JP2006332578A - Printed wiring board and its manufacturing method - Google Patents

Printed wiring board and its manufacturing method Download PDF

Info

Publication number
JP2006332578A
JP2006332578A JP2005287998A JP2005287998A JP2006332578A JP 2006332578 A JP2006332578 A JP 2006332578A JP 2005287998 A JP2005287998 A JP 2005287998A JP 2005287998 A JP2005287998 A JP 2005287998A JP 2006332578 A JP2006332578 A JP 2006332578A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
resin
insulating layer
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005287998A
Other languages
Japanese (ja)
Inventor
Hironori Suzuki
宏典 鈴木
Yoshitoshi Kumakura
俊寿 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005287998A priority Critical patent/JP2006332578A/en
Publication of JP2006332578A publication Critical patent/JP2006332578A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board with built-in parts which can be easily manufactured and scarcely leaves solvent and air bubbles in an insulating layer and is excellent in strength, and to provide a method of efficiently manufacturing the printed wiring board with built-in parts. <P>SOLUTION: In the printed wiring board in which parts are built, a part or all of the insulating layer constituting the printed wiring board consists of an insulating material including fiber which is not spun or woven and a resin composition, and relates to the method of manufacturing the printed wiring board. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プリント配線板およびその製造方法に関する。   The present invention relates to a printed wiring board and a manufacturing method thereof.

近年のパソコンや携帯電話などの分野で使用されるプリント配線板の集積化に例を見るように、部品実装の高密度化が年々進展してきている。そして、一般的に行われている部品実装の高密度化の手法といえば、多層プリント配線板上に実装する部品の集積度を高めることである。この手法による高密度化の限界は、簡単には実装する部品の大きさと数、それらを実装するプリント配線板の表面積から推定することができる。一方で、製品の小型化と高性能化いう市場要求もあり、より小さな基板に高度な部品を大量に実装する必要が発生しており、単にプリント配線板表面に実装する部品の集積度を上げるという手法は、限界に近づいてきている。   As seen in the example of integration of printed wiring boards used in the fields of personal computers and mobile phones in recent years, the density of component mounting has been increasing year by year. A general technique for increasing the density of component mounting is to increase the degree of integration of components mounted on a multilayer printed wiring board. The limit of density increase by this method can be easily estimated from the size and number of components to be mounted and the surface area of the printed wiring board on which they are mounted. On the other hand, there is a market demand for miniaturization and high performance of products, and it is necessary to mount a large amount of advanced components on a smaller board, which simply increases the degree of integration of components mounted on the surface of a printed wiring board. This approach is approaching its limits.

そこで、さらに高密度化するために、部品を基板内部にも実装した「部品内蔵基板」が盛んに検討されてきている。代表的な部品内蔵化、多層化手法として、基板に空けた穴である、スルーホールやビア中に部品を埋め込む手法や基板に直接部品を実装した後、プリプレグや絶縁樹脂で埋め込み、その上に回路を形成する手法等が考案されている。しかし、これらの手法は有効な方法ではあるが、(I)樹脂等で埋め込む工程が増えて煩雑になる、(II)樹脂単独で埋め込んだ場合は、強度が低下しやすい、(III)樹脂単独で埋め込んだ場合、溶剤が残留し欠陥となる可能性がある、(IV)プリプレグを使用した場合、複雑な実装部品を埋め込む際に樹脂が不足して良好な絶縁層を形成しにくい等の弊害が発生しており、より有効な製造方法を確立する必要性がある。
特開2004−96058号公報 特開2004−319561号公報 特開2003−92460号公報 特開2002−344146号公報 特開2002−76637号公報 特開2001−298273号公報 特開2001−298274号公報 特開2001−210955号公報 特開平10−56251号公報 特開平9−214090号公報
Therefore, in order to further increase the density, “component built-in substrates” in which components are also mounted inside the substrate have been actively studied. As a typical component built-in and multilayer method, holes are drilled in the board, such as embedding parts in through holes and vias, or mounting parts directly on the board and then embedding with prepreg or insulating resin A technique for forming a circuit has been devised. However, although these methods are effective methods, (I) the process of embedding with a resin or the like increases and becomes complicated. (II) When embedded with a resin alone, the strength tends to decrease. If embedded in, there is a possibility that the solvent may remain and cause defects, (IV) When prepreg is used, it is difficult to form a good insulating layer due to insufficient resin when embedding complicated mounting parts There is a need to establish a more effective manufacturing method.
JP 2004-96058 A JP 2004-319561 A JP 2003-92460 A JP 2002-344146 A JP 2002-76637 A JP 2001-298273 A JP 2001-298274 A Japanese Patent Laid-Open No. 2001-210955 Japanese Patent Laid-Open No. 10-56251 Japanese Patent Laid-Open No. 9-2104090

上記を鑑みて、本発明は、容易に製造することができ、絶縁層に溶剤や気泡が残留する可能性が低く、強度が優れた部品内蔵プリント配線板、および当該部品内蔵プリント配線板を効率よく製造する方法を提供することを目的とする。   In view of the above, the present invention can be easily manufactured, has a low possibility of leaving a solvent or air bubbles in the insulating layer, and has an excellent strength and a printed wiring board with a built-in component. The object is to provide a method of manufacturing well.

すなわち、本発明は、以下(1)〜(4)に記載の事項をその特徴とするものである。   That is, the present invention is characterized by the following items (1) to (4).

(1)部品が内蔵されたプリント配線板であって、該プリント配線板を構成する絶縁層の一部もしくは全部が、紡織していない繊維と樹脂組成物を含む絶縁材料からなることを特徴とするプリント配線板。   (1) A printed wiring board having a built-in component, wherein a part or all of an insulating layer constituting the printed wiring board is made of an insulating material including unspun fibers and a resin composition. Printed wiring board.

(2)前記繊維がガラス繊維もしくはアラミド繊維であることを特徴とする上記(1)に記載のプリント配線板。   (2) The printed wiring board according to (1), wherein the fiber is glass fiber or aramid fiber.

