JP2002254543A - Composite laminated sheet and method for manufacturing the same - Google Patents
Composite laminated sheet and method for manufacturing the sameInfo
- Publication number
- JP2002254543A JP2002254543A JP2001020894A JP2001020894A JP2002254543A JP 2002254543 A JP2002254543 A JP 2002254543A JP 2001020894 A JP2001020894 A JP 2001020894A JP 2001020894 A JP2001020894 A JP 2001020894A JP 2002254543 A JP2002254543 A JP 2002254543A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- core layer
- surface layer
- prepreg
- composite laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/20—Making multilayered or multicoloured articles
- B29C43/203—Making multilayered articles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、エポキシ樹脂組成
物をガラス繊維織布基材に保持した表面層と無機充填材
として少なくとも水酸化アルミニウムを含有するエポキ
シ樹脂組成物をガラス繊維不織布基材に保持した芯層と
が加熱加圧成形により一体化されたコンポジット積層板
に関する。また、このコンポジット積層板の製造法に関
する。BACKGROUND OF THE INVENTION The present invention relates to a glass fiber nonwoven substrate comprising an epoxy resin composition containing at least aluminum hydroxide as an inorganic filler and a surface layer holding the epoxy resin composition on a glass fiber woven substrate. The present invention relates to a composite laminate in which a held core layer is integrated by heating and pressing. The present invention also relates to a method for producing the composite laminate.
【0002】[0002]
【従来の技術】上記コンポジット積層板はプリント配線
板の絶縁層として広く用いられており、芯層の水酸化ア
ルミニウムは難燃性付与の目的で配合されている。水酸
化アルミニウムは、高温(200℃付近)で熱分解を開
始し水蒸気を発生して難燃効果を発揮するが、この熱分
解温度が低いと、積層板の耐熱性(半田耐熱性)を低下
させる原因となる。2. Description of the Related Art The above composite laminate is widely used as an insulating layer of a printed wiring board, and aluminum hydroxide of a core layer is blended for the purpose of imparting flame retardancy. Aluminum hydroxide starts to thermally decompose at a high temperature (around 200 ° C.) and generates water vapor to exhibit a flame-retardant effect. However, if this thermal decomposition temperature is low, the heat resistance (solder heat resistance) of the laminate decreases. This can cause
【0003】水酸化アルミニウムの熱分解開始温度は水
酸化アルミニウムの製造条件によって異なり、製造した
水酸化アルミニウム中の酸化ナトリウム含有率を少なく
するほど、熱分解開始温度は高くなる。工業用水酸化ア
ルミニウムにおいては、水酸化アルミニウム中の酸化ナ
トリウム含有率が耐熱性の指標となっており、高耐熱用
途では、酸化ナトリウム含有率がおおよそ0.1質量%
以下に管理されている。[0003] The thermal decomposition onset temperature of aluminum hydroxide varies depending on the production conditions of aluminum hydroxide, and the lower the content of sodium oxide in the produced aluminum hydroxide, the higher the thermal decomposition onset temperature. In industrial aluminum hydroxide, the content of sodium oxide in aluminum hydroxide is an indicator of heat resistance. In high heat-resistant applications, the content of sodium oxide is approximately 0.1% by mass.
It is managed below.
【0004】プリント配線板製造用のコンポジット積層
板に要求される半田耐熱性は、JISで定められた基準
では260℃半田浴に試験片を浮かべて20秒以上異常
なきことであるが、実際には安全率等を考慮し、120
秒以上異常なきこととして運用されている。このような
状況から、コンポジット積層板の芯層樹脂中に配合する
水酸化アルミニウムは高耐熱用途水酸化アルミニウムが
採用されており、特に芯層樹脂中に30質量%以上の水
酸化アルミニウムを含有させる場合は、高耐熱用途水酸
化アルミニウムの選択が必須となっている。このような
場合に、酸化ナトリウム含有率が0.1質量%を越える
ような一般用途水酸化アルミニウムを採用すると、半田
耐熱性は120秒未満なる。[0004] The solder heat resistance required for a composite laminate for the manufacture of a printed wiring board is such that a test piece floats in a solder bath at 260 ° C for 20 seconds or more without any abnormality according to the standard defined by JIS. Is considered 120
It has been operated for nothing more than seconds. Under such circumstances, aluminum hydroxide used in the core layer resin of the composite laminate is a high heat-resistant aluminum hydroxide. In particular, aluminum hydroxide of 30% by mass or more is contained in the core layer resin. In such a case, it is necessary to select aluminum hydroxide having high heat resistance. In such a case, when a general-purpose aluminum hydroxide having a sodium oxide content exceeding 0.1% by mass is employed, the solder heat resistance becomes less than 120 seconds.
