JPS6338878B2 - - Google Patents

Info

Publication number
JPS6338878B2
JPS6338878B2 JP57159233A JP15923382A JPS6338878B2 JP S6338878 B2 JPS6338878 B2 JP S6338878B2 JP 57159233 A JP57159233 A JP 57159233A JP 15923382 A JP15923382 A JP 15923382A JP S6338878 B2 JPS6338878 B2 JP S6338878B2
Authority
JP
Japan
Prior art keywords
layer
multilayer
hole
holes
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57159233A
Other languages
Japanese (ja)
Other versions
JPS5948996A (en
Inventor
Masashige Matsumoto
Takashi Shin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15923382A priority Critical patent/JPS5948996A/en
Publication of JPS5948996A publication Critical patent/JPS5948996A/en
Publication of JPS6338878B2 publication Critical patent/JPS6338878B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は多層プリント配線板およびその製造方
法に関し、特に盲経由孔(ブラインド・バイア・
ホール、Blind via hole)を有する高密度多層プ
リント配線板に関する。従来のプリント配線板
は、部品挿入用の孔は勿論、経由孔(バイア・ホ
ール)も貫通させて、めつき等により孔内壁に導
体層を形成させるのが一般的である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer printed wiring board and a method for manufacturing the same, and particularly to a multilayer printed wiring board and a method for manufacturing the same.
The present invention relates to a high-density multilayer printed wiring board having holes (blind via holes). In conventional printed wiring boards, not only holes for inserting components but also via holes are penetrated, and a conductor layer is generally formed on the inner wall of the hole by plating or the like.

また、多層プリント配線板(以下多層板と称
す)は、その高多層化に伴ない一部の内層に埋め
込み経由孔(インナーレイヤーバイア・ホール、
Inner layer via hole)を設ける設計も採用され
ている。近年、電子機器の性能上および経済上の
ニーズから、実装の高密度化の試みがなされてい
る。
In addition, as multilayer printed wiring boards (hereinafter referred to as multilayer boards) become more multilayered, some of the inner layers have embedded via holes (inner layer via holes, etc.).
A design with an inner layer via hole is also adopted. In recent years, attempts have been made to increase the density of packaging due to the performance and economic needs of electronic devices.

このためにIC、LSI等の電子デバイスの高集積
化、高速化が進められていることは勿論、これら
を実装するプリント配線板についても高密度化が
進められている。
For this reason, not only are electronic devices such as ICs and LSIs becoming more highly integrated and faster, but printed wiring boards on which these devices are mounted are also becoming more dense.

プリント配線板の高密度化のために2つの試み
が設計的になされている。すなわち、その第1の
試みは導体層数に増加させる高多層化の試みであ
り、第2の試みは格子間に多くの配線を通すこと
である。
Two designs have been made to increase the density of printed wiring boards. That is, the first attempt is to increase the number of conductor layers to increase the number of layers, and the second attempt is to pass many wires between the grids.

しかし、この結果第1の試みでは層間の導体層
を接続するバイア・ホールの増加になる。特にこ
のバイア・ホールをプリント配線板に第1図のよ
うにバイア・ホール4を貫通孔として設けた場合
には、前述第2の試みの配線性が著しく阻害され
る。そのためにバイア・ホール4を小径化するこ
とで対応しているが、高多層化に伴なつて板厚も
増加し、板厚/孔径の比(アスペクト比)が増加
し、プリント板の製造性を著しく阻害している。
また、超高密度化が必要な分野では10層以上の多
層化を図り、内層にバイア・ホールを設けたいわ
ゆる埋め込みバイア・ホールが採用されている
が、性能的には満足しても経済的にみると全ての
ニーズを満足するものではなかつた。また、多層
板でも特にオフイス・オートメーシヨン機器
(OA機器)等で需要の増大が予測される5〜10
層の多層板に於いて前述の問題を解決する必要性
が生じている。
However, this results in an increase in via holes connecting the interlayer conductor layers in the first attempt. Particularly, when the via hole 4 is provided as a through hole in the printed wiring board as shown in FIG. 1, the wiring performance of the second attempt described above is significantly hindered. This has been addressed by reducing the diameter of the via hole 4, but as the number of layers increases, the board thickness also increases, and the ratio of board thickness/hole diameter (aspect ratio) increases, which reduces the productivity of printed boards. is significantly inhibited.
In addition, in fields that require ultra-high density, so-called buried via holes, which are multi-layered with 10 or more layers and have via holes in the inner layers, have been adopted, but although they are satisfactory in terms of performance, they are not economical. Looking at it, it did not satisfy all needs. In addition, demand for multilayer boards is expected to increase, especially in office automation equipment (OA equipment).
A need has arisen to solve the aforementioned problems in multilayer boards.