(3)基板に実装された部品をシート状絶縁材料で埋め込み、絶縁層を形成する工程を有するプリント配線板の製造方法であって、前記シート状絶縁材料が紡織していない繊維と樹脂組成物を含む絶縁材料からなることを特徴とするプリント配線板の製造方法。   (3) A printed wiring board manufacturing method including a step of embedding a component mounted on a substrate with a sheet-like insulating material and forming an insulating layer, wherein the sheet-like insulating material is not woven and a resin composition A method for producing a printed wiring board comprising an insulating material containing

(4)前記繊維がガラス繊維もしくはアラミド繊維であることを特徴とする上記(3)に記載のプリント配線板の製造方法。   (4) The method for producing a printed wiring board according to (3), wherein the fiber is glass fiber or aramid fiber.

本発明によれば、容易に製造することができ、絶縁層に溶剤や気泡が残留する可能性が低く、強度が優れた部品内蔵プリント配線板、および当該部品内蔵プリント配線板を効率よく製造する方法を提供することことが可能となる。   According to the present invention, a component-embedded printed wiring board that can be easily manufactured, has a low possibility of leaving a solvent or bubbles in an insulating layer, and has excellent strength, and efficiently manufactures the component-embedded printed wiring board. It becomes possible to provide a method.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、部品が内蔵されたプリント配線板を構成する絶縁層の一部もしくは全部を、紡織していない繊維と樹脂組成物を含む絶縁材料からなる絶縁層とすることをその特徴とするものである。なお、本発明で言う「部品」とは、プリント配線板に実装されうる公知の部品を意図するものであり、例えば、コンデンサー、各種キャパシタ、チップコイル、半導体チップ、半導体素子などの受動素子や能動素子等々であり、特にその種類は制限しない。また、プリント配線板には、必要な回路等が形成され、その回路間、回路上、スルーホール内、もしくはビア内等に適宜部品が実装されるが、その配置、数、形式については、特に制限されない。好ましくは、上記絶縁材料からなる絶縁層の周辺部もしくは内部に部品が配置される。   The present invention is characterized in that a part or all of an insulating layer constituting a printed wiring board having a built-in component is an insulating layer made of an insulating material including a non-spun fiber and a resin composition. It is. The “component” in the present invention is a known component that can be mounted on a printed wiring board. For example, a passive element such as a capacitor, various capacitors, a chip coil, a semiconductor chip, a semiconductor element, or an active element is used. There are no particular restrictions on the type of elements. In addition, the printed circuit board is formed with necessary circuits, etc., and appropriate parts are mounted between the circuits, on the circuit, in the through holes, or in the vias, etc. Not limited. Preferably, the component is arranged around or inside the insulating layer made of the insulating material.

上記紡織していない繊維としては、紡織されていないものであり、かつ絶縁性を確保しつつプリント配線板としての特性を著しく損なわないものであれば、無機繊維、有機繊維いずれでもよく、特に限定されないが、例えば、ガラス、アラミド、ポリエステル、ポリエチレン、ポリプロピレン、セルロース、アクリル、ポリウレタン、キュプラ、ナイロン、ビニロン、ポリアクリロニトリル、ロックウール、レーヨン、ビスコース、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリクラール、絹、綿、毛、麻、等の繊維が挙げられる。上記無機繊維としてはガラス繊維が好ましく、上記有機繊維としてはアラミド繊維が好ましい。   The non-spun fibers may be either inorganic fibers or organic fibers, as long as they are not spun and do not significantly impair the properties of the printed wiring board while ensuring insulation. For example, glass, aramid, polyester, polyethylene, polypropylene, cellulose, acrylic, polyurethane, cupra, nylon, vinylon, polyacrylonitrile, rock wool, rayon, viscose, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polyclar , Silk, cotton, wool, hemp, and the like. The inorganic fiber is preferably a glass fiber, and the organic fiber is preferably an aramid fiber.

また、繊維の形状は、プリント配線板の特性を損なわないものであれば特に限定されないが、繊維の直径は3〜13μmであることが好ましい。また、直径数μm以下の繊維を単独または前述直径範囲の繊維と混抄してもよい。繊維長についても特に限定されないが、好ましくは、6〜15mmである。   The shape of the fiber is not particularly limited as long as it does not impair the properties of the printed wiring board, but the fiber diameter is preferably 3 to 13 μm. In addition, fibers having a diameter of several μm or less may be mixed alone or mixed with fibers having the above diameter range. Although it does not specifically limit about fiber length, Preferably, it is 6-15 mm.

上記樹脂組成物としては、プリント配線板としての要求特性を著しく損なわないものであれば、熱硬化性樹脂または熱可塑性樹脂を主材とする樹脂組成物のいずれでもよく特に限定されないが、好ましくは熱硬化性樹脂を主材とする樹脂組成物である。熱硬化性樹脂としては、特に限定されないが、例えば、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノール樹脂等を好ましく挙げることができ、中でもエポキシ樹脂を用いることが特に好ましい。これらエポキシ樹脂は単独もしくは複数種組合せて用いることもできる。   The resin composition is not particularly limited as long as it does not significantly impair the required characteristics as a printed wiring board, and is not particularly limited, but may be any resin composition mainly composed of a thermosetting resin or a thermoplastic resin. It is a resin composition mainly composed of a thermosetting resin. Although it does not specifically limit as a thermosetting resin, For example, an epoxy resin, a urea resin, a melamine resin, a phenol resin etc. can be mentioned preferably, Especially using an epoxy resin is especially preferable. These epoxy resins can be used alone or in combination.