【0005】[0005]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、芯層の樹脂中に無機充填材として少なくと
も水酸化アルミニウムを含有するコンポジット積層板に
おいて、その半田耐熱性を向上させることである。不純
物として含有する酸化ナトリウムの量を制限した高耐熱
用途水酸化アルミニウムを使用する場合には、同じ水酸
化アルミニウムを採用した従来のコンポジット積層板の
半田耐熱性をさらに向上させる。また、不純物として含
有する酸化ナトリウムの量が増えた一般用途水酸化アル
ミニウムを使用する場合であっても、高耐熱用途水酸化
アルミニウムを使用する従来のコンポジット積層板の半
田耐熱性に近づける。The problem to be solved by the present invention is to improve the solder heat resistance of a composite laminate containing at least aluminum hydroxide as an inorganic filler in the resin of the core layer. is there. In the case of using aluminum hydroxide having a high heat resistance in which the amount of sodium oxide contained as an impurity is restricted, the solder heat resistance of a conventional composite laminate employing the same aluminum hydroxide is further improved. Further, even when aluminum hydroxide for general use containing an increased amount of sodium oxide as an impurity is used, the solder heat resistance of the conventional composite laminate using aluminum hydroxide having high heat resistance is brought close to the heat resistance.
【0006】[0006]
【課題を解決するための手段】本発明は、エポキシ樹脂
組成物をガラス繊維織布基材に保持した表面層と無機充
填材として少なくとも水酸化アルミニウムを含有するエ
ポキシ樹脂組成物をガラス繊維不織布基材に保持した芯
層とが加熱加圧成形により一体化されたコンポジット積
層板を対象とする。上記の課題を解決するために、本発
明に係るコンポジット積層板は、表面層樹脂が、表面層
と連なった状態で芯層まで延び、芯層中に分布した樹脂
溜りを構成していることを特徴とする。SUMMARY OF THE INVENTION The present invention relates to a glass fiber woven fabric base material and an epoxy resin composition containing at least aluminum hydroxide as an inorganic filler. It is intended for a composite laminate in which a core layer held by a material is integrated by heating and pressing. In order to solve the above-described problems, the composite laminate according to the present invention has a configuration in which the surface layer resin extends to the core layer in a state of being connected to the surface layer, and forms a resin pool distributed in the core layer. Features.
【0007】このような構成のコンポジット積層板は、
エポキシ樹脂組成物をガラス繊維織布基材に含浸し加熱
乾燥して得たプリプレグを表面層とし、無機充填材とし
て少なくとも水酸化アルミニウムを含有するエポキシ樹
脂組成物をガラス繊維不織布基材に含浸し加熱乾燥して
得たプリプレグを前記表面層の芯層とし、これらを加熱
加圧成形により一体化する方法で製造し、前記表面層プ
リプレグと芯層プリプレグを次のように調整して用い
る。すなわち、表面層プリプレグは、前記加熱加圧成形
時における樹脂の最低溶融粘度が50〜500Pa・sに
なるように調整しておく。芯層プリプレグは、前記加熱
加圧成形時における樹脂の最低溶融粘度が前記表面層プ
リプレグの最低溶融粘度より高くなるように調整してお
く。かつ、芯層プリプレグは、加熱加圧成形時に溶融し
たプリプレグの樹脂が流入可能な空隙を残したものとし
ておく。[0007] The composite laminate having such a structure is as follows.