このため一つの試みとして“メイキング100000
サーキツトフイツトホエアーアツトモスト6000フ
イツトビフオアー(Making 100000Circuits fit
where at most 6000fit berore;Electronic、
August 2、1979年)”で、第2図Cに示すブラ
イント・バイア・ホール−つまり非貫通孔−によ
つて配線の収容性を向上させている。
For this reason, as an attempt, “Making 100,000”
Making 100000Circuits fit
where at most 6000fit berore;Electronic、
August 2, 1979), the wiring capacity is improved by the use of blind via holes (i.e., blind holes) shown in FIG. 2C.

しかし、製造上から考慮すると“レーザーイン
エレクトロニクス(Lasers in Electronics、
Circuits Manufacturing、July、1981年)”、あ
るいは、“カツパープレーテイングマドバンスト
マルチレイヤーボード(Copper Plating
Advanced Multilayer Boards;IPC 1976年
Fall Meeting)”で紹介されているように、レー
ザまたはドリルによつて第2図Aの如き多層板1
にブラインド・バイア・ホール4−11,4−1
2を第2図Cのように片面づつ穿設すると云う非
能率性が伴なう。更にレーザによる穿設では、第
2図Bのように多層板1のバイア・ホールが穿設
されるべき位置Pの最外層の銅箔をエツチング除
去した後、バイア・ホールを穿設するので工程が
増える欠点がある。
However, from a manufacturing perspective, “Lasers in Electronics”
Circuits Manufacturing, July 1981)” or “Copper Plating Mudband Multilayer Board”
Advanced Multilayer Boards; IPC 1976
As introduced in ``Fall Meeting'', a multilayer plate 1 as shown in Fig. 2A is formed using a laser or a drill.
Blind Via Hall 4-11, 4-1
2 is drilled on one side at a time as shown in FIG. 2C, resulting in inefficiency. Furthermore, in laser drilling, as shown in FIG. 2B, the outermost copper foil of the multilayer board 1 at the position P where the via hole is to be drilled is removed by etching, and then the via hole is drilled. The disadvantage is that it increases.

一方、ドリルによる穿設では、プリント板の厚
み方向に対してドリルの深度を制御する必要があ
るが、プリント板の製造時にはロツト間の板厚の
変動は避けられず第2図Eの拡大図に示すバイ
ア・ホール4−11の底部と3層目の導体回路の
銅箔2−3の距離dが変動して、電気的特性の変
動が大きくなると云う欠点を有する。また、バイ
ア・ホール穿設後、その内壁を含む全面に無電解
めつきで導体層を形成するが、第2図Dの最外層
の絶縁層間1a−1,1a−3が厚い場合、(i)均
一な導体層の形成が難しい、(ii)バイア・ホール内
にめつき液等の表面処理液の残渣が残るなど信頼
性上好ましくない。
On the other hand, when drilling with a drill, it is necessary to control the depth of the drill in the thickness direction of the printed board, but when manufacturing printed boards, variation in board thickness between lots is unavoidable, and the enlarged view in Figure 2 E The disadvantage is that the distance d between the bottom of the via hole 4-11 and the copper foil 2-3 of the third layer conductor circuit shown in FIG. Furthermore, after drilling a via hole, a conductor layer is formed on the entire surface including the inner wall by electroless plating, but if the outermost insulating layers 1a-1 and 1a-3 in FIG. 2D are thick, (i ) It is difficult to form a uniform conductor layer, and (ii) residues of surface treatment liquid such as plating liquid remain in the via hole, which is unfavorable in terms of reliability.

