for improving substrate warpage
JP2013541216A (en) * 2010-10-13 2013-11-07 クアルコム,インコーポレイテッド Method and apparatus for improving substrate warpage

Similar Documents

Publication Publication Date Title
JP4119205B2 (en) Multilayer wiring board
US6673190B2 (en) Lasable bond-ply materials for high density printed wiring boards
JP2587596B2 (en) Circuit board connecting material and method for manufacturing multilayer circuit board using the same
JP2011091423A (en) Multilayered printed circuit board and fabricating method thereof
JPWO2004064467A1 (en) Multilayer wiring board, manufacturing method thereof, and manufacturing method of fiber reinforced resin substrate
JP2003031952A (en) Core substrate and multilayer circuit board using the same
US5928757A (en) Multiple wire printed circuit board and process for making the same
JPH05198946A (en) Manufacture of multilayer printed circuit board
JP2004152904A (en) Electrolytic copper foil, film and multilayer wiring substrate therewith, and method of manufacturing the same
JP2017135357A (en) Printed wiring board and method of manufacturing the same
EP1353541B1 (en) Circuit board and production method therefor
JPH11298153A (en) Multilayered printed circuit board
JPH09232757A (en) Manufacture of multilayered circuit board
JP3806593B2 (en) Build-up insulation material and build-up multilayer printed wiring board
JP3440174B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3982233B2 (en) Wiring board manufacturing sheet material and multilayer board
JP2003318550A (en) Laminated wiring board and multilayer wiring assembly, and method for manufacturing the same
JPH0992974A (en) Manufacture of multilayer board
JP3588888B2 (en) Method for manufacturing multilayer printed wiring board
JP4705261B2 (en) Build-up multilayer printed wiring board
JP3049972B2 (en) Multilayer wiring board
JPH11163527A (en) Manufacture of multilayer wiring board
JP2000252631A (en) Multilayer printed wiring board and its manufacture
JP2003086941A (en) Printed wiring board
JPS6338878B2 (en)