A prepreg obtained by impregnating an epoxy resin composition into a glass fiber woven fabric substrate and drying by heating is used as a surface layer, and an epoxy resin composition containing at least aluminum hydroxide as an inorganic filler is impregnated into a glass fiber nonwoven fabric substrate. The prepreg obtained by heating and drying is used as a core layer of the surface layer, and manufactured by a method in which these are integrated by heat and pressure molding. The surface layer prepreg and the core layer prepreg are adjusted and used as follows. That is, the surface layer prepreg is adjusted so that the minimum melt viscosity of the resin at the time of the heat and pressure molding is 50 to 500 Pa · s. The core layer prepreg is adjusted so that the minimum melt viscosity of the resin at the time of the hot press molding is higher than the minimum melt viscosity of the surface layer prepreg. In addition, the core layer prepreg is left with a void through which the resin of the prepreg melted at the time of the heat and pressure molding can flow.
【0008】上記のように製造したコンポジット積層板
は、表面層プリプレグ樹脂の加熱加圧成形時における最
低溶融粘度が低いので、当該樹脂が芯層プリプレグの空
隙中に流入し樹脂溜りを形成した構成となる。この樹脂
溜りは、表面層樹脂が表面層と連なった状態で芯層まで
延び、芯層中に分布しており、通常、100μm以上の
大きさになる。表面層プリプレグ樹脂の最低溶融粘度が
上記のように低粘度であり、一方、芯層プリプレグ樹脂
の最低溶融粘度は前記表面層プリプレグ樹脂の最低溶融
粘度よりも高いので、上記のように樹脂溜りが形成され
ることとなる。In the composite laminate manufactured as described above, since the minimum melt viscosity of the surface layer prepreg resin at the time of heating and pressing is low, the resin flows into the voids of the core layer prepreg to form a resin reservoir. Becomes The resin pool extends to the core layer with the surface layer resin connected to the surface layer and is distributed in the core layer, and usually has a size of 100 μm or more. The minimum melt viscosity of the surface layer prepreg resin is low as described above, while the minimum melt viscosity of the core layer prepreg resin is higher than the minimum melt viscosity of the surface layer prepreg resin. Will be formed.
【0009】上記樹脂溜まりの形成により、表面層と芯
層の接着面積が増加する。また、樹脂溜まりの投錨効果
により表面層と芯層の層間接着強度が向上する。これら
の結果から、水酸化アルミニウムが熱分解して水蒸気が
発生した場合にも、表面層と芯層の層間剥離が起こりに
くくなり、耐熱性が向上することになる。Due to the formation of the above-mentioned resin pool, the adhesion area between the surface layer and the core layer increases. Further, the interlayer adhesion strength between the surface layer and the core layer is improved by the anchor effect of the resin pool. From these results, even when aluminum hydroxide is thermally decomposed to generate water vapor, delamination between the surface layer and the core layer is less likely to occur, and heat resistance is improved.
【0010】尚、表面層プリプレグ樹脂の最低溶融粘度
は、低すぎると積層板の厚み精度制御が難しくなり、高
すぎると樹脂溜りが良好に形成されなくなるので、上記
のように制限する。If the minimum melt viscosity of the surface layer prepreg resin is too low, it is difficult to control the thickness accuracy of the laminate, and if the minimum melt viscosity is too high, the resin pool will not be formed well.