本発明の目的は、このような従来多層板の構造
上の欠点を除去した、ブラインド・バイア・ホー
ルを有する高密度多層板の製造方法を提供するこ
とにある。
An object of the present invention is to provide a method for manufacturing a high-density multilayer board having blind via holes, which eliminates the structural drawbacks of the conventional multilayer board.

本発明によれば、最外層と最外層の次の層に位
置する導体回路を接続するブラインド・バイア・
ホールの穴内空間が樹脂で充填され、更にブライ
ンド・バイア・ホールの最外層に露出した導体層
の絶縁層で完全に被覆したことを特徴とする多層
プリント配線板およびその製造方法が得られる。
According to the present invention, blind vias connecting conductor circuits located in the outermost layer and the layer next to the outermost layer are provided.
A multilayer printed wiring board and a method for manufacturing the same are obtained, characterized in that the inner space of the hole is filled with a resin and is further completely covered with an insulating layer of a conductor layer exposed at the outermost layer of the blind via hole.

以下、本発明の実施例を第3図A〜Kを参照し
詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 3A to 3K.

第3図Kは本発明方法によつて得られた多層板
で、ブラインド・バイア・ホール4−11,4−
12内はプリ・プレグとして使われた樹脂層1
b′で充填され、かつ上面側および下面側は絶縁
性、耐薬品性を有する永久マスク9で完全に被覆
された構造となつている。
FIG. 3K shows a multilayer board obtained by the method of the present invention, with blind via holes 4-11, 4-
Inside 12 is resin layer 1 used as pre-preg.
b', and the upper and lower surfaces are completely covered with a permanent mask 9 having insulation and chemical resistance.

次に本発明を工程順に説明する。 Next, the present invention will be explained step by step.

第3図Aはバイア・ホールが形成される銅張積
層板1a−1(例えば、厚さ0.10mmのガラス布基
材・エポキシ樹脂積層板)で上下両面には各々1
層目、2層目の導体層パターンを形成する銅箔
(例えば厚さ0.018mmの電解銅箔)2−1と2−2
を有している。
Figure 3A shows a copper-clad laminate 1a-1 (for example, a glass cloth base material/epoxy resin laminate with a thickness of 0.10 mm) in which via holes are formed.
Copper foil (for example, electrolytic copper foil with a thickness of 0.018 mm) 2-1 and 2-2 forming the conductor layer pattern of the second layer
have.

先ず、第3図Bのように銅張り積層板1a−1
にバイア・ホール4−1をドリルにより穿設し、
更に公知の無電解銅めつきと電気めつき手段によ
つて、バイア・ホール4−1を含む全面に導体層
6を形成し1層目、2層目の導体層、すなわち銅
箔2−1,2−2を接続する。
First, as shown in FIG. 3B, the copper-clad laminate 1a-1 is
Via hole 4-1 was drilled in
Furthermore, a conductor layer 6 is formed on the entire surface including the via hole 4-1 by known electroless copper plating and electroplating means, and the first and second conductor layers, that is, the copper foil 2-1 are formed. , 2-2.

