JPH10337785A - Manufacture of laminate - Google Patents

Manufacture of laminate

Info

Publication number
JPH10337785A
JPH10337785A JP9150964A JP15096497A JPH10337785A JP H10337785 A JPH10337785 A JP H10337785A JP 9150964 A JP9150964 A JP 9150964A JP 15096497 A JP15096497 A JP 15096497A JP H10337785 A JPH10337785 A JP H10337785A
Authority
JP
Japan
Prior art keywords
resin
base material
prepreg
varnish
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9150964A
Other languages
Japanese (ja)
Inventor
Takahiro Nakada
高弘 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP9150964A priority Critical patent/JPH10337785A/en
Priority to US09/057,975 priority patent/US6117516A/en
Priority to TW087105571A priority patent/TW347366B/en
Priority to SG1998000725A priority patent/SG75834A1/en
Priority to EP19980106806 priority patent/EP0873860A3/en
Priority to MYPI9801693 priority patent/MY116598A/en
Priority to KR1019980014519A priority patent/KR19980081667A/en
Priority to CN98108885A priority patent/CN1075440C/en
Publication of JPH10337785A publication Critical patent/JPH10337785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a laminate having satisfactory punching processability, and small warp and dimensional change. SOLUTION: The method for manufacturing a laminate comprises the steps of impregnating a fiber base material 1 having at least one side raised with thermosetting resin varnish 2, obtaining a prepreg (b) of an intermediate stage by coating and heating the resin impregnated base material (a) with the resin containing inorganic filler, separately manufacturing lengthy resin-impregnated base material by impregnating the fiber base material 1 at least one side surface raised with thermosetting resin varnish 9, superposing the material (a) and the prepreg (b) of an intermediate layer with the raised surfaces disposed at insides to manufacture a composite prepreg (e), and heating and press molding the prepreg (e).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に電気機器、電
子機器、通信機器等に使用される印刷回路板用として好
適な積層板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a laminated board suitable for use in a printed circuit board, particularly for use in electrical equipment, electronic equipment, communication equipment and the like.

【0002】[0002]

【従来の技術】民生用電子機器の小型化、高機能化が進
み、それに用いられる印刷回路基板として、ガラス不織
布を中間層基材とし、ガラス織布を表面層基材とした構
成で、エポキシ樹脂を含浸させ加熱加圧成形した積層板
(以下、コンポジット積層板という)が使用されてい
る。最近かかるコンポジット積層板に対し、従来この分
野で使用されている紙基材フェノール積層板と同等の打
抜き加工性、低コスト化が要求されるようになってき
た。
2. Description of the Related Art Consumer electronic devices have become smaller and more sophisticated, and a printed circuit board used for the same has a structure in which a glass nonwoven fabric is used as an intermediate layer base material and a glass woven fabric is used as a surface layer base material. A laminate impregnated with a resin and molded by heating and pressurizing (hereinafter, referred to as a composite laminate) is used. In recent years, such composite laminates have been required to have the same punching workability and cost reduction as paper-based phenolic laminates conventionally used in this field.

【0003】また産業用電子機器分野においても、低コ
スト化の必要性からガラス織布を使用しないか又はその
使用量を減らしたコンポジット積層板が使用されるよう
になってきたが、性能上ガラス織布基材積層板より種々
の点で劣り、これと同等の寸法変化、反りが小さいこと
が要求されるようになってきた。
In the field of industrial electronic equipment, composite laminates which do not use glass woven fabric or reduce the amount of glass woven fabric have been used due to the need for cost reduction. It is inferior in various points to a woven fabric laminate, and it has been required to have the same dimensional change and small warpage.

【0004】[0004]

【発明が解決しようとする課題】コンポジット積層板に
対する上記のような種々の要求に対して、中間層基材と
してガラス不織布を使用しないで、ガラス繊維を配合し
た樹脂ワニスを使用することが検討された(特開平8−
68276号公報)が、寸法変化や反りは改良されるも
のの、製造上種々の問題点があり、実用化には未だ至っ
ていない。一方、低コスト化のために、ガラス織布や不
織布の割合を小さくすることも検討されているが、性能
上あるいは製造上の制約から低コスト化も容易ではな
い。
In response to the various demands described above for a composite laminate, the use of a resin varnish containing glass fibers without using a glass nonwoven fabric as an intermediate layer substrate has been studied. (Japanese Unexamined Patent Publication No.
No. 68276), although the dimensional change and warpage are improved, there are various problems in manufacturing and it has not yet been put to practical use. On the other hand, reducing the ratio of the glass woven fabric or nonwoven fabric to reduce the cost is also considered, but it is not easy to reduce the cost due to performance or manufacturing restrictions.

【0005】このような現状から、本発明者はコンポジ
ット積層板としての性能を維持向上させながら、低コス
ト化を達成することを目的として種々検討した結果、長
尺の繊維基材に片面側から熱硬化性樹脂ワニスを塗布
し、ワニス塗布面にガラス繊維不織布を重ね合わせ加熱
してプリプレグを得る方法を見いだした(特願平7−7
0084号明細書)。しかしながら、この方法では、無
溶剤ワニスの場合は問題ないが、一般的な溶剤を含むワ
ニスを使用したときは、ガラス不織布を重ね合わせた後
の加熱工程において、溶剤の蒸発によるボイドがプリプ
レグ中に残存し、このボイドが成形後の積層板にも残
り、絶縁特性などの電気性能に悪影響を及ぼす場合があ
った。更に低コスト化する事が困難であった。
[0005] Under such circumstances, the present inventors have conducted various studies with the aim of achieving cost reduction while maintaining and improving the performance as a composite laminated board. A method of applying a thermosetting resin varnish, overlaying a glass fiber nonwoven fabric on the varnish application surface, and heating to obtain a prepreg was found (Japanese Patent Application No. 7-7).
0084). However, in this method, there is no problem in the case of a solvent-free varnish, but when a varnish containing a general solvent is used, in the heating step after laminating the glass nonwoven fabric, voids due to evaporation of the solvent are generated in the prepreg. In some cases, these voids remain in the laminated board after molding, and adversely affect electrical performance such as insulating properties. It was difficult to further reduce the cost.