【0011】[0011]
【発明の実施の形態】本発明においては、不純物として
0.1質量%を越える酸化ナトリウムを含有する一般用
途水酸化アルミニウムを採用することができ、その場合
でも、従来の高耐熱用途水酸化アルミニウムを採用した
場合と同様に、コンポジット積層板の半田耐熱性を確保
することができる。一般用途水酸化アルミニウムを採用
可能なことから、材料コストの低減を図ることができ
る。しかし、水酸化アルミニウム中の酸化ナトリウム含
有率は、好ましくは0.2質量%以下に管理する。勿
論、本発明において、高耐熱用途水酸化アルミニウムを
採用すると、同じ高耐熱用途水酸化アルミニウムを採用
した従来のコンポジット積層板の半田耐熱性をさらに向
上させることができる。芯層樹脂には、無機充填材とし
て、水酸化アルミニウムのほか、通常使用される無機充
填材、例えばタルクなどを一緒に配合してもよい。芯層
樹脂中の水酸化アルミニウム含有量は、難燃性付与と耐
熱性確保の観点から、20〜40質量%にすることが好
ましい。DETAILED DESCRIPTION OF THE INVENTION In the present invention, aluminum hydroxide for general use containing more than 0.1% by mass of sodium oxide as an impurity can be employed. In the same manner as in the case of adopting the above, the solder heat resistance of the composite laminate can be ensured. Since aluminum hydroxide for general use can be adopted, material cost can be reduced. However, the sodium oxide content in the aluminum hydroxide is preferably controlled to 0.2% by mass or less. Of course, in the present invention, when aluminum hydroxide having a high heat resistance is employed, the solder heat resistance of a conventional composite laminate employing the same aluminum hydroxide having a high heat resistance can be further improved. In addition to aluminum hydroxide as an inorganic filler, a commonly used inorganic filler such as talc may be added to the core layer resin. The content of aluminum hydroxide in the core layer resin is preferably 20 to 40% by mass from the viewpoint of imparting flame retardancy and securing heat resistance.
【0012】上述したように、エポキシ樹脂組成物をガ
ラス繊維織布基材に含浸し加熱乾燥して製造する表面層
プリプレグは、コンポジット積層板製造のための加熱加
圧成形における樹脂の最低溶融粘度を50〜500Pa・
sに調整する。一方、芯層プリプレグの樹脂の最低溶融
粘度は、前記表面層プリプレグの樹脂の最低溶融粘度よ
り高く設定するが、その最低溶融粘度は0.01〜0.
05MPa・sの範囲で調整するのが好ましい。これら最
低溶融粘度の調整は、プリプレグ製造時の加熱乾燥の程
度を変えることにより実施する。コンポジット積層板の
加熱加圧成形時に、芯層プリプレグの空隙に溶融樹脂を
流入させるためには、芯層プリプレグの樹脂含有量(無
機充填材を含有量に含む)を95質量%以下になるよう
に、エポキシ樹脂組成物のガラス繊維不織布基材への含
侵を行なうとよい。As described above, a surface layer prepreg produced by impregnating a glass fiber woven fabric substrate with an epoxy resin composition and heating and drying the resin has a minimum melt viscosity of the resin in the heat and pressure molding for producing a composite laminate. From 50 to 500 Pa
Adjust to s. On the other hand, the minimum melt viscosity of the resin of the core layer prepreg is set higher than the minimum melt viscosity of the resin of the surface layer prepreg.
It is preferable to adjust in the range of 05 MPa · s. The adjustment of these minimum melt viscosities is performed by changing the degree of heating and drying at the time of prepreg production. In order to allow the molten resin to flow into the voids of the core layer prepreg during the heat and pressure molding of the composite laminate, the resin content of the core layer prepreg (including the inorganic filler) should be 95% by mass or less. Then, the glass fiber nonwoven fabric substrate is preferably impregnated with the epoxy resin composition.
【0013】上記のような表面層プリプレグと芯層プリ
プレグを、標準的なコンポジット積層板の製造法によっ
て製造する。The surface layer prepreg and the core layer prepreg as described above are manufactured by a standard composite laminate manufacturing method.