上記エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステル樹脂、グリシジルアミン樹脂、複素環式エポキシ樹脂(トリグリシジルイソシアヌレート、ジグリシジルヒダントイン等)およびこれらを種々の材料で変性した変性エポキシ樹脂、これらの臭素化物、塩素化物当のハロゲン化物等を挙げることができ、これらエポキシ樹脂を2種類以上組合せて使用することもできる。特に、電気電子材料用途に適用できる高い耐熱性や信頼性を絶縁層に付与できることから、フェノールノボラック型エポキシ樹脂またはクレゾールノボラック型エポキシ樹脂またはビスフェノールAノボラック型エポキシ樹脂もしくはこれらのハロゲン化物を用いることが望ましい。エポキシ樹脂の添加量は、特に限定されないが、十分な硬化物を得るために、全樹脂組成物中1〜95重量%の範囲であることが好ましい。   The epoxy resin is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalenediol type epoxy resin, phenol novolac type epoxy resin, cresol novolak Type epoxy resin, bisphenol A novolak type epoxy resin, cycloaliphatic epoxy resin, glycidyl ester resin, glycidyl amine resin, heterocyclic epoxy resin (triglycidyl isocyanurate, diglycidyl hydantoin, etc.) and these were modified with various materials Modified epoxy resins, brominated compounds thereof, halides such as chlorinated compounds, and the like can be mentioned, and two or more of these epoxy resins can be used in combination. In particular, the use of phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin or their halides is possible because the insulating layer can be provided with high heat resistance and reliability applicable to electrical and electronic materials. desirable. Although the addition amount of an epoxy resin is not specifically limited, In order to obtain sufficient hardened | cured material, it is preferable that it is the range of 1 to 95 weight% in all the resin compositions.

また、加工性改良、添加した樹脂の硬化促進等の目的で、硬化剤を添加してもよい。硬化剤としては、例えば、フェノール系、アミン系、シアネート系、酸無水物系、ジヒドロベンゾオキサジン環を有する化合物等の、公知の硬化剤を単独もしくは複数組み合わせて用いることができる。具体的には、フェノールノボラック、クレゾールノボラック、ビスフェノールA、ビスフェノールF、ビスフェノールS、メラミン変性ノボラック形フェノール樹脂等のフェノール性水酸基を有するフェノール系硬化剤もしくはこれらのハロゲン化物、ジシアンジアミド等のアミン系硬化剤等である。   Moreover, you may add a hardening | curing agent for the purpose of workability improvement, hardening acceleration of the added resin, etc. As the curing agent, for example, a known curing agent such as phenol, amine, cyanate, acid anhydride, or a compound having a dihydrobenzoxazine ring may be used alone or in combination. Specifically, phenolic novolak, cresol novolak, bisphenol A, bisphenol F, bisphenol S, phenolic curing agents having a phenolic hydroxyl group such as melamine-modified novolak type phenolic resins, or halides thereof, and amine curing agents such as dicyandiamide Etc.

また、上記ジヒドロベンゾオキサジン環を有する化合物は、メチルエチルケトン(MEK)等の適当な溶媒中で、フェノール類、アミン類、アルデヒド類を、加熱反応させ、溶剤および水を除去することで容易に合成できる。上記フェノール類としては、フェノール、クレゾール、ビスフェノールA、ビスフェノールF、ビスフェノールS等を用いることができ、上記アミン類としてはアニリン、ジアミノベンゼン等を用いることができ、上記アルデヒド類では、ホルムアルデヒド、パラホルム等を用いることができる。具体的には、例えば、用いるフェノール1当量に対して、アニリンを1当量、ホルムアルデヒドを2当量の割合で配合し、還流させ任意の反応率の点で冷却し、その後に、溶剤および水分、場合によっては未反応物質を除去することにより所望のジヒドロベンゾオキサジン環を有する化合物を得ることができる。   The compound having a dihydrobenzoxazine ring can be easily synthesized by heating and reacting phenols, amines and aldehydes in an appropriate solvent such as methyl ethyl ketone (MEK) and removing the solvent and water. . As the phenols, phenol, cresol, bisphenol A, bisphenol F, bisphenol S and the like can be used. As the amines, aniline, diaminobenzene and the like can be used. In the aldehydes, formaldehyde, paraform, etc. Can be used. Specifically, for example, 1 equivalent of aniline and 2 equivalents of formaldehyde are mixed with 1 equivalent of phenol to be used, refluxed and cooled at an arbitrary reaction rate, and then solvent and moisture. Depending on the case, a compound having a desired dihydrobenzoxazine ring can be obtained by removing unreacted substances.

また、上記樹脂組成物中の樹脂として、エポキシ樹脂を用いる場合には、硬化剤と事前に適宜反応させたものを用いることもできる。   Moreover, when using an epoxy resin as resin in the said resin composition, what was made to react suitably with a hardening | curing agent beforehand can also be used.

硬化剤の添加量は、樹脂組成物の硬化反応を著しく阻害しない範囲であればよく、特に限定されないが、好ましくは、全樹脂組成物中0.5〜80重量%の範囲で添加する。   The addition amount of the curing agent is not particularly limited as long as it does not significantly inhibit the curing reaction of the resin composition, but is preferably added in the range of 0.5 to 80% by weight in the total resin composition.

本発明における樹脂組成物には、上記のほかに、高剛性化、低熱膨張化の目的で無機質充填剤(フィラー)を添加することもでき、価格低減、容積量確保の目的で、有機充填材を添加することもできる。上記無機質充填剤としては、特に限定されないが、例えば、酸化モリブデン、酸化亜鉛、珪酸マグネシウム等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、アルミナ、シリカ、タルク、マイカ、ケイ酸カルシウム、ケイ酸カリウム、焼成クレー、酸化チタン、硫酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムが挙げられ、このほかにも、モリブデン、亜鉛、カルシウム、リン、アルミニウム、カリウム、珪素、マグネシウム等の複数の元素からなる酸化物等の化合物であっても良い。   In addition to the above, an inorganic filler (filler) can be added to the resin composition in the present invention for the purpose of increasing the rigidity and reducing the thermal expansion. Can also be added. Examples of the inorganic filler include, but are not limited to, metal oxides such as molybdenum oxide, zinc oxide, and magnesium silicate, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, alumina, silica, talc, mica, Calcium silicate, potassium silicate, calcined clay, titanium oxide, barium sulfate, strontium titanate, calcium titanate, barium titanate, aluminum oxide, magnesium carbonate, calcium carbonate, barium carbonate, in addition to molybdenum Further, it may be a compound such as an oxide composed of a plurality of elements such as zinc, calcium, phosphorus, aluminum, potassium, silicon, and magnesium.