【0006】[0006]

【課題を解決するための手段】本発明は、少なくとも片
面が起毛処理された長尺の繊維基材に熱硬化性樹脂ワニ
スを含浸する工程、前記樹脂含浸基材の起毛処理された
側に無機充填材を含有する熱硬化性樹脂を塗布し加熱し
て中間段階のプリプレグを得る工程、別に少なくとも片
面が起毛処理された繊維基材に熱硬化性樹脂ワニスを含
浸して長尺の樹脂含浸基材を作製する工程、前記で得ら
れた樹脂含浸基材と前記中間層のプリプレグとを繊維基
材の起毛処理された面を内側にして重ね合わせて複合プ
リプレグを作製する工程、この複合プリプレグを加熱加
圧成形する工程を有することを特徴とする積層板の製造
方法、に関するものであり、製造工程が簡単でかつ連続
成形が可能で、ボイドのない積層板を得ることができ、
性能上も従来のコンポジット積層板と同等以上のものを
得ることができる。
According to the present invention, there is provided a step of impregnating a thermosetting resin varnish on a long fiber base material having at least one surface brushed, and forming an inorganic material on the brushed side of the resin-impregnated base material. A step of applying a thermosetting resin containing a filler and heating to obtain an intermediate-stage prepreg, and separately impregnating a thermosetting resin varnish into a fibrous base material having at least one surface brushed to obtain a long resin-impregnated base. A step of preparing a composite prepreg by superposing the resin-impregnated base material obtained above and the prepreg of the intermediate layer with the raised surface of the fiber base material inside, and preparing the composite prepreg. It relates to a method for producing a laminate characterized by having a step of heating and press molding, and the production process is simple and continuous molding is possible, and a laminate without voids can be obtained,
In terms of performance, a composite laminate having a performance equal to or higher than that of a conventional composite laminate can be obtained.

【0007】本発明において用いられる起毛処理された
繊維基材は、塗布された無機充填材含有熱硬化性樹脂の
フローを抑え、加熱加圧成形時に周辺部に流れ出すのを
効果的に防止するものである。この繊維基材に形成され
た起毛の高さは、限定するものではないが、成形時のフ
ローを効果的に抑えるためには50μm以上が好まし
く、特にフローをほぼ完全に止める必要にあるときは3
00μm以上のものが好ましい。300μm未満では樹
脂の流れを起毛繊維により完全には止められない。また
50μm未満では樹脂の流れがあり、積層板に厚みのバ
ラツキが大きくなることがある。起毛の高さは、起毛さ
せる方法によりその限界があり、最大1500μm程度
である。また、積層板の厚みにもよるが、通常は100
0μm程度以上ではフローを止める効果の向上はないの
で、これ以上に起毛する必要はない。
The brushed fiber base material used in the present invention suppresses the flow of the applied inorganic filler-containing thermosetting resin, and effectively prevents the thermosetting resin from flowing out to the peripheral portion during hot press molding. It is. The height of the nap formed on the fiber base material is not limited, but is preferably 50 μm or more in order to effectively suppress the flow during molding, particularly when it is necessary to stop the flow almost completely. 3
Those having a size of 00 μm or more are preferred. If it is less than 300 μm, the flow of the resin cannot be completely stopped by the raised fibers. If it is less than 50 μm, the resin flows, and the thickness of the laminate may vary greatly. The height of the raised hair has its limit depending on the method of raising the hair, and is about 1500 μm at the maximum. In addition, although it depends on the thickness of the laminate, it is usually 100
Above about 0 μm, there is no improvement in the effect of stopping the flow, so there is no need to raise the hair any further.

【0008】繊維基材の表面に起毛形成する方法は、ル
ープ織りにする、あるいはニードルパンチ、ブラシ、エ
メリ等による研磨する法、ウォタージェットによる方法
等があるが、いずれの方法でもよい。1平方メートルあ
たりの重量(単量)は20〜300g/m2 のものが好
ましい。300g/m2 以上ではドリル等による加工性
が悪くなり、20g/m2 未満では強度が弱くなり加工
しにくい。
The method of raising the surface of the fibrous base material may include a method of loop weaving, a method of polishing with a needle punch, a brush, an emery or the like, a method of water jetting, and the like. The weight (single amount) per square meter is preferably 20 to 300 g / m 2 . If it is more than 300 g / m 2 , workability with a drill or the like will be poor, and if it is less than 20 g / m 2 , the strength will be weak and it will be difficult to work.

【0009】本発明において、プリプレグを製造するま
での工程の一例について、概略を図1に示す。巻き出し
装置から巻き出された、少なくとも片面が起毛処理され
た長尺の繊維基材(1)に、熱硬化性樹脂ワニスを含浸
する。具体的には、例えば繊維基材の起毛面に熱硬化性
樹脂ワニス(2)をコーター(3)により所定の膜厚に
なるように塗布するが、通常の樹脂ワニスへ浸漬する含
浸方法でも良い。この繊維基材としては、ガラス繊維織
布、ガラス繊維不織布、合成繊維織布又は不織布、クラ
フト紙、リンター紙など特に限定されないが、耐熱性の
点からはガラス繊維織布が好ましい。
FIG. 1 schematically shows an example of a process up to the production of a prepreg in the present invention. A long fiber base material (1) unwound from at least one side and unwound from an unwinding device is impregnated with a thermosetting resin varnish. Specifically, for example, a thermosetting resin varnish (2) is applied to a raised surface of a fiber base material by a coater (3) so as to have a predetermined film thickness, but an impregnation method in which the resin varnish is immersed in a normal resin varnish may be used. . The fiber base material is not particularly limited, such as glass fiber woven fabric, glass fiber nonwoven fabric, synthetic fiber woven fabric or nonwoven fabric, kraft paper, and linter paper, but glass fiber woven fabric is preferred from the viewpoint of heat resistance.