【0014】[0014]
【実施例】以下に、本発明に係る実施例ならびに比較例
と従来例を説明する。 実施例1〜5、比較例1、従来例1〜2 無機充填材を含まないエポキシ樹脂組成物をガラス繊維
織布基材に含侵し加熱乾燥して、表面層プリプレグ(樹
脂含有量45質量%)を製造した。また、無機充填材と
して水酸化アルミニウムを30質量%、タルクを27質
量%含有するエポキシ樹脂組成物をガラス繊維不織布基
材に含浸し加熱乾燥して、芯層プリプレグ(無機充填材
を含む樹脂含有量90質量%)を製造した。前記芯層プ
リプレグ2プライの両面に表面層プリプレグ各1枚を重
ね、最表面には35μm厚銅箔を載置して、これらを加
熱加圧成形することにより板厚1.6mmのコンポジット
積層板とした。EXAMPLES Examples according to the present invention, comparative examples, and conventional examples will be described below. Examples 1 to 5, Comparative Example 1 and Conventional Examples 1 to 2 A glass fiber woven fabric substrate was impregnated with an epoxy resin composition containing no inorganic filler, dried by heating, and dried to form a surface layer prepreg (resin content: 45% by mass). ) Manufactured. An epoxy resin composition containing 30% by mass of aluminum hydroxide and 27% by mass of talc as an inorganic filler is impregnated into a glass fiber nonwoven fabric substrate and dried by heating to form a core prepreg (containing a resin containing an inorganic filler). 90% by mass). One sheet of the surface layer prepreg is placed on both sides of the two-ply core layer prepreg, and 35 μm thick copper foil is placed on the outermost surface, and these are heated and pressed to form a 1.6 mm thick composite laminate. And
【0015】上記各例で使用した表面層プリプレグの加
熱加圧成形時における樹脂の最低溶融粘度は、表1に示
すとおりである。この最低溶融粘度の調整は、プリプレ
グ製造の乾燥温度及び/又は乾燥時間の設定を変え、B
ステージの樹脂の硬化度を調整することにより実施し
た。芯層プリプレグの加熱加圧成形時における樹脂の最
低溶融粘度は、いずれの例も0.03MPa・sとした。
また、各例で採用した水酸化アルミニウムが不純物とし
て含有する酸化ナトリウムの量は、表1に示すとおりで
ある。Table 1 shows the minimum melt viscosity of the resin when the surface layer prepreg used in each of the above examples was heated and pressed. The adjustment of the minimum melt viscosity is performed by changing the setting of the drying temperature and / or the drying time of the prepreg production,
This was performed by adjusting the degree of curing of the resin of the stage. The minimum melt viscosity of the resin at the time of heating and pressing the core layer prepreg was 0.03 MPa · s in each case.
The amounts of sodium oxide contained as impurities in the aluminum hydroxide used in each example are as shown in Table 1.
【0016】上記各例のコンポジット積層板について、
その断面観察をした。図1は、実施例のコンポジット積
層板の断面を模式的に示したものである。表面層樹脂
が、表面層1から芯層2まで到達し、芯層中に樹脂溜り
3を構成している。樹脂溜り3は、芯層中に多数分布し
ている。一方、比較例1のコンポジット積層板は、樹脂
溜りが形成されていても顕著ではなく、従来例1,2の
コンポジット積層板は、樹脂溜りが形成されなかった。
表1には、形成された樹脂溜り3の寸法最大値と半田耐
熱性測定結果を併せて示す。表中、表面層プリプレグ樹
脂の最低溶融粘度は、高架式フローテスタ(昇温速度2
℃/分)にて測定した。樹脂溜り寸法最大値は、試験片
の断面観察長10cm中に認められた樹脂溜りの最大寸法
である。半田耐熱性は、JIS−C5013に基づき試
験片を溶融半田(260℃)に浮かべ、試験片表面にフ
クレが発生するまでの時間を測定したものである(n=
5の平均値)。Regarding the composite laminate of each of the above examples,
The cross section was observed. FIG. 1 schematically shows a cross section of the composite laminate of the embodiment. The surface layer resin reaches from the surface layer 1 to the core layer 2 and forms a resin reservoir 3 in the core layer. A large number of resin reservoirs 3 are distributed in the core layer. On the other hand, the composite laminate of Comparative Example 1 was not remarkable even if a resin puddle was formed, and the composite plies of Conventional Examples 1 and 2 did not have a resin puddle.
Table 1 also shows the dimensional maximum value of the formed resin reservoir 3 and the measurement results of the solder heat resistance. In the table, the minimum melt viscosity of the surface layer prepreg resin was measured using an elevated flow tester (heating rate 2).