さらに、上記樹脂組成物には、公知の顔料、接着助剤、酸化防止剤、硬化促進剤および有機溶剤などを、本発明における絶縁層としての特性を著しく損なわない範囲で添加することができる。   Furthermore, known pigments, adhesion assistants, antioxidants, curing accelerators, organic solvents, and the like can be added to the resin composition as long as the characteristics of the insulating layer in the present invention are not significantly impaired.

本発明における絶縁材料は、上記紡織していない繊維と上記樹脂組成物を含む材料であり、部品を内蔵するプリント配線板の絶縁層として好適に用いることができる。この絶縁材料の形態は、ペースト状でもシート状でもよく、特に限定されないが、絶縁層形成の容易性からシート状であることが好ましく、樹脂含浸不織布であることがより好ましい。また、シート状絶縁材料の形状は、特に限定されず、事前に加工を施すことで種々の形状とすることができる。   The insulating material in the present invention is a material containing the non-spun fibers and the resin composition, and can be suitably used as an insulating layer of a printed wiring board containing components. The form of the insulating material may be pasty or sheet-like, and is not particularly limited. However, the insulating material is preferably in the form of a sheet and more preferably a resin-impregnated nonwoven fabric. In addition, the shape of the sheet-like insulating material is not particularly limited, and various shapes can be obtained by processing in advance.

上記樹脂含浸不織布は、特に限定されないが、例えば、上記繊維を、抄紙して不織布を作製し、その不織布に上記樹脂組成物のワニスを含浸、乾燥させて製造することができる。また、金網等の保持面上に繊維を分散させ、そこに樹脂組成物のワニスを含浸、乾燥させた後、保持面から剥離して製造することもできる。保持面から剥離するタイミングは、樹脂組成物ワニスを含浸する前でも、含浸後の乾燥前の工程でも、乾燥後の工程でもよく、特に制限しない。また、上記の他にも、樹脂組成物ワニス中に繊維を分散させ、これを抄紙することによって製造することもできる。なお、樹脂含浸不織布中の樹脂分については、良好な絶縁層が形成されれば特に制限されないが、好ましくは45〜97重量%であり、より好ましくは75〜97重量%である。   The resin-impregnated nonwoven fabric is not particularly limited, and for example, the fiber can be produced by making a paper to produce a nonwoven fabric, and the nonwoven fabric is impregnated with the varnish of the resin composition and dried. Alternatively, the fiber can be dispersed on a holding surface such as a wire mesh, impregnated with a varnish of the resin composition and dried, and then peeled off from the holding surface. The timing of peeling from the holding surface is not particularly limited, and may be before the resin composition varnish is impregnated, before the drying after the impregnation, or after the drying. In addition to the above, it can also be produced by dispersing fibers in a resin composition varnish and making paper. The resin content in the resin-impregnated nonwoven fabric is not particularly limited as long as a good insulating layer is formed, but is preferably 45 to 97% by weight, more preferably 75 to 97% by weight.

上記樹脂組成物ワニスを作製するために用いる有機溶剤としては、樹脂組成物を均一に溶解もしくは分散し、含浸するのに適した粘度と揮発性を有するものであれば特に限定されるものではないが、これらの要件を満たし、かつ価格や取扱性、安全性の観点から、メチルエチルケトン、2−メトキシエタノール、2−メトキシプロパノール、1−メトキシ−2−プロパノール、ジメチルホルムアミド(DMF)等を好ましく用いることができ、樹脂組成物全重量の5〜75重量%程度使用することが好ましい。   The organic solvent used for preparing the resin composition varnish is not particularly limited as long as it has a viscosity and volatility suitable for uniformly dissolving or dispersing and impregnating the resin composition. However, methyl ethyl ketone, 2-methoxyethanol, 2-methoxypropanol, 1-methoxy-2-propanol, dimethylformamide (DMF), etc. are preferably used from the viewpoints of satisfying these requirements and price, handling, and safety. It is preferable to use about 5 to 75% by weight of the total weight of the resin composition.

上記絶縁材料により絶縁層を形成する方法としては、プリント配線板の特性を損なわなければ特に限定されないが、例えば、基板上に形成もしくは実装された回路、部品類、ビア、スルーホール等の上に上記樹脂含浸不織布等のシート状絶縁材料を積層し、これを金属箔もしくは離型フィルムおよび鏡板ではさみプレスし加熱加圧成形することにより形成する手法が、簡便、容易であり、かつ部品を該絶縁層内に埋め込むことができるため、好ましい。この際に、シート状絶縁材料を積層する枚数は1枚もしくは複数枚のいずれでもよく、特に制限されるものではない。また、シート状絶縁材料の積層と同時に、プリプレグ、樹脂シート、樹脂付き銅はく等を積層してもよい。また、プレス後の作業性向上等の目的で、フッ素樹脂系フィルム、ポリエチレンテレフタラート等の離型フィルムを同時に用いてもよい。また、プレス成形時の条件は、プリント配線板の特性が確保されれば、特に限定されないが、好ましくは140℃〜300℃、200hPa以下で、0.5〜3時間、さらに好ましくは、170℃〜250℃、40hPa以下で、0.5〜2時間である。   The method of forming the insulating layer with the insulating material is not particularly limited as long as the characteristics of the printed wiring board are not impaired. For example, the circuit is formed on or mounted on a substrate, components, vias, through holes, etc. A method of laminating a sheet-like insulating material such as the above resin-impregnated nonwoven fabric, pressing this with a metal foil or a release film and an end plate, and forming by heating and pressing is simple and easy, and the component is This is preferable because it can be embedded in the insulating layer. At this time, the number of sheet-like insulating materials to be stacked may be either one or a plurality, and is not particularly limited. Moreover, you may laminate | stack a prepreg, a resin sheet, copper foil with resin, etc. simultaneously with lamination | stacking of a sheet-like insulating material. For the purpose of improving workability after pressing, a release film such as a fluororesin film or polyethylene terephthalate may be used at the same time. Moreover, the conditions at the time of press molding are not particularly limited as long as the characteristics of the printed wiring board are ensured, but preferably 140 ° C. to 300 ° C., 200 hPa or less, 0.5 to 3 hours, more preferably 170 ° C. It is -250 degreeC and 40 hPa or less, and is 0.5 to 2 hours.