【0010】本発明に用いられる熱硬化性樹脂ワニスに
おける熱硬化性樹脂はエポキシ樹脂が望ましいが、この
ほか、ポリイミド樹脂、ポリエステル樹脂、フェノール
樹脂などを用いることができる。溶剤による希釈につい
ては、希釈前のワニスが下記のコーターで塗布できる程
度の粘度であれば、溶剤希釈をしない無溶剤ワニスの方
が好ましい。熱硬化性樹脂ワニスの塗布量は、以下の工
程において使用される樹脂の種類、溶剤の有無、溶剤を
使用する場合その種類、量、長尺基材の単量によっても
変化するが、通常長尺基材1m2 あたり、ワニス固形分
80〜300g程度であり、塗布厚み(加熱前)は0.
1〜0.3mm程度である。
The thermosetting resin in the thermosetting resin varnish used in the present invention is preferably an epoxy resin. In addition, a polyimide resin, a polyester resin, a phenol resin and the like can be used. With respect to dilution with a solvent, a solvent-free varnish without solvent dilution is preferred as long as the varnish before dilution has such a viscosity that the varnish can be applied with the following coater. The coating amount of the thermosetting resin varnish varies depending on the type of the resin used in the following steps, the presence or absence of a solvent, and the type and amount of the solvent when the solvent is used. Shakumotozai 1 m 2 per a varnish solid content 80~300g about, coating thickness (before heating) is 0.
It is about 1 to 0.3 mm.

【0011】コーター(3)としては、コンマロールコ
ーター、ナイフコーター、ダイスコーター、リバースコ
ーター等があるが、塗布厚みが0.1〜0.3mmと厚
いため、ワニス粘度を高粘度にする必要がある。このた
め高粘度ワニスを塗布できる方式、例えばコンマロール
コーター、ナイフコーターが好ましい。
As the coater (3), there are a comma roll coater, a knife coater, a die coater, a reverse coater and the like. However, since the coating thickness is as thick as 0.1 to 0.3 mm, it is necessary to increase the varnish viscosity. is there. For this reason, a method capable of applying a high-viscosity varnish, for example, a comma roll coater or a knife coater is preferable.

【0012】長尺の繊維基材に前記熱硬化性樹脂ワニス
を含浸した後、加熱装置(4)を通過させて、樹脂含浸
基材(a)を得る。このとき、樹脂が繊維基材内部に浸
透するとともに溶剤を使用した場合は溶剤が蒸発する。
加熱条件は、溶剤の有無、溶剤種やその量によって異な
るが、通常80〜160℃で60秒〜300秒程度であ
る。
After impregnating a long fiber base material with the thermosetting resin varnish, it is passed through a heating device (4) to obtain a resin-impregnated base material (a). At this time, when the resin permeates into the fiber base material and a solvent is used, the solvent evaporates.
The heating conditions vary depending on the presence or absence of the solvent, the type of the solvent, and the amount thereof, but are generally at 80 to 160 ° C. for about 60 seconds to 300 seconds.

【0013】次に、樹脂含浸基材(a)の上面、即ち起
毛を有する面より無機充填材を配合した熱硬化性樹脂ワ
ニス(5)をコーター(6)により所定の膜厚になるよ
うに塗布する。無機充填材を加えると、打抜き加工性や
寸法安定性を維持・向上させるとともに、Z方向の熱膨
張率が小さくなるのでスルーホール信頼性を向上させ
る。かかる無機充填材としは、水酸化アルミニウム、炭
酸カルシウム、クレー、タルク、シリカ等であり、樹脂
100重量部に対する配合量は10〜200重量部が好
ましい。10重量部以下では、スルーホール信頼性の向
上効果が小さく、300重量部を越えると無機充填材の
配合が困難となる。更に好ましくは50〜200重量部
である。無機充填材配合ワニスの固形分は、無機充填材
を含め65〜90重量%である。
Next, a thermosetting resin varnish (5) containing an inorganic filler is coated from the upper surface of the resin-impregnated substrate (a), that is, the surface having a raised surface, with a coater (6) to a predetermined thickness. Apply. The addition of an inorganic filler maintains and improves the punching processability and dimensional stability, and also improves the through-hole reliability because the coefficient of thermal expansion in the Z direction decreases. Examples of the inorganic filler include aluminum hydroxide, calcium carbonate, clay, talc, silica, and the like, and the compounding amount is preferably from 10 to 200 parts by weight based on 100 parts by weight of the resin. If the amount is less than 10 parts by weight, the effect of improving the reliability of the through hole is small, and if it exceeds 300 parts by weight, it becomes difficult to mix the inorganic filler. More preferably, it is 50 to 200 parts by weight. The solid content of the inorganic filler-containing varnish is 65 to 90% by weight including the inorganic filler.

【0014】無機充填材の一部として、無機繊維を配合
することが好ましい。無機繊維を配合することにより、
成形時の樹脂の流れを抑えボイドを少なくすると共に、
耐衝撃性、曲げ強度を向上させることが出来る。無機繊
維としては、アルミナ繊維、ガラス繊維等であり、樹脂
に対する混合割合は0.01〜50重量%が好ましい。
0.01重量%未満では曲げ強度、衝撃性の向上効果が
小さく、50重量%を越えると無機繊維の混合及びプレ
ス成形が困難となる。無機繊維の繊維径は15μm以下
が好ましいが、樹脂への混合の容易さから7μm以下が
より好ましい。15μmより太いとドリル等の加工性に
おいて摩耗が大きくドリル折れの原因となることがあ
る。
It is preferable to mix inorganic fibers as a part of the inorganic filler. By blending inorganic fibers,
While suppressing the flow of resin during molding to reduce voids,
Impact resistance and bending strength can be improved. The inorganic fibers include alumina fibers and glass fibers, and the mixing ratio with respect to the resin is preferably 0.01 to 50% by weight.
If the amount is less than 0.01% by weight, the effect of improving the bending strength and impact properties is small, and if it exceeds 50% by weight, mixing of inorganic fibers and press molding become difficult. The fiber diameter of the inorganic fiber is preferably 15 μm or less, but more preferably 7 μm or less from the viewpoint of easy mixing with the resin. If the thickness is larger than 15 μm, the workability of the drill or the like may be excessively worn, which may cause the breakage of the drill.