° C / min). The maximum value of the resin pool size is the maximum size of the resin pool observed within a cross-section observation length of 10 cm of the test piece. The solder heat resistance is obtained by floating a test piece on molten solder (260 ° C.) based on JIS-C5013 and measuring the time until blistering occurs on the test piece surface (n =
5 average).
【0017】[0017]
【表1】 [Table 1]
【0018】表1から明らかなように、本発明に係る実
施例では、樹脂溜りが良好に形成されており、半田耐熱
性が優れている。不純物として酸化アルミニウムを0.
1質量%を越える0.16質量%含有する場合にも良好
な半田耐熱性を保持している(実施例2〜5)。高耐熱
用途の水酸化アルミニウムを採用したときは、同じ水酸
化アルミニウムを採用した従来例より、さらに半田耐熱
性が向上する(実施例1と従来例1の対比)。As is clear from Table 1, in the embodiment according to the present invention, the resin pool is formed well and the solder heat resistance is excellent. Aluminum oxide as an impurity.
Good solder heat resistance is maintained even when the content is more than 1% by mass and 0.16% by mass (Examples 2 to 5). When aluminum hydroxide for high heat resistance is employed, the solder heat resistance is further improved as compared with the conventional example employing the same aluminum hydroxide (comparing Example 1 with Conventional Example 1).
【0019】[0019]
【発明の効果】上述のように、本発明に係るコンポジッ
ト積層板は、芯層樹脂中に無機充填材として水酸化アル
ミニウムを含有しているにもかかわらず、表面層樹脂が
表面層と連なった状態で芯層まで延び、芯層中に分布し
た樹脂溜りを構成しているので、耐熱性が良好である。
また、本発明に係る方法は、前記構成のコンポジット積
層板を製造するのに有効な方法である。As described above, in the composite laminate according to the present invention, although the core layer resin contains aluminum hydroxide as an inorganic filler, the surface layer resin is connected to the surface layer. Since the resin layer extends to the core layer in the state and forms a resin pool distributed in the core layer, the heat resistance is good.
Further, the method according to the present invention is an effective method for producing a composite laminate having the above-described configuration.
【図1】本発明に係る実施例のコンポジット積層板の断
面を模式的に示した説明図である。FIG. 1 is an explanatory view schematically showing a cross section of a composite laminate according to an embodiment of the present invention.
1は表面層 2は芯層 3は樹脂溜り 1 is a surface layer 2 is a core layer 3 is a resin pool
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:16 B29K 105:16 309:08 309:08 B29L 7:00 B29L 7:00 9:00 9:00 (72)発明者 野田 雅之 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 4F100 AA17B AA19B AB17C AB33C AC10B AG00A AG00B AK53A AK53B BA02 BA03 BA07 BA08 BA10A BA10C BA16 DG11A DG15B DH01A DH01B GB43 JJ03 4F204 AA39 AB11 AB16 AD03 AD16 AG01 AG03 FB22 FF01 FF05 FF06 FG09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B29K 105: 16 B29K 105: 16 309: 08 309: 08 B29L 7:00 B29L 7:00 9:00 9: 00 (72) Inventor Masayuki Noda 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Machinery Co., Ltd. 4F100 AA17B AA19B AB17C AB33C AC10B AG00A AG00B AK53A AK53B BA02 BA03 BA07 BA08 BA10A BA10C BA16 DG11A01B15 DH01B GB43 JJ03 4F204 AA39 AB11 AB16 AD03 AD16 AG01 AG03 FB22 FF01 FF05 FF06 FG09
Claims (3)
に保持した表面層と無機充填材として少なくとも水酸化
アルミニウムを含有するエポキシ樹脂組成物をガラス繊
維不織布基材に保持した芯層とが加熱加圧成形により一
体化されたコンポジット積層板において、 表面層樹脂が、表面層と連なった状態で芯層まで延び、
芯層中に分布した樹脂溜りを構成していることを特徴と
するコンポジット積層板。1. A surface layer in which an epoxy resin composition is held on a glass fiber woven base material and a core layer in which an epoxy resin composition containing at least aluminum hydroxide as an inorganic filler is held on a glass fiber nonwoven base material. In the composite laminate integrated by heat and pressure molding, the surface layer resin extends to the core layer in a state of being connected to the surface layer,
A composite laminate comprising a resin pool distributed in a core layer.