また、上記絶縁層の厚みは、部品内蔵プリント配線板としての特性を損なわない厚みであれば、特に制限されるものではなく、基板上の凸部、つまり回路や部品類と同等でも、それよりも厚くても、また薄くてもよい。例えば、図1の(b)に例示するように、上記樹脂含浸不織布からなる絶縁層3が部品1を全て覆うように形成されていてもよく、図1の(d)、(e)に例示するように、部品1の一部が露出するように形成されていてもよい。さらに、回路や部品の埋設は、上記絶縁層のみで行う必要は無く、併用するプリプレグ、樹脂フィルム、樹脂付き銅はく等の他の構成材料によって補ってもよい。図1(a)、(c)は、プリプレグや樹脂フィルム等2が上記樹脂含浸不織布からなる絶縁層3の上に積層されている状態を例示する。なお、図1においては、絶縁層4上に形成された回路5が全て絶縁層3により埋め込まれているが、回路の一部または全部が上記樹脂含浸不織布からなる絶縁層とは異なる絶縁材料からなるその他の絶縁層により埋め込まれていてもよい。また、図示はしていないが、絶縁層4の両側に上記樹脂含浸不織布からなる絶縁層3を形成してもよい。   In addition, the thickness of the insulating layer is not particularly limited as long as it does not impair the characteristics as a component built-in printed wiring board, and even if it is equivalent to a convex portion on a substrate, that is, a circuit or components, May be thicker or thinner. For example, as illustrated in FIG. 1B, the insulating layer 3 made of the resin-impregnated non-woven fabric may be formed so as to cover all the parts 1, and illustrated in FIGS. 1D and 1E. As such, the part 1 may be formed so as to be exposed. Furthermore, it is not necessary to embed a circuit or a component with only the insulating layer, and it may be supplemented with other constituent materials such as a prepreg, a resin film, or a copper foil with resin. 1A and 1C illustrate a state in which a prepreg, a resin film, and the like 2 are laminated on an insulating layer 3 made of the resin-impregnated nonwoven fabric. In FIG. 1, the circuit 5 formed on the insulating layer 4 is entirely embedded with the insulating layer 3, but part or all of the circuit is made of an insulating material different from the insulating layer made of the resin-impregnated nonwoven fabric. It may be embedded with other insulating layers. Although not shown, the insulating layer 3 made of the resin-impregnated nonwoven fabric may be formed on both sides of the insulating layer 4.

また、プリント配線板の回路もしくは部品間の凹凸部、またはスルーホールやビア等の凹部は、事前に樹脂、導電性ペースト等で充填されていても、上記シート状絶縁材料の樹脂を用いて一括して充填してもかまわない。   In addition, uneven portions between circuits or parts of printed wiring boards, or concave portions such as through-holes and vias are filled with resin of the above sheet-like insulating material even if they are filled with resin, conductive paste or the like in advance. And it can be filled.

また、成形時に樹脂含浸不織布の一部もしくは全部、および樹脂中の繊維の一部もしくは全部が切断、破断される場合もあるが、部品内蔵プリント配線板の特性を著しく損なう場合を除き、特に制限されるものではない。   In addition, part or all of the resin-impregnated nonwoven fabric and part or all of the fibers in the resin may be cut or broken during molding, but there are particular restrictions unless the characteristics of the printed wiring board with built-in parts are significantly impaired. Is not to be done.

上記では、本発明の主たる特徴である上記樹脂含浸不織布からなる絶縁層について主に述べたが、本発明の部品内蔵プリント配線板を製造する際には、上記以外にも、プリント配線板の製造技術として公知の材料、工程を適用してもよいことはいうまでもない。   In the above, the insulating layer made of the resin-impregnated nonwoven fabric, which is the main feature of the present invention, has been mainly described. However, when the component-embedded printed wiring board of the present invention is manufactured, in addition to the above, the manufacture of the printed wiring board Needless to say, materials and processes known in the art may be applied.

以下、本発明の実施例およびその比較例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.

実施例および比較例においてエポキシ樹脂、硬化剤、プリプレグ等は下記のものを用いた。不織布は坪量25gのガラス不織布(製品名:EPM−4025BH、日本バイリーン製、繊維径:平均繊維径(直径)10μm、繊維長:平均繊維長さ13mm)およびアラミド不織布(製品名:APTF22、王子製紙株式会社製、販売:デュポン帝人アドバンストペーパー株式会社、繊維径:8μm(0.75デニール))を用いた。その他の有機溶剤、添加剤、汎用充填剤および、不織布、銅箔、離可型フィルムなどについては、特に記載したものを除き化学工業および電子工業分野において一般的に用いられる原材料類を用いた。   In the examples and comparative examples, the following were used as epoxy resins, curing agents, prepregs, and the like. Nonwoven fabric is glass nonwoven fabric (product name: EPM-4025BH, manufactured by Japan Vilene, fiber diameter: average fiber diameter (diameter) 10 μm, fiber length: average fiber length 13 mm) and aramid nonwoven fabric (product name: APTF22, Oji) Made by Paper Manufacturing Co., Ltd., Sales: DuPont Teijin Advanced Paper Co., Ltd., fiber diameter: 8 μm (0.75 denier)) was used. For other organic solvents, additives, general-purpose fillers, non-woven fabrics, copper foils, releasable films, etc., raw materials generally used in the chemical industry and the electronics industry were used except those specifically described.

・エポキシ樹脂:大日本インキ化学工業製クレゾールノボラック型エポキシ樹脂(商品名N−673(エポキシ当量210))
・フェノール系硬化剤A:大日本インキ化学工業製メラミンノボラック樹脂(商品名フェノライト LA−7054)
・プリプレグ:日立化成工業株式会社製ガラスクロスプリプレグ(商品名:GEA−67BE HAHJ(絶縁層厚み100μm相当))
・銅張積層板:日立化成工業株式会社製(商品名:MCL−E−67 35D t0.4mm)
テストパターン:250mm角の銅張積層板をサブトラクティブ法により銅箔を幅100μm、間隔100μm(ラインスペース100μm/100μm)で縞状にエッチングし擬似回路とした。この基板上に、部品に見立てた幅1mm、長さ2mm、厚さ1mmの金属片を接着し、直径1.0mmのスルーホールを形成した。金属片とスルーホールの配置は、基板上に、交互に5mm間隔で縦各20個、横各20個の計各400とした。金属片は両面に接着した。
Epoxy resin: Cresol novolak type epoxy resin (trade name N-673 (epoxy equivalent 210)) manufactured by Dainippon Ink and Chemicals, Inc.
Phenol-based curing agent A: Melamine novolak resin (trade name Phenolite LA-7054) manufactured by Dainippon Ink and Chemicals, Inc.
・ Prepreg: Glass cloth prepreg manufactured by Hitachi Chemical Co., Ltd. (trade name: GEA-67BE HAHJ (corresponding to an insulating layer thickness of 100 μm))
Copper-clad laminate: manufactured by Hitachi Chemical Co., Ltd. (trade name: MCL-E-67 35D t0.4mm)
Test pattern: A copper-clad laminate of 250 mm square was etched in stripes with a width of 100 μm and an interval of 100 μm (line space 100 μm / 100 μm) by a subtractive method to form a pseudo circuit. On this substrate, a metal piece having a width of 1 mm, a length of 2 mm, and a thickness of 1 mm that was regarded as a component was bonded to form a through hole having a diameter of 1.0 mm. The arrangement of the metal pieces and the through-holes was set to 400 in total, 20 vertically and 20 horizontally at intervals of 5 mm on the substrate. The metal piece was bonded to both sides.

(実施例1)
エポキシ樹脂と、硬化剤をエポキシ基と水酸基の当量比で1:0.8になるように秤量し、メチルエチルケトン中に固形分濃度75重量%になるように溶解した。さらに、硬化促進剤、粘度調整用の添加剤を加えワニスを作製した。このワニスをガラス不織布に含浸させ、160〜175℃で4分間乾燥して樹脂分86重量%の樹脂含浸不織布(100ミクロン相当)を得た。
Example 1
The epoxy resin and the curing agent were weighed so that the equivalent ratio of epoxy group and hydroxyl group was 1: 0.8, and dissolved in methyl ethyl ketone so as to have a solid content concentration of 75% by weight. Furthermore, the hardening accelerator and the additive for viscosity adjustment were added, and the varnish was produced. This varnish was impregnated into a glass nonwoven fabric and dried at 160 to 175 ° C. for 4 minutes to obtain a resin-impregnated nonwoven fabric (corresponding to 100 microns) having a resin content of 86% by weight.

評価は、テストパターンの両側に、上記で作製した樹脂含浸不織布7Plyと、プリプレグ1Plyをそれぞれ積層し、さらにその外側に銅はくを重ね、真空度40hPa、熱板温度185℃、製品圧力3MPaにて80分間加熱加圧成形して評価基板を作製した。そして、この評価基板の成形性、耐熱性、衝撃試験の評価を下記のとおり行った。評価結果を表1に示す。   Evaluation is made by laminating the resin impregnated non-woven fabric 7Ply and the prepreg 1Ply produced on both sides of the test pattern, respectively, and further superposing copper foil on the outside, with a vacuum degree of 40 hPa, a hot plate temperature of 185 ° C. and a product pressure of 3 MPa. For 80 minutes to prepare an evaluation substrate. And evaluation of the moldability, heat resistance, and impact test of this evaluation substrate was performed as follows. The evaluation results are shown in Table 1.

成形性は、評価基板の両側の銅箔を全面エッチング除去した後、目視にて良否を判断した。さらに、回路、部品(金属片)、スルーホール部を取り出し、エポキシ樹脂で注型の後、断面を顕微鏡で確認し、空隙のないことを確認した。   Formability was determined by visual inspection after the copper foil on both sides of the evaluation substrate was entirely removed by etching. Furthermore, the circuit, components (metal pieces), and through-hole portions were taken out, and after casting with epoxy resin, the cross section was confirmed with a microscope to confirm that there were no voids.

耐熱性は、評価基板を50mm角に切断し乾燥したのち、260℃のはんだ中に10秒浸漬し、ふくれ等の異常を確認した。   For heat resistance, the evaluation substrate was cut into 50 mm square and dried, and then immersed in 260 ° C. solder for 10 seconds to check for abnormalities such as blistering.

衝撃試験は、落球試験とした。落球試験は、評価基板上に50gの球状の重りを落下させ、当該基板にクラックが発生したときの落下高さを測定し、その高さが50cm以上の場合を合格(問題なし)とした。   The impact test was a falling ball test. In the falling ball test, a spherical weight of 50 g was dropped on the evaluation substrate, and the drop height when a crack occurred on the substrate was measured, and the case where the height was 50 cm or more was regarded as acceptable (no problem).