【0015】溶剤による希釈については、希釈前のワニ
スがある程度の低粘度であれば溶剤希釈をしない無溶剤
ワニスが好ましい。無機充填材含有ワニスの塗布量は、
使用される樹脂、長尺基材の単量等によっても変化する
が、通常長尺基材1m2 あたり、ワニス固型分500〜
1600g程度であり、塗布厚み(加熱前)は0.2〜
1.6mm程度である。なおコーター(6)は前記コー
ター(3)と同様のものが使用される。
With respect to dilution with a solvent, a solvent-free varnish without solvent dilution is preferable if the varnish before dilution has a certain low viscosity. The coating amount of the inorganic filler-containing varnish is
Although it varies depending on the resin used, the amount of the long base material, and the like, the varnish solid content is usually 500 to 1 m 2 per long base material.
Approximately 1600 g, and coating thickness (before heating) is 0.2 to
It is about 1.6 mm. The same coater (3) as the coater (3) is used.

【0016】その後 加熱装置(7)を通過させて樹脂
の含浸、又は含浸及び溶剤の蒸発を行う。加熱条件は、
溶剤使用の有無、溶剤種あるいはその量によって異なる
が、通常80〜160℃で60〜600秒程度である。
このようにして無機充填材含有熱硬化性樹脂が塗布され
た中間段階のプリプレグ(b)が得られる。
Thereafter, the resin is passed through a heating device (7) to impregnate the resin or to impregnate the resin and evaporate the solvent. The heating conditions are
Although it varies depending on whether or not a solvent is used, the kind of the solvent or the amount thereof, it is usually about 80 to 160 ° C. for about 60 to 600 seconds.
In this way, an intermediate-stage prepreg (b) coated with the inorganic filler-containing thermosetting resin is obtained.

【0017】一方、別の巻き出し装置から巻き出され
た、前記と同様の少なくとも片面が起毛処理された長尺
の繊維基材に熱硬化性樹脂ワニスを含浸する。具体例と
しては、前記樹脂含浸基材を得る場合と同様に、繊維基
材(8)に熱硬化性樹脂ワニス(9)をコーター(1
0)により所定の膜厚になるように塗布し、加熱装置
(11)にて加熱して樹脂含浸基材(c)を得る。この
樹脂含浸基材(c)を前記プリプレグ(b)とそれぞれ
繊維基材の起毛処理された面を内側にして重ね合わせて
樹脂含浸基材(d)を得る。この重ね合わせ工程のタイ
ミングは、前記無機充填材が配合された熱硬化性樹脂が
熱により溶融している時が望ましい。なお、樹脂含浸基
材(c)を得るための樹脂ワニスの種類、コーターのタ
イプ、塗布量、塗布厚み、加熱条件等は前記樹脂含浸基
材(a)を得る場合と同様である。
On the other hand, a thermosetting resin varnish is impregnated into a long fiber base material unwound from another unwinding device and having at least one surface raised as described above. As a specific example, as in the case of obtaining the resin-impregnated base material, a thermosetting resin varnish (9) is coated on a fiber base material (8) by a coater (1).
The coating is performed so as to have a predetermined film thickness according to 0), and heated by a heating device (11) to obtain a resin-impregnated base material (c). This resin-impregnated base material (c) is overlapped with the prepreg (b) with the raised surface of the fibrous base material facing inward to obtain a resin-impregnated base material (d). The timing of the overlapping step is desirably when the thermosetting resin containing the inorganic filler is melted by heat. The type of resin varnish, coater type, coating amount, coating thickness, heating conditions, and the like for obtaining the resin-impregnated substrate (c) are the same as those for obtaining the resin-impregnated substrate (a).

【0018】次に、重ね合わされた樹脂含浸基材(d)
は外面側から、以下に説明するように熱硬化性樹脂ワニ
スを塗布することが好ましい。この塗布は通常ロールコ
ーター(12)、(13)により行われるが、これに限
定されるものではない。塗布される熱硬化性樹脂ワニス
は、これまでの工程で塗布された熱硬化性樹脂ワニスが
長尺基材に十分に含浸されない場合にこれを補うための
もので、塗布・含浸される樹脂量は少なくてよく、均一
に含浸させるためには樹脂固形分10〜30重量%程度
のものが通常使用される。
Next, the resin impregnated base material (d) which is superposed
It is preferable to apply a thermosetting resin varnish from the outer surface side as described below. This coating is usually performed by roll coaters (12) and (13), but is not limited thereto. The thermosetting resin varnish applied is intended to compensate for the case where the thermosetting resin varnish applied in the previous steps is not sufficiently impregnated into the long base material. A resin having a resin solid content of about 10 to 30% by weight is usually used for uniform impregnation.

【0019】その後、加熱装置(14)を通して加熱す
ることにより、熱硬化性樹脂が含浸された複合プリプレ
グ(e)を得る。加熱条件は、基材の全厚さが厚いの
で、通常よりやや強い条件とし、120〜180℃、1
〜5分間程度である。その後、このプリプレグ(e)を
カッター(15)により所定長さに切断する。あるい
は、切断しないで連続成形に供することも可能である。
Thereafter, by heating through a heating device (14), a composite prepreg (e) impregnated with a thermosetting resin is obtained. The heating conditions are slightly stronger than usual since the total thickness of the base material is large.
About 5 minutes. Thereafter, the prepreg (e) is cut into a predetermined length by a cutter (15). Alternatively, it is also possible to perform continuous molding without cutting.

【0020】このようにして得られたプリプレグ(e)
は、加熱加圧することにより積層板に成形される。この
成形は、通常所定長さに切断したプリプレグ1枚で多段
プレスにて加熱加圧することにより行われるが、切断し
ない長尺のプリプレグを連続的に加熱加圧することもで
きる。熱硬化性樹脂がエポキシ樹脂の場合は通常前者の
成形方法が行われる。この成形条件は、含浸された樹脂
の流動性にもよるが、通常は従来のコンポジット積層板
の場合と同様にまたはこれより低圧で行われる。即ち、
温度150〜180℃、圧力20〜70kg/cm2
時間60〜120分間が適当である。また、低圧成形が
可能な連続成形方法を採用することができる。
The prepreg (e) thus obtained
Is formed into a laminate by heating and pressing. This molding is usually performed by heating and pressurizing a single prepreg cut to a predetermined length by a multi-stage press, but it is also possible to continuously heat and press a long prepreg that is not cut. When the thermosetting resin is an epoxy resin, the former molding method is usually performed. The molding conditions depend on the flowability of the impregnated resin, but are usually carried out at a pressure similar to or lower than in the case of conventional composite laminates. That is,
Temperature 150-180 ° C, pressure 20-70 kg / cm 2 ,
A time of 60 to 120 minutes is suitable. Further, a continuous molding method capable of low-pressure molding can be adopted.