1質量%を越える酸化ナトリウムを含有することを特徴
とする請求項1記載のコンポジット積層板。2. The method according to claim 1, wherein aluminum hydroxide is used as an impurity.
The composite laminate according to claim 1, wherein the composite laminate contains more than 1% by mass of sodium oxide.
に含浸し加熱乾燥して得たプリプレグを表面層とし、無
機充填材として少なくとも水酸化アルミニウムを含有す
るエポキシ樹脂組成物をガラス繊維不織布基材に含浸し
加熱乾燥して得たプリプレグを前記表面層の芯層とし、
これらを加熱加圧成形により一体化するコンポジット積
層板の製造において、 前記加熱加圧成形時における樹脂の最低溶融粘度が50
〜500Pa・sになるように調整した表面層プリプレグ
と、 前記加熱加圧成形時における樹脂の最低溶融粘度が前記
表面層プリプレグの最低溶融粘度より高くなるように調
整するとともに、溶融樹脂の流入可能な空隙を残した芯
層プリプレグとを使用することを特徴とするコンポジッ
ト積層板の製造法。3. A glass fiber nonwoven fabric comprising a prepreg obtained by impregnating a glass fiber woven fabric substrate with an epoxy resin composition and drying by heating, the epoxy resin composition comprising at least aluminum hydroxide as an inorganic filler. The prepreg obtained by impregnating the substrate and heating and drying was used as the core layer of the surface layer,
In the production of a composite laminate in which these are integrated by heat and pressure molding, the resin has a minimum melt viscosity of 50 at the time of heat and pressure molding.
Surface layer prepreg adjusted so as to be ~ 500 Pa · s, and the minimum melt viscosity of the resin at the time of the heat and pressure molding is adjusted so as to be higher than the minimum melt viscosity of the surface layer prepreg, and the molten resin can flow in. A method for producing a composite laminate, comprising using a core layer prepreg having a large void.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001020894A JP4120168B2 (en) | 2000-12-28 | 2001-01-30 | Composite laminate and its manufacturing method |
TW90112508A TW567139B (en) | 2000-12-28 | 2001-05-24 | Composite laminated sheet and method for manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000399658 | 2000-12-28 | ||
JP2000-399658 | 2000-12-28 | ||
JP2001020894A JP4120168B2 (en) | 2000-12-28 | 2001-01-30 | Composite laminate and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002254543A true JP2002254543A (en) | 2002-09-11 |
JP4120168B2 JP4120168B2 (en) | 2008-07-16 |
Family
ID=26606976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001020894A Expired - Lifetime JP4120168B2 (en) | 2000-12-28 | 2001-01-30 | Composite laminate and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4120168B2 (en) |
TW (1) | TW567139B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6059795A (en) * | 1983-09-13 | 1985-04-06 | 住友ベークライト株式会社 | Laminated board for printed circuit |
JPH03116894A (en) * | 1989-09-29 | 1991-05-17 | Shin Kobe Electric Mach Co Ltd | Multilayer printed wiring board |
JPH08161942A (en) * | 1994-12-05 | 1996-06-21 | Fujikura Ltd | Flame-resisting cable |
JPH08183613A (en) * | 1994-12-27 | 1996-07-16 | Kyocera Corp | Production of yttrium-aluminum-garnet powder and yttrium-aluminum-garnet sintered compact using the same |
JPH1034818A (en) * | 1996-07-19 | 1998-02-10 | Matsushita Electric Works Ltd | Apparatus for manufacture of laminate |
JPH10291081A (en) * | 1997-04-16 | 1998-11-04 | Showa Alum Corp | Method for joining laminated composite material and ultrasonic joining machine |
JP2000108255A (en) * | 1998-10-06 | 2000-04-18 | Mitsubishi Electric Corp | Resin sheet boding structure, sealed vessel employing the same, and vacuum adiabatic panel |
JP2000133900A (en) * | 1998-10-28 | 2000-05-12 | Hitachi Chem Co Ltd | Pre-preg for printed wiring board |
JP2000239419A (en) * | 1999-02-19 | 2000-09-05 | Hitachi Chem Co Ltd | Printed-wiring board prepreg and printed-wiring board using same |
-
2001
- 2001-01-30 JP JP2001020894A patent/JP4120168B2/en not_active Expired - Lifetime