(実施例2)
ガラス不織布をアラミド不織布に変更した以外は、実施例1と同様に評価基板を作製し、同様の評価を行った。評価結果を表1に示す。
(Example 2)
An evaluation substrate was prepared in the same manner as in Example 1 except that the glass nonwoven fabric was changed to an aramid nonwoven fabric, and the same evaluation was performed. The evaluation results are shown in Table 1.

(比較例1)
テストパターンの両側に、それぞれプリプレグ8Plyを積層した以外は、実施例1と同様に評価基板を作製し、同様の評価を行った。評価結果を表1に示す。
(Comparative Example 1)
An evaluation substrate was prepared in the same manner as in Example 1 except that the prepreg 8Ply was laminated on both sides of the test pattern, and the same evaluation was performed. The evaluation results are shown in Table 1.

(比較例2)
ガラス基板上に離型フィルムを離型面が上になるように敷き、その上に実施例1と同じのワニスを複数回に分けて塗布、風乾し、樹脂厚みが200μmに達したところで、160〜175℃で4分間乾燥し、離型フィルムごとガラス基板から取り外すことで、キャリアフィルムつきの樹脂シートを得た。ついで、この樹脂シートを、キャリアフィルムを剥離しつつ、テストパターンの両側にそれぞれ4枚積層した後、さらにプリプレグを積層し、さらにその外側に銅はくを重ね、真空度40hPa、熱板温度185℃、製品圧力3MPaにて80分間加熱加圧成形して評価基板を作製し、実施例1と同様にして、当該評価基板の評価を行った。評価結果を表1に示す。
(Comparative Example 2)
A release film is laid on a glass substrate so that the release surface is on top, and the same varnish as in Example 1 is applied in several portions, air-dried, and when the resin thickness reaches 200 μm, 160 The resin sheet with a carrier film was obtained by drying at ~ 175 ° C for 4 minutes and removing the release film together with the glass substrate. Next, four sheets of this resin sheet were laminated on both sides of the test pattern while peeling off the carrier film, and then a prepreg was further laminated, and copper foil was further laminated on the outside, and the degree of vacuum was 40 hPa and the hot plate temperature was 185. An evaluation substrate was produced by heating and pressing at 80 ° C. and a product pressure of 3 MPa for 80 minutes, and the evaluation substrate was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(比較例3)
テストパターンの両側に、実施例1と同じワニスを直接塗布、乾燥し、部品間に絶縁層を形成することを試みた。結果を表1に示す。

Figure 2006332578
(Comparative Example 3)
The same varnish as in Example 1 was directly applied to both sides of the test pattern and dried to try to form an insulating layer between the parts. The results are shown in Table 1.
Figure 2006332578

表1より、実施例1〜2においては、試験結果が全て「良好」もしくは「問題なし」であった。樹脂含浸不織布の取扱性は、プリプレグと同等に良好で、回路および部品類の周辺部は繊維および樹脂組成物が十分に充填され、ビアやスルーホール内部も樹脂が充填されていた。また、目視および顕微鏡観察による成形性評価においても欠陥は発見されなかった。さらに、耐熱性、衝撃試験の特性も良好であった。しかし、比較例1〜3においては、種々の問題が発生しプリント配線板としての特性を損なう結果となった。   From Table 1, in Examples 1-2, the test results were all “good” or “no problem”. The handleability of the resin-impregnated non-woven fabric was as good as that of the prepreg, and the peripheral portions of the circuits and components were sufficiently filled with fibers and the resin composition, and the vias and through holes were also filled with the resin. In addition, no defects were found in the moldability evaluation by visual observation and microscopic observation. Furthermore, the heat resistance and impact test characteristics were also good. However, in Comparative Examples 1 to 3, various problems occurred and the characteristics as a printed wiring board were impaired.

以上より、紡織していない繊維と樹脂組成物を含む絶縁材料からなる絶縁層は、部品類を内蔵するプリント配線板の絶縁層として良好な特性を有しているといえ、それゆえ、そのような絶縁層を有する部品内蔵プリント配線板は、従来の手法で製造された部品内蔵プリント配線板よりも各種特性が優れたものであるといえる。よって、本発明の優位性は明らかである。   From the above, it can be said that an insulating layer made of an insulating material containing unspun fibers and a resin composition has good characteristics as an insulating layer of a printed wiring board containing components. It can be said that the component built-in printed wiring board having an insulating layer is superior in various characteristics to the component built-in printed wiring board manufactured by the conventional method. Therefore, the superiority of the present invention is clear.

本発明の部品内蔵プリント配線板の一実施形態の断面図。Sectional drawing of one Embodiment of the component built-in printed wiring board of this invention.

符号の説明Explanation of symbols

1:部品
2:プリプレグ、樹脂フィルム等
3:本発明の樹脂含浸不織布からなる絶縁層
4:絶縁層
5:回路
1: Component 2: Prepreg, resin film, etc. 3: Insulating layer 4 made of resin-impregnated nonwoven fabric of the present invention 4: Insulating layer 5: Circuit

Claims (4)

部品が内蔵されたプリント配線板であって、該プリント配線板を構成する絶縁層の一部もしくは全部が、紡織していない繊維と樹脂組成物を含む絶縁材料からなることを特徴とするプリント配線板。   A printed wiring board having a built-in component, wherein a part or all of an insulating layer constituting the printed wiring board is made of an insulating material containing unspun fibers and a resin composition Board. 前記繊維がガラス繊維もしくはアラミド繊維であることを特徴とする請求項1に記載のプリント配線板。   The printed wiring board according to claim 1, wherein the fibers are glass fibers or aramid fibers. 基板に実装された部品をシート状絶縁材料で埋め込み、絶縁層を形成する工程を有するプリント配線板の製造方法であって、前記シート状絶縁材料が紡織していない繊維と樹脂組成物を含む絶縁材料からなることを特徴とするプリント配線板の製造方法。   A printed wiring board manufacturing method including a step of embedding a component mounted on a substrate with a sheet-like insulating material and forming an insulating layer, wherein the sheet-like insulating material includes an unwoven fiber and a resin composition. A method for producing a printed wiring board comprising a material. 前記繊維がガラス繊維もしくはアラミド繊維であることを特徴とする請求項3に記載のプリント配線板の製造方法。   The method for producing a printed wiring board according to claim 3, wherein the fibers are glass fibers or aramid fibers.
JP2005287998A 2005-04-28 2005-09-30 Printed wiring board and its manufacturing method Pending JP2006332578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287998A JP2006332578A (en) 2005-04-28 2005-09-30 Printed wiring board and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005131766 2005-04-28
JP2005287998A JP2006332578A (en) 2005-04-28 2005-09-30 Printed wiring board and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011095980A Division JP2011142364A (en) 2005-04-28 2011-04-22 Printed circuit board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006332578A true JP2006332578A (en) 2006-12-07

Family

ID=37553908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287998A Pending JP2006332578A (en) 2005-04-28 2005-09-30 Printed wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006332578A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232757A (en) * 1996-02-27 1997-09-05 Shin Kobe Electric Mach Co Ltd Manufacture of multilayered circuit board
JPH10249854A (en) * 1997-03-17 1998-09-22 Shin Kobe Electric Mach Co Ltd Manufacture of prepreg for laminate
JP2002076637A (en) * 2000-08-29 2002-03-15 Matsushita Electric Ind Co Ltd Substrate incorporating chip component, and manufacturing method of the substrate
JP2002172736A (en) * 2000-12-04 2002-06-18 Hitachi Chem Co Ltd Metal foil-clad laminated sheet
JP2002176246A (en) * 2000-12-08 2002-06-21 Matsushita Electric Ind Co Ltd Wiring board and its producing method
JP2002226555A (en) * 2001-01-31 2002-08-14 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition
JP2002368043A (en) * 2001-06-12 2002-12-20 Matsushita Electric Ind Co Ltd Conductive paste, conductive bump using it, its forming method, method for connecting conductive bump, circuit board and its producing method
JP2003218282A (en) * 2002-01-18 2003-07-31 Ibiden Co Ltd Semiconductor element built-in board and multi-layer circuit board
JP2003246838A (en) * 2002-02-27 2003-09-05 Arakawa Chem Ind Co Ltd Epoxy resin composition, resin composition and resin for electronic material, coating agent and process for preparing cured film of coating agent
JP2004051951A (en) * 2002-05-29 2004-02-19 Shin Kobe Electric Mach Co Ltd Aramid fiber nonwoven fabric prepreg, and laminated plate and printed-wiring board using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232757A (en) * 1996-02-27 1997-09-05 Shin Kobe Electric Mach Co Ltd Manufacture of multilayered circuit board
JPH10249854A (en) * 1997-03-17 1998-09-22 Shin Kobe Electric Mach Co Ltd Manufacture of prepreg for laminate
JP2002076637A (en) * 2000-08-29 2002-03-15 Matsushita Electric Ind Co Ltd Substrate incorporating chip component, and manufacturing method of the substrate
JP2002172736A (en) * 2000-12-04 2002-06-18 Hitachi Chem Co Ltd Metal foil-clad laminated sheet
JP2002176246A (en) * 2000-12-08 2002-06-21 Matsushita Electric Ind Co Ltd Wiring board and its producing method
JP2002226555A (en) * 2001-01-31 2002-08-14 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition
JP2002368043A (en) * 2001-06-12 2002-12-20 Matsushita Electric Ind Co Ltd Conductive paste, conductive bump using it, its forming method, method for connecting conductive bump, circuit board and its producing method
JP2003218282A (en) * 2002-01-18 2003-07-31 Ibiden Co Ltd Semiconductor element built-in board and multi-layer circuit board
JP2003246838A (en) * 2002-02-27 2003-09-05 Arakawa Chem Ind Co Ltd Epoxy resin composition, resin composition and resin for electronic material, coating agent and process for preparing cured film of coating agent
JP2004051951A (en) * 2002-05-29 2004-02-19 Shin Kobe Electric Mach Co Ltd Aramid fiber nonwoven fabric prepreg, and laminated plate and printed-wiring board using it

Similar Documents

Publication Publication Date Title
US9278505B2 (en) Thermosetting resin composition and prepreg and metal clad laminate using the same
KR101141902B1 (en) Epoxy resin composition, prepreg, laminate board, multilayer printed wiring board, semiconductor device, insulating resin sheet, and process for manufacturing multilayer printed wiring board
JP5816239B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
KR101001529B1 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
TWI544842B (en) Metal-clad laminate, prited wiring board, and multilayer prited wiring board
JP6793326B2 (en) Prepreg, metal-clad laminate, printed wiring board
KR20110008044A (en) Insulating resin sheet and method for manufacturing multilayer printed wiring board using the insulating resin sheet
JP6186977B2 (en) Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device
KR20080108469A (en) Epoxy resin composition
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
KR20050001473A (en) Resin composition and adhesive film for multi-layered printed wiring board
TWI829631B (en) Resin compositions, prepregs, metallized laminated boards, printed wiring boards, and flexible rigid printed wiring boards
JP2013239701A (en) Interlayer dielectric film with carrier material, and multilayer printed circuit board using the same
JP2007128955A (en) Printed wiring board and its manufacturing method
KR20140027493A (en) Prepreg, laminated plate, semiconductor package, and method for producing laminated plate
JP2011099072A (en) Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP6269401B2 (en) Surface-treated inorganic filler, method for producing the inorganic filler, and resin composition containing the inorganic filler
JP6830191B2 (en) Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
TWI419636B (en) Multiple circuit board and semiconductor device
JP2006332578A (en) Printed wiring board and its manufacturing method
JP2011142364A (en) Printed circuit board and method of manufacturing the same
JP2005105182A (en) Resin composition, prepreg and laminate
JP2004319561A (en) Substrate with built-in element and its manufacturing method
JP2015086293A (en) Prepreg and multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080807

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Effective date: 20110524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A02