【0021】以上のような工程で、コンポジット積層板
を得ることができるが、本発明においては、ガラス繊維
織布等の起毛処理された長尺基材に熱硬化性樹脂ワニス
を塗布含浸し、次いで無機充填材配合熱硬化性樹脂ワニ
スを塗布した後に、さらに熱硬化性樹脂を塗布含浸され
たガラス繊維織布を重ね合わせるので、後の両外面から
樹脂ワニスを塗布する場合を含めても塗布・含浸工程が
簡単であり、相対的にコストの高いガラス不織布の量を
なくすることができる。また、ガラス不織布を使用しな
いことにより溶剤によるボイドの発生を防ぐことがで
き、成形性のよいプリプレグの製造可能となった。さら
に、ガラス不織布を使用しないため、従来問題のあった
ガラス不織布の切断も生じないし、ガラス繊維のピット
も飛散することが少ない。従って、コンポジット積層板
製造時のトラブルが少なく、低コスト化をも達成するこ
とができる。
According to the above steps, a composite laminate can be obtained. In the present invention, a thermosetting resin varnish is applied and impregnated on a brushed long base material such as a glass fiber woven fabric. Then, after applying the thermosetting resin varnish containing the inorganic filler, the thermosetting resin is further applied, and the glass fiber woven fabric impregnated with the thermosetting resin is overlaid. Therefore, the application is performed even when the resin varnish is applied from both outer surfaces later. -The impregnation process is simple, and the amount of the relatively expensive glass nonwoven fabric can be eliminated. In addition, by not using a glass nonwoven fabric, the generation of voids due to the solvent can be prevented, and a prepreg having good moldability can be manufactured. Further, since the glass non-woven fabric is not used, the glass non-woven fabric, which has been a problem in the past, is not cut, and pits of the glass fiber are hardly scattered. Therefore, there are few troubles in the production of the composite laminate, and the cost can be reduced.

【0022】[0022]

【実施例】次に本発明の実施例を比較例とともに具体的
に説明する。
Next, examples of the present invention will be specifically described together with comparative examples.

【0023】〔実施例1〕長尺基材であるガラス織布
(日東紡績製 WE−18K RB−84)を巻き出し、
その片面を針布により600〜800μmの高さに起毛
させた。続いて、その起毛させた面に次の配合からなる
FR−4用ワニスAをナイフコーターにより厚さ0.2
mm(加熱前)になるように塗布した。 (ワニスAの配合) エポキシ樹脂(油化シェル製 Ep−1046) 100重量部 (硬化剤ジシアンジアミドと硬化促進剤を含む) 溶剤(メチルセロソルブ) 50重量部 加熱装置で150℃、1分間加熱し、次いで、ワニスB
をナイフコーターにより厚さ1.5mm(加熱前)にな
るように塗布した。
Example 1 A glass woven fabric (WE-18K RB-84 manufactured by Nitto Boseki) as a long base material was unwound,
One side thereof was raised with a needle cloth to a height of 600 to 800 μm. Subsequently, a varnish A for FR-4 having the following composition was applied to the raised surface with a knife coater to a thickness of 0.2 mm.
mm (before heating). (Blending of varnish A) Epoxy resin (Ep-1046 manufactured by Yuka Shell) 100 parts by weight (including curing agent dicyandiamide and curing accelerator) Solvent (methyl cellosolve) 50 parts by weight Heating at 150 ° C. for 1 minute with a heating device, Next, varnish B
Was applied by a knife coater to a thickness of 1.5 mm (before heating).

【0024】 (ワニスBの配合) エポキシ樹脂(油化シェル製 Ep−1046) 100重量部 (硬化剤ジシアンジアミドと硬化促進剤を含む) 無機充填材(水酸化アルミニウム) 80重量部 超微粒子シリカ 20重量部 溶剤(メチルセロソルブ) 50重量部 加熱装置で150℃、3分間乾燥して、中間のプリプレ
グを得た。別に、巻出され、前記と同様の起毛処理され
た長尺のガラス繊維織布(日東紡績製 WE−18K R
B−84)にFR−4用ワニスAをナイフコーターによ
り厚さ0.2mm(加熱前)になるように塗布し、加熱
装置で150℃、1分間加熱して樹脂含浸基材を得た。
(Blend of Varnish B) Epoxy resin (Ep-1046 manufactured by Yuka Shell) 100 parts by weight (including curing agent dicyandiamide and curing accelerator) Inorganic filler (aluminum hydroxide) 80 parts by weight Ultrafine silica 20 parts by weight Part Solvent (methyl cellosolve) 50 parts by weight At 150 ° C. for 3 minutes with a heating device, an intermediate prepreg was obtained. Separately, a long glass fiber woven fabric unwound and brushed in the same manner as described above (WE-18KR manufactured by Nitto Boseki)
B-84) was coated with FR-4 varnish A by a knife coater to a thickness of 0.2 mm (before heating), and heated at 150 ° C. for 1 minute with a heating device to obtain a resin-impregnated base material.

【0025】次に、この樹脂含浸基材と前記中間段階の
プリプレグとをワニス塗布面が内側になるように重ね合
わせ、外面側に次の配合のワニスCをロールコーターに
より塗布した。 (ワニスCの配合) エポキシ樹脂(油化シェル製 Ep−1046) 30重量部 (硬化剤ジシアンジアミドと硬化促進剤を含む) 溶剤(メチルセロソルブ) 70重量部 続いて、160℃で3分間加熱し、ガラス織布及びガラ
ス不織布からなる複合プリプレグを得た。得られた複合
プリプレグを所定長さ(2m)に切断した後、その上下
に厚さ18μmの銅箔を重ね合わせ、温度165℃、圧
力60kg/cm2 で90分間加熱加圧成形して、厚さ
1.6mmの銅張積層板を作製した。
Next, the resin-impregnated base material and the prepreg in the intermediate stage were overlapped so that the varnish application surface was on the inside, and varnish C having the following composition was applied to the outer surface by a roll coater. (Blending of varnish C) 30 parts by weight of epoxy resin (Ep-1046 manufactured by Yuka Shell) (including curing agent dicyandiamide and curing accelerator) 70 parts by weight of solvent (methyl cellosolve) Subsequently, the mixture was heated at 160 ° C. for 3 minutes, A composite prepreg comprising a glass woven fabric and a glass nonwoven fabric was obtained. After cutting the obtained composite prepreg to a predetermined length (2 m), a copper foil having a thickness of 18 μm is laminated on the upper and lower sides of the composite prepreg, and heated and pressed at a temperature of 165 ° C. and a pressure of 60 kg / cm 2 for 90 minutes. A 1.6 mm-thick copper-clad laminate was produced.

【0026】〔実施例2〕実施例1の起毛処理されたガ
ラス織布の起毛の長さを200〜300μmとし、実施
例1のワニスBを下記のワニスBに変更した以外は実施
例1と同様にして厚さ1.6mmの銅張積層板を作製し
た。 (ワニスBの配合) エポキシ樹脂(油化シェル製 Ep−1046) 100重量部 (硬化剤ジシアンジアミドと硬化促進剤を含む) 無機充填材(水酸化アルミニウム) 80重量部 アルミナ繊維(ニチアス製 T/#5100)繊維径2.5μm 5重量部 超微粒子シリカ 20重量部 溶剤(メチルセロソルブ) 50重量部
Example 2 Example 1 was repeated except that the length of the brushed glass woven fabric of Example 1 was 200 to 300 μm and the varnish B of Example 1 was changed to the following varnish B. Similarly, a copper-clad laminate having a thickness of 1.6 mm was produced. (Blend of varnish B) Epoxy resin (Ep-1046 manufactured by Yuka Shell) 100 parts by weight (including hardening agent dicyandiamide and hardening accelerator) Inorganic filler (aluminum hydroxide) 80 parts by weight Alumina fiber (N / Ts manufactured by Nichias) 5100) Fiber diameter 2.5 μm 5 parts by weight Ultrafine silica 20 parts by weight Solvent (methyl cellosolve) 50 parts by weight

【0027】〔比較例1〕起毛処理したガラス繊維織布
の代わりに、起毛処理されていないガラス繊維織布をし
たことを除いて実施例1の方法を実施し、厚さ1.6m
mの銅張積層板を作製した。
[Comparative Example 1] The method of Example 1 was carried out except that a non-raised glass fiber woven fabric was used in place of the raised glass fiber woven fabric, and the thickness was 1.6 m.
m of the copper-clad laminate was produced.

【0028】〔比較例2〕実施例で使用したFR−4用
エポキシ樹脂ワニスAを前記溶剤で樹脂固形分60重量
%(0.3ポイズ)にまで希釈した。このワニスを実施
例で使用したガラス織布(日東紡績製 WE−18K R
B−84)にディップ方式で塗布含浸させ乾燥して表面
層用プリプレグを作製した。そして、上記希釈したFR
−4用エポキシ樹脂ワニスをガラス不織布(日本バイリ
ーン製 EP-4075)にディップ方式で塗布含浸し乾
燥して中間層用プリプレグを作製した。次いで、中間用
プリプレグを所定枚数(4枚)重ね、その上下に表面層
用プリプレグを重ね、さらにその上下に厚さ18μm銅
箔を重ね合わせ加熱加圧成形して厚さ1.6mmの銅張
積層板を作製した。
Comparative Example 2 The epoxy resin varnish A for FR-4 used in the examples was diluted with the solvent to a resin solid content of 60% by weight (0.3 poise). Glass woven cloth (WE-18KR manufactured by Nitto Boseki) using this varnish in Examples
B-84) was applied and impregnated by a dipping method and dried to prepare a prepreg for a surface layer. And the diluted FR
-4 epoxy resin varnish was applied and impregnated on a glass nonwoven fabric (EP-4075 manufactured by Nippon Vilene Co., Ltd.) by dipping and dried to prepare a prepreg for an intermediate layer. Next, a predetermined number (4) of intermediate prepregs are laminated, a prepreg for a surface layer is laminated on the upper and lower sides thereof, and a copper foil of 18 μm in thickness is laminated on the upper and lower sides of the prepregs. A laminate was prepared.

【0029】〔比較例3〕比較例2と同様にして表面層
用ガラス織布プリプレグを作製した。一方、次の配合か
らなるFR−4用ワニスDを調製した。 (ワニスDの配合) エポキシ樹脂(油化シェル製 Ep−1046) 100重量部 (硬化剤ジシアンジアミドと硬化促進剤を含む) 無機充填材(水酸化アルミニウム) 80重量部 超微粒子シリカ 20重量部 溶剤(メチルセロソルブ) 65重量部 このワニスDをガラス不織布(日本バイリーン製 EP-
4075)にディップ方式で塗布含浸し乾燥して中間層
用プリプレグを作製した。次いで、中間層用プリプレグ
を所定枚数(3枚)重ね、その上下に表面層用プリプレ
グを重ね、さらにその上下に厚さ18μm銅箔を重ね合
わせ加熱加圧成形して厚さ1.6mmの銅張積層板を作
製した。
Comparative Example 3 A woven glass prepreg for a surface layer was prepared in the same manner as in Comparative Example 2. Meanwhile, a varnish D for FR-4 having the following composition was prepared. (Blending of varnish D) Epoxy resin (Ep-1046 manufactured by Yuka Shell) 100 parts by weight (including curing agent dicyandiamide and curing accelerator) Inorganic filler (aluminum hydroxide) 80 parts by weight Ultrafine silica 20 parts by weight Solvent ( Methyl cellosolve) 65 parts by weight This varnish D is made of glass non-woven fabric (EP-
4075) by dipping, impregnated and dried to prepare a prepreg for an intermediate layer. Next, a predetermined number (three) of prepregs for the intermediate layer are stacked, prepregs for the surface layer are stacked above and below the prepreg, and a copper foil having a thickness of 18 μm is stacked above and below the prepreg and heated and pressed to form a 1.6 mm thick copper. A laminated laminate was produced.

【0030】以上、実施例及び比較例で得られた銅張積
層板について、積層成形時のフロー、プリプレグからの
粉発生量、層間引き剥がし強さ(層間接着性)、曲げ強
さ、打抜き加工性、寸法安定性、反り、Z方向の熱膨張
率及び落球衝撃試験(耐衝撃性)を測定した。その結果
を表1に示す。
With respect to the copper-clad laminates obtained in Examples and Comparative Examples, the flow during lamination, the amount of powder generated from the prepreg, the interlayer peeling strength (interlayer adhesion), the bending strength, and the punching process The properties, dimensional stability, warpage, coefficient of thermal expansion in the Z direction, and falling ball impact test (impact resistance) were measured. Table 1 shows the results.

【0031】[0031]

【表1】 [Table 1]

【0032】(測定方法) 1.積層成形時のフロー 500×500mmの積層板を成形したとき、プリプレ
グ端面より流れ出した樹脂の最大流れ長さを測定した。 2.プリプレグからの粉発生量 500mm×500mmの積層板試験片をその一辺を下
向きにして100mmの高さから落下させたとき、落ち
た樹脂粉末の量を求めた。 3.層間引き剥がし強さ エッチングにより銅箔を除去したのち、積層板を10m
m巾にカットして、表面層と中間層との接着強度をテン
シロンにて測定した。 4.曲げ強さ(縦方向) JIS−C6481に準じる。 5.打ち抜き加工性 ASTM D617による。 6.寸法安定性(縦方向) 初期状態と半田ディップ処理(240℃半田浴に3秒デ
ィップ)後の300mmスパンにおける変化率(%) 7.反り(max) 成形後の400mm角の積層板を成形した後平面上の置
いて最大高さを測定した。 8.Z方向の熱膨張率 50℃から200℃まで加熱したときの基板の厚み方向
の熱膨張率を測定した(TMAによる)。 9.落球衝撃試験 250gの鉄球を積層板に対して落下させ積層板が割れ
るときの鉄球の高さを測定した。
(Measurement method) Flow of Laminate Molding When a laminate having a size of 500 × 500 mm was molded, the maximum flow length of the resin flowing out from the end face of the prepreg was measured. 2. Amount of Powder Generated from Pre-Preg When a laminate test piece of 500 mm × 500 mm was dropped from a height of 100 mm with one side thereof facing downward, the amount of resin powder dropped was determined. 3. Interlayer peel strength After removing the copper foil by etching, laminate
After cutting to a width of m, the adhesive strength between the surface layer and the intermediate layer was measured with Tensilon. 4. Bending strength (longitudinal direction) According to JIS-C6481. 5. Punching workability According to ASTM D617. 6. 6. Dimensional stability (longitudinal direction) Change rate (%) in 300 mm span after initial condition and after solder dip treatment (3 sec dipping in 240 ° C. solder bath) Warpage (max) After molding, a 400 mm square laminated plate was molded, placed on a flat surface, and the maximum height was measured. 8. Thermal expansion coefficient in the Z direction The thermal expansion coefficient in the thickness direction of the substrate when heated from 50 ° C to 200 ° C was measured (by TMA). 9. Falling ball impact test A 250 g iron ball was dropped on the laminate, and the height of the iron ball when the laminate was cracked was measured.

【0033】なお、製造コストについては、実施例の方
法は工程が単純であり、コストの高いガラス繊維不織布
の使用をなくしたので、実施例で得られた積層板は比較
例で得られたものに比べ30%程度低コスト化すること
ができた。
Regarding the manufacturing cost, the method of the embodiment is simple in steps and eliminates the use of expensive glass fiber nonwoven fabric, so that the laminate obtained in the embodiment is the same as that obtained in the comparative example. The cost could be reduced by about 30% compared to

【0034】[0034]

【発明の効果】本発明の積層板の製造方法は、起毛され
たガラス織布を用いているので、プリプレグからの粉発
生が少なく、表面層と中間層との層間密着性が優れてい
る。そして、積層成形時樹脂の流れが抑えられているの
で、得られた積層板は、厚み精度が優れており、打抜き
加工性が良好で、反り・寸法変化が小さい。成形工程が
簡単であり、成形時の歩留まりの向上、さらには積層板
の低コスト化を達成することができるので、工業的な積
層板の製造方法として好適である。
According to the method for producing a laminate of the present invention, since a brushed glass woven fabric is used, the generation of powder from the prepreg is small, and the interlayer adhesion between the surface layer and the intermediate layer is excellent. Since the flow of resin during lamination molding is suppressed, the obtained laminated plate has excellent thickness accuracy, good punching workability, and small warpage and dimensional change. Since the molding process is simple, the yield at the time of molding can be improved, and the cost of the laminate can be reduced, it is suitable as an industrial method for producing a laminate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造工程において、プリプレグを作
製するまでの工程を示す概略断面図。
FIG. 1 is a schematic cross-sectional view showing a process up to manufacturing a prepreg in a manufacturing process of the present invention.

【符号の説明】[Explanation of symbols]

1 起毛処理された長尺基材 2 熱硬化性樹脂ワニス 3 コーター 4 加熱装置 5 無機充填材含有ワニス 6 コーター 7 加熱装置 8 起毛処理された長尺基材 9 熱硬化性樹脂ワニス 10 コーター 11 加熱装置 11、12 ロールコーター 13 加熱装置 14 カッター a 樹脂含浸基材 b 中間段階のプリプレグ c 樹脂含浸基材 d 重ね合わされた樹脂含浸基材 e 複合プリプレグ DESCRIPTION OF SYMBOLS 1 Brushed long base material 2 Thermosetting resin varnish 3 Coater 4 Heating device 5 Varnish containing inorganic filler 6 Coater 7 Heating device 8 Brushed long substrate 9 Thermosetting resin varnish 10 Coater 11 Heating Apparatus 11, 12 Roll coater 13 Heating device 14 Cutter a Resin impregnated base material b Intermediate prepreg c Resin impregnated base material d Overlaid resin impregnated base material e Composite prepreg

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 63/00 C08L 63/00 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 63/00 C08L 63/00 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも片面が起毛処理された長尺の
繊維基材に熱硬化性樹脂ワニスを含浸する工程、前記樹
脂含浸基材の起毛処理された側に無機充填材を含有する
熱硬化性樹脂を塗布し加熱して中間段階のプリプレグを
得る工程、別に少なくとも片面が起毛処理された繊維基
材に熱硬化性樹脂ワニスを含浸して長尺の樹脂含浸基材
を作製する工程、前記で得られた樹脂含浸基材と前記中
間層のプリプレグとを繊維基材の起毛処理された面を内
側にして重ね合わせて複合プリプレグを作製する工程、
この複合プリプレグを加熱加圧成形する工程を有するこ
とを特徴とする積層板の製造方法。
1. A step of impregnating a thermosetting resin varnish on a long fiber base material having at least one surface brushed, and a thermosetting resin containing an inorganic filler on the brushed side of the resin-impregnated base material. A step of applying a resin and heating to obtain an intermediate-stage prepreg, and a step of preparing a long resin-impregnated base material by impregnating a thermosetting resin varnish on a fiber base material on which at least one surface is brushed separately. A step of fabricating a composite prepreg by laminating the obtained resin-impregnated substrate and the prepreg of the intermediate layer with the raised surface of the fiber substrate facing inward,
A method for producing a laminate, comprising a step of heating and pressing the composite prepreg.
【請求項2】 前記樹脂含浸基材とプリプレグとを重ね
合わせる工程に続いて、両外面に熱硬化性樹脂ワニスを
塗布する工程を有する請求項1記載の積層板の製造方
法。
2. The method for producing a laminate according to claim 1, further comprising a step of applying a thermosetting resin varnish to both outer surfaces after the step of laminating the resin-impregnated base material and the prepreg.
【請求項3】 繊維基材がガラス繊維織布である請求項
1又は2記載の積層板の製造方法。
3. The method for producing a laminate according to claim 1, wherein the fiber base is a glass fiber woven fabric.
【請求項4】 前記無機充填材を含有する熱硬化性樹脂
において、無機充填材が樹脂固形分100重量部に対し
て10〜300重量部である請求項1、2又は3記載の
積層板の製造方法。
4. The laminate according to claim 1, wherein the thermosetting resin containing the inorganic filler has an inorganic filler content of 10 to 300 parts by weight based on 100 parts by weight of the solid content of the resin. Production method.
JP9150964A 1997-04-24 1997-06-09 Manufacture of laminate Pending JPH10337785A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP9150964A JPH10337785A (en) 1997-06-09 1997-06-09 Manufacture of laminate
US09/057,975 US6117516A (en) 1997-04-24 1998-04-10 Laminate and process for producing the same
TW087105571A TW347366B (en) 1997-04-24 1998-04-13 Laminate and process for producing the same
SG1998000725A SG75834A1 (en) 1997-04-24 1998-04-13 Laminate and process for producing the same
EP19980106806 EP0873860A3 (en) 1997-04-24 1998-04-15 Laminate and process for producing the same
MYPI9801693 MY116598A (en) 1997-04-24 1998-04-16 Laminate and process for producing the same
KR1019980014519A KR19980081667A (en) 1997-04-24 1998-04-23 Laminated Plate and Method of Manufacturing the Same
CN98108885A CN1075440C (en) 1997-04-24 1998-04-23 Laminate and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9150964A JPH10337785A (en) 1997-06-09 1997-06-09 Manufacture of laminate

Publications (1)

Publication Number Publication Date
JPH10337785A true JPH10337785A (en) 1998-12-22

Family

ID=15508296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9150964A Pending JPH10337785A (en) 1997-04-24 1997-06-09 Manufacture of laminate

Country Status (1)

Country Link
JP (1) JPH10337785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249739A (en) * 2001-12-18 2003-09-05 Mitsui Mining & Smelting Co Ltd Method of manufacturing prepreg, prepreg obtained with the same method, method of manufacturing copper foil with insulation layer, and copper foil with insulation layer manufactured with the same method
EP3388215A4 (en) * 2015-12-10 2019-07-24 Arisawa Mfg. Co., Ltd. Sandwich panel, method for producing unidirectional prepreg, and method for producing sandwich panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249739A (en) * 2001-12-18 2003-09-05 Mitsui Mining & Smelting Co Ltd Method of manufacturing prepreg, prepreg obtained with the same method, method of manufacturing copper foil with insulation layer, and copper foil with insulation layer manufactured with the same method
EP3388215A4 (en) * 2015-12-10 2019-07-24 Arisawa Mfg. Co., Ltd. Sandwich panel, method for producing unidirectional prepreg, and method for producing sandwich panel

Similar Documents

Publication Publication Date Title
EP0792737B1 (en) Process for producing a laminated board
KR100670752B1 (en) Method for preparing copper foil with insulating layer and copper foil with insulating layer prepared by the method, and printed wiring board using the copper foil with insulating layer
JP4286060B2 (en) Method for producing copper foil with insulating layer
JP3011867B2 (en) Manufacturing method of laminated board
US6124220A (en) Laminated board and process for production thereof
US6117516A (en) Laminate and process for producing the same
JPH1017684A (en) Production of prepreg and laminate
JPH10337785A (en) Manufacture of laminate
JP3844109B2 (en) Laminate manufacturing method
JP3343722B2 (en) Method for producing composite prepreg and laminate
JPH10338758A (en) Production of prepreg and laminated sheet
JP3129652B2 (en) Manufacturing method of laminated board
JP3327366B2 (en) Manufacturing method of laminated board
JP4168736B2 (en) Insulating sheet with metal foil and multilayer wiring board for manufacturing multilayer wiring board
JP2006057074A (en) Prepreg and laminated sheet, and printed wiring board
JP2003033997A (en) Method for manufacturing laminated sheet
JP3354346B2 (en) Manufacturing method of laminated board
JP3207332B2 (en) Manufacturing method of laminated board
JP3998914B2 (en) Laminate production method
JP4654502B2 (en) Prepreg and method for manufacturing laminate using the same
JPH09254331A (en) Laminated sheet
JP2007001230A (en) Method for manufacturing laminate
JP2002225056A (en) Method for producing composite laminated plate
JPH0911401A (en) Manufacture of laminated sheet
JP4238492B2 (en) Laminate production method