次に、第3図Dのように、公知のテンテイング
法を用いて銅箔2−1,2−2表面の所望する回
路パターン部を光感光性ドライフイルムレジスト
7で被覆した後、不要な導体層6とその下層の銅
箔2−1,2−2をエツチング除去して、多層板
の1−2層(1a−1)の導体層パターンを形成
する(第3図E)。次に、第3図Fに示すように、
上述同様の工法によつて得られた5〜6層1a−
3と電源グランドパターンのみを形成した3〜4
層(1a−2:例えば厚さ0.5mmのガラス布基材
エポキシ樹脂の両面に0.070mmの銅箔を貼りつけ
た積層板)とプリプレグ層1b−1,1b−2
(例えば厚さ0.15mmのガラス布基材エポキシ樹脂
含浸のプリプレグ各2枚)を組み合わせ、更にそ
の上面に前述第3図Eの1〜2層1a−1を載置
した後、圧力10〜40Kg/cm2、加熱170℃・40〜80
分の条件で加圧、加熱して一体化成型し、厚さ
1.4〜1.6mmの6層の積層板1を得る(第3図G)。
この際第3図Fで示したバイア・ホール4−1と
4−2はいわゆる非貫通のブラインド・バイア・
ホール4−11,4−12として形成されると共
に、これらの穴内はプリプレグ1b−1,1b−
2から流れ出た樹脂1b′で完全に充填される。次
に、部品挿入用の孔または次層以下の内層で導体
接続する孔を貫通孔3としてドリルにより穿設す
る(第3図H)。次にこの貫通孔3を導体化する
ためにパラジウムなどの触媒を貫通孔3の内壁お
よび積層板1の表面に吸着させ触媒層8を形成す
る(第3図I)。次に、積層板1の表面に不必要
な導体層が形成されないように、絶縁性、耐薬品
性を有する永久マスク9(例えば耐無電解めつき
用のソルダーレジスト:太陽インキ製S−22等)
を所望部分に被着形成すると、上記プランド・バ
イア・ホール4−11,4−12も同時に保護被
覆される(第3図J)。
Next, as shown in FIG. 3D, the desired circuit pattern portions on the surfaces of the copper foils 2-1 and 2-2 are covered with a photosensitive dry film resist 7 using a known tenting method, and then unnecessary conductors are removed. Layer 6 and the copper foils 2-1 and 2-2 below it are removed by etching to form a conductor layer pattern of layer 1-2 (1a-1) of the multilayer board (FIG. 3E). Next, as shown in Figure 3F,
5 to 6 layers 1a- obtained by the same method as described above
3 and 3 to 4 with only the power supply ground pattern formed.
layer (1a-2: for example, a laminate with 0.070 mm copper foil pasted on both sides of a 0.5 mm thick glass cloth base epoxy resin) and prepreg layers 1b-1, 1b-2
(For example, two sheets each of 0.15 mm thick glass cloth base epoxy resin-impregnated prepregs) are combined, and layers 1 to 2 1a-1 of Fig. 3E are placed on top of the prepreg, and then the pressure is 10 to 40 kg. / cm2 , heating 170℃・40~80
The thickness is
A six-layer laminate 1 of 1.4 to 1.6 mm is obtained (FIG. 3G).
At this time, the via holes 4-1 and 4-2 shown in Figure 3F are so-called non-through blind vias.
Holes 4-11 and 4-12 are formed, and prepregs 1b-1 and 1b- are formed inside these holes.
It is completely filled with resin 1b' flowing out from 2. Next, a hole for inserting a component or a hole for connecting a conductor in an inner layer below the next layer is drilled as a through hole 3 (FIG. 3H). Next, in order to make the through hole 3 conductive, a catalyst such as palladium is adsorbed onto the inner wall of the through hole 3 and the surface of the laminate 1 to form a catalyst layer 8 (FIG. 3I). Next, in order to prevent unnecessary conductor layers from being formed on the surface of the laminate 1, a permanent mask 9 having insulation and chemical resistance (for example, a solder resist for electroless plating: S-22 manufactured by Taiyo Ink, etc.) is applied. )
When it is deposited on the desired portion, the planned via holes 4-11 and 4-12 are also protectively coated at the same time (FIG. 3J).

次に、全面に無電解銅めつきを施すと貫通孔3
の内壁および露出した銅めつき導体層10が形成
され、所望のブラインド・バイア・ホールを有す
る本発明多層プリント配線板が得られる(第3図
K)。
Next, when electroless copper plating is applied to the entire surface, the through hole 3
The inner walls and exposed copper-plated conductor layer 10 are formed, resulting in a multilayer printed wiring board of the present invention having the desired blind via holes (FIG. 3K).

以上、本発明によつて得られたブラインド・バ
イア・ホールを有する多層プリント配線板は、従
来のものに比較して、(i)ブラインド・バイア・ホ
ール内が積層板と同一の樹脂で完全に充填され
る。(ii)ブラインド・バイア・ホールは永久マスク
で完全に被覆される。(iii)多層化成型時にバイア・
ホールによつて、積層板とプリ・プレグとの間の
空気を完全に除去するので、通常よりも低圧で成
型することができる。
As described above, the multilayer printed wiring board having blind via holes obtained by the present invention has the following advantages compared to conventional ones: (i) The inside of the blind via hole is completely made of the same resin as the laminate. Filled. (ii) Blind via holes are completely covered with a permanent mask. (iii) Via during multilayer molding
The holes completely remove air between the laminate and the pre-preg, allowing molding to be performed at lower pressure than usual.

このため、従来構造の多層プリント配線板では
ブラインド・バイア・ホール内に処理液の残渣が
みられ腐蝕等の障害もみられたが、この解消が図
れた。更に層間のボイド発生が皆無となり、層間
の厚み公差も従来の1/2以下に向上できた。
As a result, in multilayer printed wiring boards with a conventional structure, residues of processing liquid were found in blind via holes and problems such as corrosion were observed, but this problem has been resolved. Furthermore, there are no voids between the layers, and the thickness tolerance between the layers has been improved to less than half that of the conventional method.

また、製造上からも、レーザ等の特殊な手段、
あるいは一面ずつ非貫通孔を穿設する非量産的な
手段によらず多数枚の積層板を重ねて孔を穿設で
きるので、生産性の著しい向上と均一な電気特性
の多層板を得ることができる。更に、ブライン
ド・バイア・ホールの内層接続の信頼性の向上が
図れ、配線収容性が著しく向上する。
In addition, from a manufacturing perspective, special means such as lasers,
Alternatively, holes can be formed by stacking a large number of laminates instead of using non-mass production methods such as drilling non-through holes on each side, which significantly improves productivity and allows multilayer boards with uniform electrical properties to be obtained. can. Furthermore, the reliability of the inner layer connection of the blind via hole can be improved, and the wiring capacity can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多層プリント配線板の断面図。
第2図A〜Eは従来の多層プリント配線板の製造
工程を示す断面図。第3図A〜Jは本発明多層プ
リント配線板の製造工程を示す断面図。第3図K
は本発明多層プリント配線板の断面図。 1……(多層化成型された)積層板、1a−1
……1〜2層を形成する積層板、1a−2……3
〜4層を形成する積層板、1a−3……5〜6層
を形成する積層板、1b−1〜1b−2……2〜
3層間と4〜5層間を形成するプリ・プレグ層、
1b′……ブラインド・バイア・ホール内に充填さ
れた樹脂、2−1〜2−6……1〜6層の導体層
を形成する銅箔、3……部品挿入又は電源と内層
接続する貫通孔、4……信号層間を接続する貫通
のバイア・ホール、4−1,4−2……1〜2
層、5〜6層を形成する積層板に設けたバイア・
ホール、4−11,4−12……1〜2層、5〜
5層間を接続するブラインド・バイア・ホール、
5……貫通孔とブラインド・バイア・ホールに同
時に形成された導体層、6……1a−1と1a−
2の積層板の表裏およびバイア・ホール4−1,
4−2に形成された導体層、7……感光性ドライ
フイルムレジスト、8……触媒層、9……(絶縁
性、耐薬品性の)永久マスク、10……無電解銅
めつき導体層、p……バイア・ホールが穿設され
る位置、d……バイア・ホールの底部と3層目の
導体回路との距離。
FIG. 1 is a cross-sectional view of a conventional multilayer printed wiring board.
FIGS. 2A to 2E are cross-sectional views showing the manufacturing process of a conventional multilayer printed wiring board. 3A to 3J are cross-sectional views showing the manufacturing process of the multilayer printed wiring board of the present invention. Figure 3 K
FIG. 2 is a cross-sectional view of the multilayer printed wiring board of the present invention. 1... (Multilayer molded) laminate, 1a-1
...Laminated plate forming 1 to 2 layers, 1a-2...3
Laminated plate forming ~4 layers, 1a-3...Laminated plate forming 5-6 layers, 1b-1~1b-2...2~
Pre-preg layer forming between 3 layers and between 4 to 5 layers,
1b'...Resin filled in the blind via hole, 2-1 to 2-6...Copper foil forming 1 to 6 conductor layers, 3...Throughout for inserting components or connecting the power supply to the inner layer Hole, 4...Through via hole connecting between signal layers, 4-1, 4-2...1 to 2
vias in the laminate forming the 5-6 layers.
Hall, 4-11, 4-12...1~2 layers, 5~
Blind via hole connecting 5 layers,
5...Conductor layer formed simultaneously in the through hole and blind via hole, 6...1a-1 and 1a-
2 laminate board and via hole 4-1,
4-2 conductor layer formed, 7... photosensitive dry film resist, 8... catalyst layer, 9... (insulating, chemical resistant) permanent mask, 10... electroless copper plating conductor layer , p...Position where the via hole is bored, d...Distance between the bottom of the via hole and the third layer conductor circuit.

Claims (1)

【特許請求の範囲】 1 最外層の導体回路と、最外層の次の層に位置
する導体回路とを接続するブラインド・バイア・
ホールの穴内空間が樹脂で充填され、かつ前記ブ
ラインド・バイア・ホール表面の導体層が絶縁層
で完全に被覆されていることを特徴とする多層プ
リント配線板。 2 次の工程からなることを特徴とする多層プリ
ント配線板の製造方法。 (ア) スルーホールを有し、かつ予め導体回路パタ
ーンが形成された2組の積層板を各々最外層に
配置し、その内側に予め導体回路パターンを形
成した1組以上の積層板とプリプレグ層とを介
挿した後に加圧・加熱し、多層化積層板を成型
する工程。 (イ) 前記多層化積層板の所望部分に貫通孔を設け
る工程。 (ウ) 前記貫通孔を有する多層化積層板を触媒活性
化処理する工程。 (エ) 前記触媒活性化処理された多層化積層板の予
め導体化されたブラインド・バイア・ホールを
含む所望部分に絶縁性を有する永久マスクを被
覆する工程。 (オ) 前記所望部分に永久マスクを被覆した多層化
積層板の貫通孔内壁を含めた所望部分に無電解
銅めつきで導体層を形成する工程。
[Claims] 1. A blind via connecting a conductor circuit in the outermost layer and a conductor circuit located in the layer next to the outermost layer.
1. A multilayer printed wiring board characterized in that the space inside the hole is filled with resin, and the conductor layer on the surface of the blind via hole is completely covered with an insulating layer. 2. A method for manufacturing a multilayer printed wiring board, characterized by comprising the following steps. (a) Two sets of laminates each having a through hole and having a conductor circuit pattern formed in advance are placed on the outermost layer, and one or more sets of laminates and a prepreg layer have a conductor circuit pattern formed in advance on the inside thereof. The process of inserting the laminate and then applying pressure and heating to form a multilayer laminate. (a) A step of providing through holes in desired portions of the multilayer laminate. (c) A step of catalytically activating the multilayer laminate having the through holes. (d) A step of covering a desired portion of the multilayer laminate which has been subjected to the catalyst activation treatment, including the blind via hole which has been made conductive in advance, with a permanent mask having insulating properties. (E) A step of forming a conductive layer by electroless copper plating on desired parts including the inner walls of the through holes of the multilayer laminate in which the desired parts are coated with a permanent mask.
JP15923382A 1982-09-13 1982-09-13 Multilayer printed circuit board and method of producing same Granted JPS5948996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15923382A JPS5948996A (en) 1982-09-13 1982-09-13 Multilayer printed circuit board and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15923382A JPS5948996A (en) 1982-09-13 1982-09-13 Multilayer printed circuit board and method of producing same

Publications (2)

Publication Number Publication Date
JPS5948996A JPS5948996A (en) 1984-03-21
JPS6338878B2 true JPS6338878B2 (en) 1988-08-02

Family

ID=15689246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15923382A Granted JPS5948996A (en) 1982-09-13 1982-09-13 Multilayer printed circuit board and method of producing same

Country Status (1)

Country Link
JP (1) JPS5948996A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546296Y2 (en) * 1988-02-02 1993-12-03
US5001605A (en) * 1988-11-30 1991-03-19 Hughes Aircraft Company Multilayer printed wiring board with single layer vias
JPH0340493A (en) * 1989-07-07 1991-02-21 Matsushita Electric Works Ltd Multilayered printed wiring board
JPH0682929B2 (en) * 1992-03-30 1994-10-19 イビデン株式会社 Multilayer printed wiring board for mounting surface mount components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114067A (en) * 1973-03-07 1974-10-31
JPS5013469A (en) * 1973-06-08 1975-02-12
JPS54163359A (en) * 1978-06-16 1979-12-25 Hitachi Ltd Method of producing multiilayer printed circuit board
JPS5578598A (en) * 1978-12-08 1980-06-13 Fujitsu Ltd Method of fabricating printed board
JPS5681999A (en) * 1979-12-07 1981-07-04 Fujitsu Ltd Method of manufacturing multilayer printed board
JPS5792895A (en) * 1980-12-02 1982-06-09 Nippon Telegraph & Telephone Method of laminating printed board
JPS57139996A (en) * 1981-02-24 1982-08-30 Nippon Electric Co Hybrid multilayer circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114067A (en) * 1973-03-07 1974-10-31
JPS5013469A (en) * 1973-06-08 1975-02-12
JPS54163359A (en) * 1978-06-16 1979-12-25 Hitachi Ltd Method of producing multiilayer printed circuit board
JPS5578598A (en) * 1978-12-08 1980-06-13 Fujitsu Ltd Method of fabricating printed board
JPS5681999A (en) * 1979-12-07 1981-07-04 Fujitsu Ltd Method of manufacturing multilayer printed board
JPS5792895A (en) * 1980-12-02 1982-06-09 Nippon Telegraph & Telephone Method of laminating printed board
JPS57139996A (en) * 1981-02-24 1982-08-30 Nippon Electric Co Hybrid multilayer circuit board

Also Published As

Publication number Publication date
JPS5948996A (en) 1984-03-21

Similar Documents

Publication Publication Date Title
JP2874329B2 (en) Method for manufacturing multilayer printed wiring board
US6240636B1 (en) Method for producing vias in the manufacture of printed circuit boards
JP2003031952A (en) Core substrate and multilayer circuit board using the same
US20070074902A1 (en) Printed-wiring board, multilayer printed-wiring board and manufacturing process therefor
KR100701353B1 (en) Multi-layer printed circuit board and manufacturing method thereof
WO2002062116A1 (en) It laminating double-side circuit board and production method therefor and multi-layer printed circuit board using
US6570102B2 (en) Structure for high speed printed wiring boards with multiple differential impedance-controlled layer
JPS6338878B2 (en)
JPS59175796A (en) Method of producing multilayer printed circuit board
JP2000269647A (en) Single-side circuit board, multilayer printed wiring board and manufacture thereof
JPH0542157B2 (en)
JP2003124632A (en) Multilayer printed wiring board and its manufacturing method
JP2000323841A (en) Multilayer circuit board and manufacture thereof
KR100722742B1 (en) Printed circuit board and the manufacturing method thereof
JPH0542158B2 (en)
JP2003086941A (en) Printed wiring board
JPH01140698A (en) Manufacture of multi-layered printed circuit board
JP2002359468A (en) Multilayered printed wiring board having filled via hole structure and manufacturing method therefor
JPH0744341B2 (en) Blind through-hole printed wiring board manufacturing method
JPH1168291A (en) Printed wiring board and production thereof
JP2003017848A (en) Method for manufacturing multilayer printed wiring board having filled-via structure
JPH03152996A (en) Manufacture of multilayer printed wiring board
JPH0563036B2 (en)
JP2508981B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPS59219995A (en) Method of producing multilayer printed circuit board