- 2001-05-24 TW TW90112508A patent/TW567139B/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6059795A (en) * | 1983-09-13 | 1985-04-06 | 住友ベークライト株式会社 | Laminated board for printed circuit |
JPH03116894A (en) * | 1989-09-29 | 1991-05-17 | Shin Kobe Electric Mach Co Ltd | Multilayer printed wiring board |
JPH08161942A (en) * | 1994-12-05 | 1996-06-21 | Fujikura Ltd | Flame-resisting cable |
JPH08183613A (en) * | 1994-12-27 | 1996-07-16 | Kyocera Corp | Production of yttrium-aluminum-garnet powder and yttrium-aluminum-garnet sintered compact using the same |
JPH1034818A (en) * | 1996-07-19 | 1998-02-10 | Matsushita Electric Works Ltd | Apparatus for manufacture of laminate |
JPH10291081A (en) * | 1997-04-16 | 1998-11-04 | Showa Alum Corp | Method for joining laminated composite material and ultrasonic joining machine |
JP2000108255A (en) * | 1998-10-06 | 2000-04-18 | Mitsubishi Electric Corp | Resin sheet boding structure, sealed vessel employing the same, and vacuum adiabatic panel |
JP2000133900A (en) * | 1998-10-28 | 2000-05-12 | Hitachi Chem Co Ltd | Pre-preg for printed wiring board |
JP2000239419A (en) * | 1999-02-19 | 2000-09-05 | Hitachi Chem Co Ltd | Printed-wiring board prepreg and printed-wiring board using same |
Also Published As
Publication number | Publication date |
---|---|
TW567139B (en) | 2003-12-21 |
JP4120168B2 (en) | 2008-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111052878A (en) | Circuit board and method for manufacturing the same | |
JP3514667B2 (en) | Heat fusible insulating sheet | |
JP2002254543A (en) | Composite laminated sheet and method for manufacturing the same | |
US6117516A (en) | Laminate and process for producing the same | |
JP6015303B2 (en) | Prepreg, laminated board and printed wiring board | |
JP4078818B2 (en) | Multilayer circuit board manufacturing method | |
JP2006057074A (en) | Prepreg and laminated sheet, and printed wiring board | |
JP2006299189A (en) | Prepreg sheet, metal foil-clad laminate, circuit board, and method for manufacturing circuit board | |
JP3951601B2 (en) | Manufacturing method for composite laminates | |
JP6444801B2 (en) | Method for producing low thermal expansion substrate | |
JP4311006B2 (en) | Laminate production method | |
JP3343722B2 (en) | Method for producing composite prepreg and laminate | |
JP3605917B2 (en) | Manufacturing method of laminated board with inner layer circuit | |
JP3998914B2 (en) | Laminate production method | |
JP2004179202A (en) | Multilayered printed board and insulating sheet with metal foil for manufacturing the same | |
JP4784082B2 (en) | Printed wiring board and manufacturing method thereof | |
JP2001269955A (en) | Method for manufacturing laminated plate | |
JP3937676B2 (en) | Epoxy resin composition, and prepreg and printed wiring board using the same | |
JPH04215496A (en) | Manufacture of multilayer circuit board | |
JP2002225056A (en) | Method for producing composite laminated plate | |
JPH0219989B2 (en) | ||
JPH04243186A (en) | Laminated board for printed circuit | |
JPH10337785A (en) | Manufacture of laminate | |
JP3354346B2 (en) | Manufacturing method of laminated board | |
JP2001335651A (en) | Epoxy resin composition for impregnation of organic fiber substrate, and prepreg, laminated sheet and printed wiring board using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080401 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080414 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4120168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140509 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |