JP4286060B2 - Method for producing copper foil with insulating layer - Google Patents

Method for producing copper foil with insulating layer Download PDF

Info

Publication number
JP4286060B2
JP4286060B2 JP2003148162A JP2003148162A JP4286060B2 JP 4286060 B2 JP4286060 B2 JP 4286060B2 JP 2003148162 A JP2003148162 A JP 2003148162A JP 2003148162 A JP2003148162 A JP 2003148162A JP 4286060 B2 JP4286060 B2 JP 4286060B2
Authority
JP
Japan
Prior art keywords
copper foil
resin layer
cured
insulating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003148162A
Other languages
Japanese (ja)
Other versions
JP2004349654A (en
Inventor
哲朗 佐藤
憲幸 長嶋
健介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003148162A priority Critical patent/JP4286060B2/en
Publication of JP2004349654A publication Critical patent/JP2004349654A/en
Application granted granted Critical
Publication of JP4286060B2 publication Critical patent/JP4286060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁層付銅箔及びその製造方法並びにその絶縁層付銅箔を用いた多層プリント配線板に関する。
【0002】
【従来の技術】
多層プリント配線の製造に用いられる樹脂付き銅箔は、その優れたレーザー加工性や絶縁信頼性から、レーザー加工によるバイアホールを形成することを前提としたビルドアップ多層プリント配線板の材料として広く使用されている。しかし、樹脂付き銅箔は従来のガラス繊維にエポキシ樹脂等を含浸することにより製造されるブリプレグと比較すると、軽量であることや.レーザー加工性に優れるといった優位性はあるものの、曲げ、引張り、衝撃等の機械強度が低いため、過酷な環境下では、従来のプリプレグよりも信頼性の点で満足できない傾向にあった。
【0003】
これとは別に、ガラス繊維を用いたプリプレグのレーザー加工性を改善するために、織布を用いないでガラス紙やアラミド紙の不織布に樹脂含浸を行い製造されるプリプレグの使用も提案されている。これらの不織布を用いることにより、一般的な織布に見られるような繊維の量の不均一性が改善されるので、レーザー加工性は大幅に改善される。しかし、不織布は、それ自体の強度が低いことにより樹脂含浸の際に、切れやすく、近年の高密度多層プリント配線板に適する薄さのものを製造することは困難であった。しかし、この問題に対して本発明者らはすでに新たな絶縁層付き銅箔を提案している(例えば、先行技術文献1参照)。
【0004】
【先行技術文献1】
特願2002−326268
【0005】
これにより、従来は困難であった非常に薄い不織布や織布を骨格材として用いた半硬化状態の絶縁層を有する絶縁層付き銅箔が得られる。そして、この先行技術に係る半硬化状態の絶縁層付き銅箔を用いることで、従来のガラスエポキシ基材のような、いわゆるプリプレグを使用せずに、ビルドアップ工法におけるレーザー穴明け加工性に優れる銅張積層板を提供できることになり、高品質の多層プリント配線板を製造できるようになった。
【0006】
ところで、多層プリント配線板を製造する場合、予め回路形成を行ったコア材に対して、ブリプレグと銅箔または樹脂付き銅箔、或いは上記絶縁層付き銅箔をプレスにより加温、加熱して積層することにより、銅張積層板を形成し、さらに回路形成を行う工程を行い、このような積層、回路形成工程を繰り返すことにより製造する方法が採られる。或いは、予め回路形成を行ったコア材を所定の枚数用意して、これらにプリプレグを介して一度に積層する方法が一般的に知られている。
【0007】
しかしながら、前者の方法では、逐次、積層と回路形成を繰り返すのでプレスに手間がかかり生産性を向上させることが難しいものである。また、後者の方法では、積層は1度でよいものの、薄厚の多層プリント配線板を製造する場合には、極薄のプリプレグを複数枚使用しなければならないため、積層時のプリプレグの取り扱いが難しく、効率的な製造を困難とする要因を有している。
【0008】
【発明が解決しようとする課題】
本発明は、上記のような事情を鑑み、多層プリント配線板を製造する際のプレス回数を大幅に低減し、かつその取り扱いも容易で、高い生産効率で多層プリント配線板を製造することができる、プリント配線板の構成材料を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本願出願人が既に提案した、骨格材を有する半硬化の絶縁層付き銅箔について種々の検討を行ったところ、本発明に係る絶縁層付き銅箔を想到するに至った。
【0010】
本発明は、銅箔の片面に、不織布または織布の骨格材を有する半硬化絶縁層を備える絶縁層付き銅箔において、銅箔と半硬化絶縁層との間に硬化済み樹脂層を有するとともに、露出した半硬化絶縁層の片面に引き剥がし可能な保護フィルムを備えるものとした。
【0011】
本発明に係る絶縁層付き銅箔は、硬化済み樹脂層を有しているので、そのまま銅箔をエッチングにすることより回路形成が可能であり、回路形成を行った絶縁層付き銅箔を複数準備し、それらを積層してプレス加工をすることで多層プリント配線板を製造することができるのである。また、半硬化絶縁層の露出する片面には、引き剥がし可能な保護フィルムを備えているので、銅箔のエッチングの際に半硬化絶縁層がエッチングにより侵されることがない。
【0012】
この本発明に係る絶縁層付き銅箔では、骨格材を有する半硬化絶縁層の厚み制御ができるため、製造される多層プリント配線板の厚みも薄くすることが容易に可能となる。つまり、従来のように、取り扱いの難しい極薄のプリプレグを使用しなくても、薄厚の多層プリント配線板を容易に製造でき、しかも、本発明に係る絶縁層付き銅箔に回路形成を行ったものを複数準備することで、一度のプレス加工により多層プリント配線板を形成でき、生産効率の向上を図ることが可能となる。
【0013】
そして、本発明に係る絶縁層付き銅箔は、露出した半硬化絶縁層の片面に引き剥がし可能な保護フィルムを備えるが、この保護フィルのため、取り扱い性が良好となり、銅箔の回路形成時におけるエッチング液などから半硬化絶縁層を保護することができる。この場合の保護フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート等を用いることができる。これらの材質のフィルムは、銅箔のエッチング液に耐食性を有し、半硬化絶縁層からの引き剥がしも容易に行える特性を備えているからである。
【0014】
また、本発明に係る絶縁層付き銅箔における硬化済みの樹脂層は、銅箔の回路形成時のエッチングに対して耐食性を有する樹脂硬化物であることが望ましい。使用される樹脂の種類は電気、電子材料用途に使用できるものであれば特に種類は限定されないが、一般的にはエポキシ樹脂を用いることが好ましい。そして、回路形成時のエッチングに対し、硬化済み樹脂層が耐食性を有しないと、形成した回路の剥がれや回路と硬化済み樹脂層との密着強度が確保できなくなるから、実質的に完全硬化させる必要がある。このような硬化済み樹脂層を構成する樹脂硬化物としては、エポキシ樹脂の他、ビスマレイミド樹脂等が挙げられる。さらに、この硬化済み樹脂層は、絶縁性等の電気的特性を考慮すると、半硬化樹脂層と同じ組成であることが望ましいものである。
【0015】
さらに、本発明に係る絶縁層付き銅箔における硬化済み樹脂層の厚さは、1〜50μmであることが好ましい。1μm未満である硬化済み樹脂層であると、回路形成の際に、エッチング液が浸透し易くなる傾向となり、形成した回路の剥離やマイグレーションの発生を生じるおそれがある。一方、50μmを超えると、半硬化絶縁層の曲げ強度が低いため、硬化済み樹脂層及び銅箔を備える面側にカール(反り)を生じる傾向となる。好ましくは5μm〜20μmであることが実用的である。本発明に用いる銅箔は、銅箔、電解銅箔等その種類に特に制限はないものの、いわゆるロープロファイル銅箔でない、一般的な銅箔を使用する場合、接着面となる銅箔粗化面の表面粗度が比較的高いため、その凹凸を完全に被覆する必要があるため、5μm以上の硬化済み樹脂層とするのである。
【0016】
そしてさらに、本発明に係る絶縁層付き銅箔では、銅箔の厚みを硬化済み樹脂層の厚みよりも薄くしておくことにより、硬化済み樹脂層表面と、形成した回路表面との面位置を同じにすることが可能となる。本発明者らの研究によると、ある程度の厚みを有する硬化済み樹脂層を、その厚みより薄い銅箔表面に形成した本発明の絶縁層付き銅箔に対し、回路形成を行い、その回路形成された表面に対してプレスにより押圧すると、当該回路が硬化済み樹脂層の中に埋没する現象を確認したのである。つまり、回路表面と硬化済み樹脂層表面との面位置が同じ、いわゆる平滑基板と呼ばれる状態になるのである。この現象は、硬化済み樹脂層がプレス圧により、半硬化絶縁層側に変形することによるものと考えられる。本発明の絶縁層付き銅箔は、このような平滑基板を形成できることから、低プレス圧により多層プリント配線板を製造することができ、製造される多層プリント配線板の絶縁層厚みを極めて均一にできることになり、絶縁層厚におけるインピーダンスのコントロールが正確に行える。
【0017】
本発明の絶縁層付き銅箔では、硬化済み樹脂層、半硬化絶縁層との総絶縁層厚みは120μm〜35μmのものが実用上好ましい。そして、その場合の各厚みは、硬化済み樹脂層は5〜20μmで、半硬化絶縁層は15〜115μmであることが望ましい。本発明に係る絶縁層付き銅箔では、総絶縁層厚みが120μmを超えると、薄厚の多層プリント配線板を製造することが難しくなり、35μm未満では薄厚の多層プリント配線板を形成し易くなるものの、内層の回路間における絶縁層が薄くなりすぎ、内層の回路間の絶縁性を不安定にする傾向が生じるためである。また、硬化済み樹脂層厚みが5μm未満であると、銅箔粗化面の表面粗度を考慮する必要が生じる。逆に硬化済み樹脂層厚みが20μmを超えると硬化済み樹脂層による効果は特に向上することなく、総絶縁層厚を厚くすることになる。尚、銅箔厚みについては、特に制限はなく、極薄銅箔と呼ばれる9μm厚のものや、キャリア付き銅箔などで使用可能な3μm厚の超極薄銅箔を用いることも当然に可能である。
【0018】
上述した本発明に係る絶縁層付き銅箔を用いて、多層プリント配線板を製造する場合、具体的には、予め銅箔面をエッチングすることにより回路を形成し、保護フィルムを除去した回路形成複合基材を準備し、該回路形成複合基材を複数積み重ねて、加熱加圧すればよい。ここで、加温加圧とは、いわゆるプレス加工をいうものであり、本発明に係る絶縁層付き銅箔に回路形成をして回路付き複合基材を準備し、一方外層側には本発明の絶縁層付き銅箔、他方外層側には電解銅箔を配し、内層には1又は2以上の回路形成複合基材を積層して、一括プレスすることで多層プリント配線板を形成できる。
【0019】
この本発明に係る多層プリント配線板の製造方法では、上記回路形成複合基材に加え、予め回路形成を行ったFR−4等のコア基材を含めて積層することも当然に可能である。本発明に係る絶縁層付き銅箔は、半硬化絶縁層を備えるため、従来製法では必要とされるプリプレグを別途準備する必要もなく、多層プリント配線板の製造を容易にし、且つ生産効率を向上させることができる。さらに、回路を形成した複合基材に対し、その回路表面に導電性バンプを形成し、プリプレグを重ね合わせて加熱圧着すると、プリプレグを導電性バンプで貫通させることができ、いわゆるスルーホール加工を必要としないビルドアップ方式のプリント配線板の製造に適用することも可能である。この場合の導電性バンプは、適度なチクソトロピック性を有し、適正な粘度コントロールがされたAgペースト等で形成することができる。
【0020】
さらに、本発明に係る絶縁層付き銅箔を用いた際のインピーダンスコントロールについて説明する。マイクロストリップ線路を形成した際の特性インピーダンスをコントロールする場合、所定厚みの電解銅箔においては回路間における絶縁層厚が厚いものほどその制御が比較的容易に行えることが知られている。そこで、一般的に知られているマイクロストリップ線路における特性インピーダンスについて、次式を用いてシュミレーションをしたところ、電解銅箔厚20μm(比誘電率εr=3.5)の場合では、インピーダンスZ=50Ωとするには、回路幅wが20μmの際に絶縁層厚を25μm以上確保することがそのコントロールを容易に行えるものと想定している。つまり、25μm以上あることで、回路幅wに多少の変動が生じても、所望のインピーダンス値とすることができるのである。このことから、本発明に係る絶縁層付き銅箔において、硬化済み樹脂層と半硬化絶縁層との総絶縁層厚みが120μm〜35μmのもの実用的であることは、インピーダンスコントロールに関しても好適なものといえる。
【0021】
【数1】

Figure 0004286060
【0022】
上述した本発明に係る絶縁層付き銅箔は、次のようにして製造することができる。その一つ目の方法としては、銅箔の片面に、硬化済み樹脂層と、不織布または織布の骨格材を有する半硬化絶縁層とを備える絶縁層付き銅箔の製造方法であって、銅箔の片面に、所定厚みの硬化済み樹脂層を形成し、該硬化済み樹脂層へ第一熱硬化性樹脂層を設け、当該第一熱硬化性樹脂層に、骨格材となる不織布または織布を圧着し、圧着した骨格材表面に第二熱硬化性樹脂層を形成し、第一及び第二熱硬化樹脂層を半硬化状態にして半硬化絶縁層を形成し、該半硬化絶縁層に引き剥がし可能な保護フィルムを付着する
するものである。
【0023】
この第一の製法を解説すると、まず、銅箔の片面側、通常は銅箔の粗化面側に硬化済み樹脂層を形成する。用いる銅箔は、圧延銅箔、電解銅箔等、特に制限はなく、キャリア付き銅箔を使用することも可能である。キャリア付き銅箔を使用した場合には、本発明に係る絶縁層付き銅箔を運搬等の取り扱い時に生じ得る銅箔表面への異物付着や打傷、汚染等の防止ができ、回路形成のエッチング工程直前まで、銅箔表面への傷の発生を有効に防止することができる。上述したように形成する硬化済み樹脂層の厚みは、1〜50μmであることが好ましい。そして、上述したように、好ましくは5μm〜20μmの硬化済み樹脂層であることが実用的である。一般的な電解銅箔を使用する場合、接着面となる銅箔粗化面の表面粗度が比較的高いため、その凹凸を完全に被覆する必要があるためである。尚、この硬化済み樹脂層の厚さとは、その実質的厚みを平面換算した厚さを意味するものである。
【0024】
この硬化済み樹脂層は、上記したように、銅箔の回路形成時のエッチングに対して耐食性を有する樹脂硬化物であることが望ましく、用いる樹脂の種類は電気、電子材料用途に使用できるものであれば特に種類は限定されない。そして、回路形成時のエッチングに対し、硬化済み樹脂層が耐食性を有しないと、形成した回路の剥がれや回路と硬化済み樹脂層との密着強度が確保できなくなるから、実質的に完全硬化させる必要がある。このような硬化済み樹脂層を構成する樹脂硬化物としては、エポキシ樹脂の他、ビスマレイミド樹脂等が挙げられる。さらに、この硬化済み樹脂層は、絶縁性等の電気的特性を考慮すると、半硬化樹脂層と同じ組成であることが望ましい。そしてさらに、この硬化済み樹脂層を形成する際には、硬化促進剤の種類や量を調整することで、本発明に係る絶縁層付き銅箔を製造する際の生産性を向上できる。
【0025】
そして、硬化済み樹脂層の表面に、半硬化の第一熱硬化性樹脂層を設ける。この第一熱硬化性樹脂層を構成する樹脂としては、熱硬化性を備えた樹脂であり、且つ、電気、電子材料の分野でプリント配線板に使用可能なものであれば特に制限されないが、一般的にはエポキシ樹脂を用いることができる。この第一熱硬化性樹脂層は、溶剤を用いて液体状にしたものを銅箔表面に塗布する方法、又は、半硬化状態の樹脂フィルムをラミネートするように張り付ける方法等により硬化済み樹脂層表面に形成される。溶剤を用いて液体状にする場合は、例えば、エポキシ樹脂、硬化剤、硬化促進剤を配合し、メチルエチルケトン等の溶剤を用いて粘度調整を行い用いることになる。
【0026】
硬化済み樹脂層表面に形成した第一熱硬化性樹脂層は、半硬化の状態に維持されていなければならない。次に行われる骨格材の圧着を良好に行い、骨格材となる不織布若しくは織布中に一定量の樹脂含浸を促すためである。そのため、硬化済み樹脂層の表面に液体状の樹脂を塗布し、その後、半硬化の状態にする場合には、熱風乾燥器等を用いて乾燥レベル、硬化度を調整する必要がある。
【0027】
硬化済み樹脂層の表面に形成する第一熱硬化樹脂層の厚さは、骨格材である不織布若しくは織布の厚さを考慮して定められる。つまり、第一熱硬化樹脂層の厚さは、不織布若しくは織布の厚さ以下としなければならないのである。第一熱硬化樹脂層の厚さを、不織布若しくは織布の厚さ以上とすると、不織布若しくは織布の圧着の際に、第一熱硬化樹脂層を構成する樹脂が横流れを起こし、設備を汚染することとなり、圧着ロール等を汚染し、その結果として製造される絶縁層付き銅箔に不良を引き起こすためである。尚、この第一熱硬化性樹脂層の厚さとは、その実質的厚みを平面換算した厚さを意味するものである。
【0028】
以上のようにして、硬化済み樹脂層の表面に第一熱硬化性樹脂層が形成されると、続いて、圧着ロール等を用い、骨格材である不織布若しくは織布が第一熱硬化性樹脂層に張り付けられる。この不織布若しくは織布からなる骨格材は、半硬化状態の第一熱硬化樹脂層に、加熱手段を備えた圧着ロールを用い、ロール自体を加熱して、一定レベル以上の押圧を負荷して張り付けるのである。半硬化状態の第一熱硬化性樹脂層を構成している樹脂を、再流動化させ、その再流動化した樹脂の一定量を不織布若しくは織布に含浸させるためである。
【0029】
この骨格材となる不織布若しくは織布は、その材質を特に制限するものではなく、プリント配線板用途に用いることのできるもので、十分な機械的特性を備えていればよい。その中でも、ガラス繊維、アラミド繊維、融点が300℃以上の全芳香族ポリエステル繊維(以下、単に「全芳香族ポリエステル繊維」と称する。)のいずれかを用いた不織布若しくは織布を用いることが望ましい。ガラス繊維及びアラミド繊維は、いずれもプリント配線板用途においては、長年の使用実績があるものであり、信頼性の高い材料だからである。そして、融点が300℃以上の全芳香族ポリエステル繊維とは、所謂液晶ポリマーと称される樹脂を用いて製造される繊維であり、当該液晶ポリマーは2−ヒドロキシル−6−ナフトエ酸及びp−ヒドロキシ安息香酸の重合体を主成分とするものである。この全芳香族ポリエステル繊維は、低誘電率、低い誘電正接を持つため、電気的絶縁層の構成材として優れた性能を有し、ガラス繊維及びアラミド繊維と同様に使用することが可能なものである。
【0030】
また、この不織布若しくは織布の厚さにも特段の制限はないが、薄厚の多層プリント配線板を製造する場合であっては、厚さ50μm以下の薄い不織布若しくは織布を使用することが好ましい。本発明に係る絶縁層付銅箔の製造方法を採用すれば、厚さ50μm以下の薄い不織布若しくは厚さ20μm以下の織布を用いても破断、破損することが無く、このような非常に薄い骨格材を備えた絶縁層を備えた絶縁層付き銅箔を製造することが可能である。
【0031】
さらに、骨格材の張り合わせが終了した後に、その骨格材表面に第二熱硬化性樹脂層を構成する樹脂を塗布して第二熱硬化性樹脂層を形成する。第一熱硬化性樹脂層と同様に、一般的にはエポキシ樹脂を用いることになる。しかし、この第二熱硬化性樹脂層を構成する樹脂としても、熱硬化性を備えた樹脂で、且つ、電気、電子材料の分野でプリント配線板に使用されるものであれば、第一熱硬化樹脂層と同様に特に制限はない。この第二熱硬化性樹脂層を形成する方法は、上述した第一熱硬化樹脂層を形成する方法を同様に適用できる。
【0032】
そして、この第二熱硬化性樹脂層は、上記回路形成複合基材として積層し、プレス成形することにより多層プリント配線板の構成材料として使用するため、半硬化の状態に維持されていなければならない。また、第二熱硬化樹脂層の厚さは、骨格材である不織布若しくは織布の厚さを考慮して定めればよい。即ち、上述したように第一熱硬化樹脂層の厚さが、不織布若しくは織布の厚さ以下であるため、第一熱硬化樹脂層に骨格材を圧着して、第一熱硬化樹脂層を構成する樹脂が流動させても、第一熱硬化樹脂層を構成する樹脂だけでは骨格材を完全に被覆する状態にはなっていない可能性が高い。そのため、第二熱硬化樹脂層は、少なくとも骨格材の表面を完全に被覆することのできる厚さとして形成することを要する。しかも、第二熱硬化樹脂層に銅箔を直接プレス成形で張り合わせる場合を考慮すると、銅箔の持つ粗化面の凹凸と不織布若しくは織布との直接接触を防止するための、ある一定の厚さが必要である。従って、一般的な電解銅箔を、本発明に係る絶縁層付き銅箔の半硬化絶縁層に直接積層する場合を考慮すれば、第二熱硬化樹脂層の厚さを5.0μm以上とすることが望ましい。この第二熱硬化性樹脂層の厚さとは、その実質的な厚みを平面換算して5.0μm以上であることを意味するものである。
【0033】
このように第二熱硬化性樹脂層を形成した後は、第一及び第二熱硬化樹脂層を半硬化状態にして半硬化絶縁層を形成し、該半硬化絶縁層に引き剥がし可能な保護フィルムを付着する。露出した半硬化絶縁層に引き剥がし可能な保護フィルムを付着する場合は、ポリエチレンテレフタレート、ポリエチレンナフタレート等を半硬化絶縁層に接触させて、熱ロールにより圧着することで対応できる。
【0034】
次に、二つ目の本発明に係る絶縁層付き銅箔の製造方法としては、銅箔の片面に、硬化済み樹脂層と、不織布または織布の骨格材を有する半硬化絶縁層とを備える絶縁層付き銅箔の製造方法であって、銅箔の片面に、所定厚みの硬化済み樹脂層を形成し、該硬化済み樹脂層へ液状の熱硬化性樹脂層を設け、該熱硬化性樹脂層に骨格材となる不織布または織布を載置して、当該熱硬化性樹脂層の構成樹脂を圧着した骨格材に含浸させて骨格材から滲み出させて、該熱硬化樹脂層を半硬化状態にして半硬化絶縁層を形成し、該半硬化絶縁層に引き剥がし可能な保護フィルムを付着するものである。
【0035】
この第二の製造方法を解説すると、まず、銅箔の片面に、硬化済み樹脂層を形成する。そして、その硬化済み樹脂層表面に液体状の熱硬化性樹脂層を設け、その熱硬化性樹脂層の表面に骨格材となる不織布若しくは織布を載置する。続いて、その熱硬化性樹脂層の構成樹脂成分を、当該不織布若しくは織布を構成するガラス繊維、アラミド繊維、全芳香族ポリエステル繊維のいずれかの繊維の毛細管現象を利用して含浸させ、更に当該不織布若しくは織布の熱硬化性樹脂層との接触面の反対側に滲み出させ、不織布若しくは織布の表面を完全に被覆することで、本発明に係る絶縁層付き銅箔を得るのである。
【0036】
この製造方法の場合、次のような点に考慮して、不織布若しくは織布に樹脂含浸をさせ、そして樹脂による被覆を行うことが好ましい。液体状態の熱硬化性樹脂層は、溶剤を多量に含んでいることが一般的である。そのため、その溶剤を全く除去することなく、液体状態の熱硬化性樹脂層の表面に不織布若しくは織布を載置して、最終的に半硬化状態とすると、硬化済み樹脂層と不織布若しくは織布との間の熱硬化性樹脂層内にバブルが発生する傾向がある。そこで、不織布若しくは織布を熱硬化性樹脂層の表面に載置する前に、バブル発生を防止できるよう一定量の溶剤除去を行うことが好ましい。溶剤の除去は、単に風乾させても、硬化温度以下の温度領域に加熱して行うものであっても構わない。
【0037】
不織布若しくは織布を載置する前に、熱硬化性樹脂層の樹脂成分から溶剤除去を行うことは、いわゆる半硬化状態にすることに他ならない。そのため、半硬化した熱硬化性樹脂層の樹脂を、骨格材を構成する不織布若しくは織布を構成する繊維に、毛細管現象を利用して含浸させ、更に当該骨格材と熱硬化性樹脂層との接触面の反対側に滲み出させるには、硬化温度以下の加熱をして熱硬化性樹脂層の再流動化を行わせることになる。
【0038】
その他、銅箔、硬化済み樹脂層、不織布若しくは織布、熱硬化性樹脂、及び保護フィルム等に関しては、先に説明した第一の製造方法と同様であるので、説明を省略する。
【0039】
【発明の実施の形態】
以下、本発明に係る絶縁層付き銅箔について以下の実施形態に基づいて説明する。
【0040】
第1実施形態:この第一実施形態においては、図1に示す本発明に係る絶縁層付き銅箔を製造する方法について説明する。図1は、本発明に係る絶縁層付き銅箔の概略断面図を示すものであるが、電解銅箔1と半硬化絶縁層3との間に、硬化済み樹脂層2が形成されている。また、この半硬化絶縁層3は、その内部に骨格材4が含まれており、硬化済み樹脂層2と接触する面の反対面側には保護フィルム5が被覆されている。
【0041】
図2には、図1で示した絶縁層付き銅箔の製造フロー概略図を示す。この図2で示す製造方法では、公称厚さ18μmで、硬化済み樹脂層と接合する粗化面4の表面粗さ(Rz)が3.5μmである電解銅箔を用いた場合を例とする。
【0042】
まず最初に、硬化済み樹脂層2の形成に用いたエポキシ樹脂組成物について説明する。この硬化済み樹脂層2を構成する樹脂は、ビスフェノールA型エポキシ樹脂(商品名:YD−128、東都化成社製)30重量部、o−クレゾール型エポキシ樹脂(商品名:ESCN−195XL80、住友化学社製)50重量部、エポキシ樹脂硬化剤として固形分25%のジメチルホルムアルデヒド溶液の形でジシアンジアミド(ジシアンジアミドとして4重量部)を16重量部、硬化促進剤として2−エチル4−メチルイミダゾール(商品名:キャゾール2E4MZ、四国化成社製)を0.5重量部をメチルエチルケトンとジメチルホルムアルデヒドとの混合溶剤(混合比:メチルエチルケトン/ジメチルホルムアルデヒド=4/6)に溶解して固形分60%のものを用いた。
【0043】
そして、図2(A)に示すように、上述のエポキシ樹脂組成物を、前記公称厚さ18μmの電解銅箔1の粗化面に均一に塗布して190℃、30分間、熱処理することで、完全な硬化状態にした。このときのエポキシ樹脂組成物の塗布量は、硬化済み樹脂層2厚さとして5μmとなるようにした。
【0044】
次に、硬化済み樹脂層2の上に形成する第一熱硬化樹脂層6及び第二熱硬化樹脂層7の形成に用いたエポキシ樹脂組成物について説明する。ここでの樹脂は、上記した硬化済みこの硬化済み樹脂層を構成するものと同じものを使用した。但し、半硬化状態に仕上げるため、硬化済み樹脂層2と異なり、硬化促進剤は、2−エチル4−メチルイミダゾール(商品名:キャゾール2E4MZ、四国化成社製)を0.1重量部とした。
【0045】
図2(B)に示すように、この第一熱硬化樹脂層6を形成するエポキシ樹脂組成物を、前記硬化済み樹脂層2の表面に均一に塗布して、室温で30分間放置して、熱風乾燥機を用いて150℃の温風を2分間衝風することで、一定量の溶剤を除去し、第一熱硬化樹脂層6を半硬化状態に乾燥させた。このときのエポキシ樹脂組成物の塗布量は、乾燥後の樹脂厚として40μmとなるようにした。
【0046】
次に、図2(C)に示すように、第一熱硬化樹脂層6の上に、骨格材4となる公称厚さ50μm厚のアラミド繊維の不織布7を張り合わせた。この張り合わせは、形成した第一熱硬化樹脂層6の表面に当該不織布7を重ね合わせて、150℃に加熱し、9kg/cmのラミネート圧力を掛けることの出来るようにし加熱ロール8の間を、20cm/分の速度で通過させることにより行った。その結果、張り合わせた状態での第1熱硬化樹脂層6と不織布7との合計厚さが平均90μmであった。
【0047】
以上のようにして不織布7の張り合わせの終了に続いて第二熱硬化樹脂層9の形成を行った(図2(D))。ここで、第二熱硬化樹脂層9を構成するために用いたエポキシ樹脂組成物は、第一熱硬化性樹脂層の形成に用いたと同様のものを用いた。
【0048】
図2(D)に示すように、第一熱硬化性樹脂層6に張り合わせた不織布7の上に、上述エポキシ樹脂組成物を均一に塗布して、室温で30分間放置して、熱風乾燥機を用いて150℃の温風を3分間衝風することで、一定量の溶剤を除去し、第二熱硬化樹脂層9を半硬化状態に乾燥させた。このときのエポキシ樹脂組成物の塗布量は、第一熱硬化樹脂層6と不織布7と乾燥後の第二熱硬化樹脂層9の合計厚さが110μmとなるようにした。この第一熱硬化樹脂層6と不織布7と第二熱硬化樹脂層9とが半硬化絶縁層3を構成することになる。そして、総絶縁層厚みは、硬化済み樹脂層と半硬化絶縁層との合計厚である115μmであった。
【0049】
そして最後に、この半硬化絶縁層3の露出した表面に、厚さ50μmの
ポリエチレンテレフタレート製フィルムを重ね、熱ロール(図示せず)により圧着することにより保護フィルム5を被覆し、本発明に係る絶縁層付銅箔を製造した。
【0050】
続いて、上記製造方法とは別の製造法方法について、図3に示す製造フローに基づいて説明する。この図3に基づく製造方法は、半硬化絶縁層を形成する際に、骨格材である不繊布に熱硬化樹脂層の樹脂成分を含浸、浸透させる方法である。そのため、上記図2で示した製造方法と相違する部分について説明を行うものとする。
【0051】
図3の製造フローでは、電解銅箔1の粗化面に硬化済み樹脂層2を形成する工程(図2(A))、及び半硬化絶縁層に保護フィルムを形成する工程(図2(E))とは、図2の場合と同様であるため、省略している。
【0052】
図3(B’)に示すように、電解銅箔1の粗化面に形成された硬化済み樹脂層2の表面に、上記第一熱硬化性樹脂層と同じ組成のエポキシ樹脂組成物を、液体状態で均一に塗布して、室温で30分間放置して、熱風乾燥機を用いて150℃の温風を2分間衝風乾燥することで、一定量の溶剤を除去し、半硬化状態の熱硬化樹脂層60を30μm厚さで形成した。
【0053】
次に、この半硬化の熱硬化樹脂層60の上に、骨格材4となる、公称厚さ30μm厚のアラミド繊維の不織布7を張り合わせた。この張り合わせは、形成した熱硬化樹脂層60の表面に当該不織布7を重ね合わせて、100℃に加熱し、5kg/cmのラミネート圧力を加えることができるようにした加熱ロール8の間を、50cm/分の速度で通過させることにより緩やかな接着を行わせた(図3(C’))。このとき、不織布7と熱硬化樹脂層60を合わせた合計厚さは60μmであり、不織布7の表面から樹脂の滲み出しはなく、加熱ロール8に樹脂の転写はなかった。
【0054】
このようにして不織布7の張り合わせが終了した後、熱風乾燥機を用いて150℃の雰囲気中に1分間維持することで、熱硬化性樹脂層60を再流動化させ、その熱硬化性樹脂層60の構成樹脂成分を当該不織布7のアラミド繊維の毛細管現象を利用して含浸させ、更に不織布7の熱硬化性樹脂層60との接触面の反対側に滲み出させ、不織布7の表面を完全に被覆するようにした(図3(D’))。この乾燥処理により、熱硬化性樹脂層60と不繊布7とが半硬化絶縁層3を構成することになり、このときの熱硬化樹脂層60と不織布7との乾燥後の合計厚さは45μmであった。この熱硬化樹脂層60と不織布7とが半硬化絶縁層3を構成することになる。そして、総絶縁層厚みは、5μmの硬化済み樹脂層2と半硬化絶縁層3との合計厚である50μmとなった。尚、保護フィルム5の被覆については、図2(E)の説明と同様なため省略する。
【0055】
第2実施形態:この第2実施形態では、上記第1実施形態の図3に基づいて説明した製造方法により得られた絶縁層付き銅箔(銅箔厚18μm、硬化済み樹脂層厚5μm、半硬化絶縁層45μm)を用いて、三層プリント配線板を形成した場合について説明する。
【0056】
図4には、上記した本実施形態の絶縁層付き銅箔を用いて三層プリント配線板を製造する際の製造フロー概略断面を示している。図4(a)に示しているのは、上記図3で説明した製造法により得られた絶縁層付き銅箔100である。まず初めに、保護フィルム5を備えた状態の絶縁層付き銅箔100について、その電解銅箔1に対して一般的なドライフィルムラミネート法を用いて所定回路101の形成を行った(図4(b))。この回路形成には塩化第二銅エッチング液を用い、エッチング後、洗浄、乾燥処理を行った。この回路を形成した回路形成複合基材200を準備した。
【0057】
この回路形成複合基材200の回路形成をした表面について、EPMA分析装置(日本電子株式会社製JXA−8100)により分析を行った。その結果、銅箔をエッチングすることにより露出した硬化済み樹脂層2の表面には、銅成分は全く検出されなかった。また、形成した回路101と硬化済み樹脂層2との密着状態は、回路の剥離等の現象が全く確認されず、その密着強度も実用上問題ないレベルであることが確認された。このようなことから、この回路形成複合基材を用いて多層プリント配線板を形成しても、マイグレーション等の現象は生じないことが予想された。
【0058】
次に、図4(c)に示すよう、保護フィルム5を引き剥がした回路形成複合基材210と絶縁層付き銅箔110、及び公称厚さ18μm、粗化面の表面粗さ(Rz)3.5μmの電解銅箔1とを積層した。この場合、内層側になる回路形成複合基材210と外層側になる絶縁層付き銅箔110とは、内層側にある回路形成複合基材210の回路形成した面と絶縁層付き銅箔110の銅箔1面とが同一方向(図4では上方向)なるように、そして、電解銅箔10はその粗化面を内層側の回路形成複合基材210の半硬化絶縁層3側に対向するように積層した。そして、プレス加工することで三層プリント配線板を製造した(図4(d))。プレス加工は、プレス温度180℃、プレス圧力20kgf/cm、2時間の熱間プレス条件で行った。
【0059】
その後、両外層に位置する電解銅箔について回路形成を行い、その回路形成部の一部に、炭酸ガスレーザー(照射条件:周波数2000Hz、マスク径5.0mm、パルス幅60μsec、パルスエネルギー16.0mJ、オフセット0.8、レーザー光径120μm)を用いてレーザー穴明け加工を行った(図4(e))。そして、図示は省略するが、周知のスルーホールめっき処理を行うことで、内層回路と外層回路とを相互接続した三層プリント配線板310を形成した。得られた配線板の厚みは、(外層銅箔厚18μm、内層絶縁層厚(50+50)μm、他方外層銅箔厚18μm)136μmとなった。尚、ここでは炭酸ガスレーザーによる穴明け加工を例として説明しているが、YAGレーザーを用いることやドリルによる穴明け加工を行うことも当然に可能である。
【0060】
以上にようにして製造した三層プリント配線板について、半田耐熱性評価
回路引き剥がし強さの評価、配線板曲げ強さ評価を行った。半田耐熱性評価は、JIS C 6481に準拠した方法で、260℃の半田バスに基板片を浸漬し、膨れの発生するまでの時間を測定することにより行った。回路引き剥がし強さの評価は、JIS C 6481に準拠し、0.2mm幅回路について測定した値である。また、配線板曲げ強さ評価は、JIS K 7171に準拠して、評価用絶縁樹脂板の曲げ強度を測定した。この結果、半田耐熱性評価は、600秒以上の耐熱時間が測定された。また、回路引き剥がし強さは、1.2kgf/cmであった。また、曲げ強さは、400MPaであった。この結果から、従来工法により得られる三層プリント配線板と比較しても、実用上何ら遜色のない三層プリント配線板を製造できた。そして、本実施形態の三層プリント配線板は、いわゆるコアレス(コア材を必要としない)であるため、安価で且つ生産性が高く、製造することができた。なお、以上説明したプリント配線板の製造方法は、四層以上の多層プリント配線板の製造に対しても適用可能である。
【0061】
第3実施形態:この第3実施形態では、上記第1実施形態の図3を用いて説明した製法により得られた絶縁層付き銅箔を用いて、平滑基板状とした回路形成複合基材を形成し、三層プリント配線板を形成した場合について、図5を参照しながら説明する。
【0062】
ここで用いた絶縁層付き銅箔100は、9μm厚の電解銅箔1(粗化面の表面粗さRz2.5μm)に15μm厚の硬化済み樹脂層2を形成したもので、その他半硬化絶縁層、保護フィルム等の厚み条件は第二実施形態と同じものとした。また、この絶縁層付き銅箔を用いて形成した回路形成複合基材は、上記第二実施形態で説明した方法と同じであり、この回路形成複合基材200を複数準備した(図5(a)(b))。
【0063】
そして、この回路形成複合銅箔200を、プレス加工の際に用いられるステンレス製の鏡板に挟み込み、半硬化絶縁層が硬化しない温度(約130℃)において熱間プレス(プレス圧力10kgf/cm、30分間)を行った。このプレス加工により、図5(c)に示すような、回路101が硬化済み樹脂層2に埋め込まれた状態にした。これは、回路101表面と硬化済み樹脂層2表面との面位置が同じとなり、表面が平滑状態の回路形成複合基材220を得た。尚、この回路形成複合基材220の表面についてEPMA分析を行った結果、露出した硬化済み樹脂層2の表面には、銅成分は全く検出されなかった。
【0064】
次に、図4(C)に示すよう、平滑状態の回路形成複合基材220の保護フィルム5を引き剥がした、2つの回路形成複合基材230と、公称厚さ9μm、粗化面の表面粗さ(Rz)2.5μmの電解銅箔とを積層した。この場合、内層側になる回路形成複合基材230と、外層側になる回路形成複合基材230とは回路形成した面が同一方向なるように、電解銅箔1はその粗化面を内層側になる回路形成複合基材230の半硬化絶縁層3側に対向するように積層した。そして、プレス加工することで三層プリント配線板320を製造した。プレス加工は、プレス温度180℃、プレス圧力5kgf/cm、2時間の熱間プレス条件で行った。
【0065】
このようにして製造した三層プリント配線板320について、その断面観察を行ったところ、図5(e)に示す回路間の絶縁層厚w1は55μmで、w2も55μmであることが判明した。また、多数箇所において回路間の絶縁層厚を調べたところ、どの位置に置いても55±2μmであり、極めて均一な絶縁層厚みが実現されていることが判明した。このことより、本実施形態の平滑基板状の回路形成複合基材を用いれば、回路間の絶縁層厚みを極めて均一な状態に、容易に形成することができ、絶縁層におけるインピーダンスのコントロールが正確に行えるものとなる。
【0066】
比較例:最後に、上記第二及び第三実施形態の比較として、従来法による三層プリント配線板を形成した場合について説明する。まず初めに、厚さ50μmのプリプレグに18μm厚の電解銅箔を積層した片面銅張積層板に形成し、一般的なドライフィルムラミネート法を用いて所定回路101の形成を行った内層コア材400(図6(a))を予め準備した。
【0067】
この内層コア材400を中心にして、厚さ50μmのプリプレグ500をその両面に配し、さらにその外側に18μmの電解銅箔10を重ねて積層した。この積層したものをプレス加工(プレス温度180℃、プレス圧力20kgf/cm、2時間の熱間プレス条件)を行った(図6(b))。続いて、ドライフィルムラミネート法を用いて、外層側の回路形成を行うことで、三層プリント配線板330を製造した(図6(c))。
【0068】
図6(c)を見ると判るように、従来の製造方法により三層プリント配線板330を製造すると、回路間の絶縁層厚みw1とw2が異なるものとなる。そのため、製造した配線板に若干の反りが認められた。また、この従来の製造方法で、回路間の絶縁層厚みw1とw2を同じするためには、異なる厚みのプリプレグを積層しなければならなく、特に薄厚の三層プリント配線板を製造するためには、可能な限り薄いプリプレグを使用する必要がある。
【0069】
この比較例で示した従来の製造方法による三層プリント配線板の場合と、上記第二及び第三実施形態のものの場合とを比較すると、まず、本実施形態の場合、インピーダンスコントロールの容易な、回路間の絶縁層厚みが均一な多層プリント配線板を実現できることが判る。そして、本実施形態の場合では、コアレスで多層プリント配線板を形成できるため、安価且つ高い生産性を実現できる。さらに、本実施形態の場合では、予め回路形成を行った回路形成複合基材を準備するだけで、多層プリント配線板を一括プレス加工により製造できるので、プレス回数の大幅な低減を図ることが可能となり、取り扱いの容易という利点があるために作業効率の大幅な向上も同時に可能となる。
【0070】
【発明の効果】
以上説明したように、本発明に係る絶縁層付き銅箔によれば、多層プリント配線板を製造する際のプレス回数を大幅に低減し、かつその取り扱いも容易で、高い生産効率で多層プリント配線板を製造することができるものとなる。また、絶縁層厚みを簡単に調整できるので、薄厚の多層プリント配線板も容易に製造でき、得られた多層プリント配線板の回路間絶縁層厚みも極めて均一にすることが可能となり、インピーダンスのコントロールが正確に行える。
【図面の簡単な説明】
【図1】本発明に係る絶縁層付銅箔の断面概略図。
【図2】本発明に係る絶縁層付き銅箔の製造フローを表す概略図。
【図3】本発明に係る絶縁層付銅箔の製造フローの一部を表す概略図。
【図4】第2実施形態における三層プリント配線板の製造フローを表す概略図。
【図5】第3実施形態における三層プリント配線板の製造フローを表す概略図。
【図6】従来の製造方法により三層プリント配線板の製造フローを表す概略図。
【符号の説明】
1 電解銅箔
2 硬化済み樹脂層
3 半硬化絶縁層
4 骨格材
5 保護フィルム
6 第一熱硬化性樹脂層
7 不織布(若しくは織布)
8 圧着ロール
9 第2熱硬化性樹脂層
100 絶縁層付き銅箔
101 回路
200 回路形成複合基材
300 三層プリント配線板
400 内層コア材
500 プリプレグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper foil with an insulating layer, a method for producing the same, and a multilayer printed wiring board using the copper foil with an insulating layer.
[0002]
[Prior art]
Resin-coated copper foil used in the production of multilayer printed wiring is widely used as a material for build-up multilayer printed wiring boards based on the premise of forming via holes by laser processing because of its excellent laser processability and insulation reliability Has been. However, the copper foil with resin is lighter than the prepreg produced by impregnating the conventional glass fiber with epoxy resin or the like. Although superior in laser workability, it has a tendency to be unsatisfactory in terms of reliability compared to conventional prepregs under harsh environments due to low mechanical strength such as bending, pulling, and impact.
[0003]
In addition to this, in order to improve the laser processability of prepregs using glass fibers, it has also been proposed to use prepregs produced by impregnating glass paper or aramid paper nonwoven fabric without using woven fabric. . By using these non-woven fabrics, the non-uniformity in the amount of fibers as found in general woven fabrics is improved, so that the laser processability is greatly improved. However, since the nonwoven fabric itself is low in strength, it is easy to cut when impregnated with a resin, and it has been difficult to produce a thin fabric suitable for recent high-density multilayer printed wiring boards. However, the present inventors have already proposed a new copper foil with an insulating layer for this problem (see, for example, Prior Art Document 1).
[0004]
[Prior Art Document 1]
Japanese Patent Application No. 2002-326268
[0005]
Thereby, the copper foil with an insulating layer which has the insulating layer of the semi-hardened state which used the very thin nonwoven fabric and woven fabric which were difficult conventionally as a frame | skeleton material is obtained. And by using the copper foil with an insulating layer in a semi-cured state according to this prior art, it is excellent in laser drilling workability in a build-up method without using a so-called prepreg like a conventional glass epoxy base material. A copper-clad laminate can be provided, and a high-quality multilayer printed wiring board can be manufactured.
[0006]
By the way, when manufacturing a multilayer printed wiring board, it is laminated by heating and heating a prepreg and a copper foil or a copper foil with a resin, or the copper foil with an insulating layer to a core material on which a circuit has been formed in advance. Thus, a method of manufacturing by forming a copper-clad laminate, performing a circuit forming process, and repeating such a stacking and circuit forming process is adopted. Alternatively, a method is generally known in which a predetermined number of core materials on which circuit formation has been performed in advance are prepared and laminated at once through a prepreg.
[0007]
However, in the former method, since lamination and circuit formation are sequentially repeated, it takes time to press and it is difficult to improve productivity. In the latter method, the stacking may be performed only once. However, when a thin multilayer printed wiring board is manufactured, it is difficult to handle the prepreg during stacking because a plurality of extremely thin prepregs must be used. , It has factors that make efficient manufacturing difficult.
[0008]
[Problems to be solved by the invention]
In view of the circumstances as described above, the present invention can greatly reduce the number of presses when manufacturing a multilayer printed wiring board, and can be easily handled, and can manufacture a multilayer printed wiring board with high production efficiency. It is to provide a constituent material of a printed wiring board.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, various studies were made on the semi-cured copper foil with an insulating layer having a skeleton material, which the applicant of the present application has already proposed, to arrive at the copper foil with an insulating layer according to the present invention. It came.
[0010]
The present invention provides a copper foil with an insulating layer comprising a semi-cured insulating layer having a nonwoven fabric or a woven skeleton on one surface of the copper foil, and having a cured resin layer between the copper foil and the semi-cured insulating layer. A protective film that can be peeled off is provided on one side of the exposed semi-cured insulating layer.
[0011]
Since the copper foil with an insulating layer according to the present invention has a cured resin layer, it is possible to form a circuit by etching the copper foil as it is. A multilayer printed wiring board can be manufactured by preparing, laminating them, and pressing them. Moreover, since the protective film which can be peeled off is provided in the one surface which a semi-hardened insulating layer exposes, a semi-hardened insulating layer is not attacked by an etching at the time of etching of copper foil.
[0012]
In the copper foil with an insulating layer according to the present invention, since the thickness of the semi-cured insulating layer having a skeleton material can be controlled, it is possible to easily reduce the thickness of the multilayer printed wiring board to be manufactured. In other words, a thin multilayer printed wiring board can be easily manufactured without using an extremely thin prepreg that is difficult to handle as in the prior art, and a circuit is formed on the copper foil with an insulating layer according to the present invention. By preparing a plurality of products, a multilayer printed wiring board can be formed by a single press work, and it becomes possible to improve production efficiency.
[0013]
And the copper foil with an insulating layer according to the present invention comprises a protective film that can be peeled off on one side of the exposed semi-cured insulating layer, but because of this protective film, the handleability becomes good and the circuit of the copper foil is formed. The semi-cured insulating layer can be protected from the etchant and the like. As the protective film in this case, polyethylene terephthalate, polyethylene naphthalate, or the like can be used. This is because the films made of these materials have corrosion resistance to the etching solution of the copper foil and have characteristics that can be easily peeled off from the semi-cured insulating layer.
[0014]
Moreover, it is desirable that the cured resin layer in the copper foil with an insulating layer according to the present invention is a cured resin that has corrosion resistance against etching during circuit formation of the copper foil. The type of resin used is not particularly limited as long as it can be used for electrical and electronic materials, but it is generally preferable to use an epoxy resin. And, if the cured resin layer does not have corrosion resistance against etching during circuit formation, it will not be possible to secure the peel strength of the formed circuit and the adhesion strength between the circuit and the cured resin layer, so it is necessary to substantially completely cure There is. Examples of the cured resin that forms such a cured resin layer include an epoxy resin and a bismaleimide resin. Furthermore, it is desirable that the cured resin layer has the same composition as the semi-cured resin layer in consideration of electrical characteristics such as insulation.
[0015]
Furthermore, the thickness of the cured resin layer in the copper foil with an insulating layer according to the present invention is preferably 1 to 50 μm. When the cured resin layer is less than 1 μm, the etchant tends to penetrate during circuit formation, and the formed circuit may be peeled off or migration may occur. On the other hand, when the thickness exceeds 50 μm, the bending strength of the semi-cured insulating layer is low, and thus the surface side including the cured resin layer and the copper foil tends to be curled (warped). It is practical that it is preferably 5 μm to 20 μm. The copper foil used in the present invention is not particularly limited in its type, such as copper foil and electrolytic copper foil, but is not a so-called low profile copper foil, and when using a general copper foil, a roughened copper foil surface to be an adhesive surface Since the surface roughness of the film is relatively high, it is necessary to completely cover the unevenness, so that a cured resin layer of 5 μm or more is formed.
[0016]
Further, in the copper foil with an insulating layer according to the present invention, the surface position of the cured resin layer surface and the formed circuit surface is determined by making the thickness of the copper foil thinner than the thickness of the cured resin layer. It becomes possible to be the same. According to the study by the present inventors, a circuit was formed on the copper foil with an insulating layer of the present invention in which a cured resin layer having a certain thickness was formed on the surface of the copper foil thinner than the thickness, and the circuit was formed. It was confirmed that the circuit was buried in the cured resin layer when pressed against the surface. That is, the surface position of the circuit surface and the cured resin layer surface is the same, so-called a smooth substrate. This phenomenon is considered to be due to the cured resin layer being deformed to the semi-cured insulating layer side by the press pressure. Since the copper foil with an insulating layer of the present invention can form such a smooth substrate, a multilayer printed wiring board can be manufactured with a low press pressure, and the insulating layer thickness of the manufactured multilayer printed wiring board can be made extremely uniform. As a result, it is possible to accurately control the impedance in the insulating layer thickness.
[0017]
In the copper foil with an insulating layer of the present invention, the total insulating layer thickness of the cured resin layer and the semi-cured insulating layer is preferably 120 μm to 35 μm. In each case, the thickness of the cured resin layer is preferably 5 to 20 μm, and the thickness of the semi-cured insulating layer is preferably 15 to 115 μm. In the copper foil with an insulating layer according to the present invention, if the total insulating layer thickness exceeds 120 μm, it becomes difficult to produce a thin multilayer printed wiring board, and if it is less than 35 μm, it is easy to form a thin multilayer printed wiring board. This is because the insulating layer between the inner layer circuits becomes too thin, and the insulation between the inner layer circuits tends to become unstable. Further, when the cured resin layer thickness is less than 5 μm, it is necessary to consider the surface roughness of the roughened copper foil surface. Conversely, when the cured resin layer thickness exceeds 20 μm, the effect of the cured resin layer is not particularly improved, and the total insulating layer thickness is increased. In addition, there is no restriction | limiting in particular about copper foil thickness, Of course, it is possible to use the ultra-thin copper foil of 9 micrometers thickness called ultra-thin copper foil, and the ultra-thin copper foil of 3 micrometers thickness which can be used with copper foil with a carrier, etc. is there.
[0018]
When a multilayer printed wiring board is manufactured using the copper foil with an insulating layer according to the present invention described above, specifically, a circuit is formed by previously etching the copper foil surface and removing the protective film. A composite base material is prepared, a plurality of the circuit-forming composite base materials are stacked, and heated and pressed. Here, the heating and pressurization refers to so-called pressing, and a circuit board is formed on the copper foil with an insulating layer according to the present invention to prepare a composite substrate with a circuit, while the outer layer side of the present invention A multilayer printed wiring board can be formed by placing an electrolytic copper foil on the other outer layer side, laminating one or two or more circuit-forming composite base materials on the inner layer, and collectively pressing.
[0019]
In the method for producing a multilayer printed wiring board according to the present invention, it is naturally possible to include a core substrate such as FR-4 on which a circuit is formed in advance in addition to the above-described circuit-forming composite substrate. Since the copper foil with an insulating layer according to the present invention has a semi-cured insulating layer, it is not necessary to separately prepare a prepreg required in the conventional manufacturing method, facilitating the production of a multilayer printed wiring board and improving the production efficiency. Can be made. In addition, when conductive bumps are formed on the circuit surface of a composite substrate on which a circuit is formed, and the prepregs are stacked and heat-bonded, the prepreg can be penetrated by the conductive bumps, so-called through-hole processing is required. It is also possible to apply to the manufacture of a build-up type printed wiring board. In this case, the conductive bump can be formed of an Ag paste or the like having an appropriate thixotropic property and appropriately controlled in viscosity.
[0020]
Furthermore, impedance control when using the copper foil with an insulating layer according to the present invention will be described. In the case of controlling the characteristic impedance when the microstrip line is formed, it is known that, in the electrolytic copper foil having a predetermined thickness, the thicker the insulating layer between the circuits, the easier the control. Therefore, when the characteristic impedance of a generally known microstrip line is simulated using the following equation, when the electrolytic copper foil thickness is 20 μm (relative permittivity εr = 3.5), the impedance Z 0 In order to set 50Ω, it is assumed that when the circuit width w is 20 μm, it is possible to easily control the insulation layer by securing an insulating layer thickness of 25 μm or more. In other words, by being 25 μm or more, a desired impedance value can be obtained even if the circuit width w slightly varies. From this, in the copper foil with an insulating layer according to the present invention, it is practical that the total insulating layer thickness of the cured resin layer and the semi-cured insulating layer is 120 μm to 35 μm, which is also suitable for impedance control. It can be said.
[0021]
[Expression 1]
Figure 0004286060
[0022]
The copper foil with an insulating layer according to the present invention described above can be manufactured as follows. The first method is a method for producing a copper foil with an insulating layer comprising a cured resin layer and a semi-cured insulating layer having a nonwoven fabric or a woven fabric skeleton material on one side of the copper foil, A cured resin layer having a predetermined thickness is formed on one side of the foil, a first thermosetting resin layer is provided on the cured resin layer, and a nonwoven fabric or a woven fabric serving as a skeleton material is provided on the first thermosetting resin layer. The second thermosetting resin layer is formed on the surface of the pressed skeleton material, the first and second thermosetting resin layers are semi-cured to form a semi-cured insulating layer, and the semi-cured insulating layer is formed on the semi-cured insulating layer. Attach a peelable protective film
To do.
[0023]
Explaining this first production method, first, a cured resin layer is formed on one side of the copper foil, usually on the roughened side of the copper foil. The copper foil to be used is not particularly limited, such as a rolled copper foil or an electrolytic copper foil, and a copper foil with a carrier can also be used. When using a copper foil with a carrier, the copper foil with an insulating layer according to the present invention can prevent foreign matter adhesion, scratching, contamination, etc. on the surface of the copper foil that may occur during handling, etc., etching for circuit formation Until just before the process, the occurrence of scratches on the surface of the copper foil can be effectively prevented. The thickness of the cured resin layer formed as described above is preferably 1 to 50 μm. And as above-mentioned, it is practical that it is a cured resin layer of preferably 5 micrometers-20 micrometers. This is because when a general electrolytic copper foil is used, the roughened surface of the copper foil that becomes the bonding surface has a relatively high surface roughness, and thus it is necessary to completely cover the unevenness. The thickness of the cured resin layer means a thickness obtained by converting the substantial thickness into a plane.
[0024]
As described above, the cured resin layer is desirably a cured resin having corrosion resistance against etching during circuit formation of the copper foil, and the type of resin used can be used for electrical and electronic materials. The type is not particularly limited as long as it is present. And, if the cured resin layer does not have corrosion resistance against etching during circuit formation, it will not be possible to secure the peel strength of the formed circuit and the adhesion strength between the circuit and the cured resin layer, so it is necessary to substantially completely cure There is. Examples of the cured resin that forms such a cured resin layer include an epoxy resin and a bismaleimide resin. Furthermore, it is desirable that the cured resin layer has the same composition as the semi-cured resin layer in consideration of electrical characteristics such as insulation. And furthermore, when forming this cured resin layer, the productivity at the time of manufacturing the copper foil with an insulating layer which concerns on this invention can be improved by adjusting the kind and quantity of a hardening accelerator.
[0025]
Then, a semi-cured first thermosetting resin layer is provided on the surface of the cured resin layer. The resin constituting the first thermosetting resin layer is not particularly limited as long as it is a resin having thermosetting properties and can be used for a printed wiring board in the field of electric and electronic materials. In general, an epoxy resin can be used. This first thermosetting resin layer is a resin layer that has been cured by a method of applying a liquid form using a solvent to a copper foil surface, or a method of pasting so as to laminate a semi-cured resin film. Formed on the surface. In the case of using a solvent to form a liquid, for example, an epoxy resin, a curing agent, and a curing accelerator are blended, and the viscosity is adjusted using a solvent such as methyl ethyl ketone.
[0026]
The first thermosetting resin layer formed on the surface of the cured resin layer must be maintained in a semi-cured state. This is because the skeletal material to be pressed next is favorably pressed to promote a certain amount of resin impregnation in the nonwoven fabric or woven fabric to be the skeleton material. For this reason, when a liquid resin is applied to the surface of the cured resin layer and then brought into a semi-cured state, it is necessary to adjust the drying level and the degree of curing using a hot air dryer or the like.
[0027]
The thickness of the first thermosetting resin layer formed on the surface of the cured resin layer is determined in consideration of the thickness of the nonwoven fabric or woven fabric that is the skeleton material. That is, the thickness of the first thermosetting resin layer must be equal to or less than the thickness of the nonwoven fabric or woven fabric. If the thickness of the first thermosetting resin layer is equal to or greater than the thickness of the non-woven fabric or woven fabric, the resin constituting the first thermosetting resin layer causes a lateral flow when the non-woven fabric or woven fabric is crimped, contaminating the equipment. This is because the pressure-bonding roll or the like is contaminated, and as a result, the copper foil with an insulating layer produced is defective. In addition, the thickness of this 1st thermosetting resin layer means the thickness which converted the substantial thickness into plane.
[0028]
As described above, when the first thermosetting resin layer is formed on the surface of the cured resin layer, the nonwoven fabric or woven fabric, which is a skeleton material, is then used as the first thermosetting resin by using a pressure roll or the like. Affixed to the layer. The skeletal material made of non-woven fabric or woven fabric is pasted by applying a pressing force of a certain level or more by heating the roll itself to the semi-cured first thermosetting resin layer with a heating means. It is. This is because the resin constituting the semi-cured first thermosetting resin layer is reflowed, and a certain amount of the reflowed resin is impregnated into the nonwoven fabric or woven fabric.
[0029]
The nonwoven fabric or woven fabric used as the skeletal material is not particularly limited, and can be used for printed wiring board applications as long as it has sufficient mechanical characteristics. Among them, it is desirable to use a nonwoven fabric or a woven fabric using any of glass fiber, aramid fiber, and wholly aromatic polyester fiber having a melting point of 300 ° C. or higher (hereinafter simply referred to as “fully aromatic polyester fiber”). . This is because glass fiber and aramid fiber are both highly reliable materials that have been used for many years in printed wiring board applications. The wholly aromatic polyester fiber having a melting point of 300 ° C. or higher is a fiber produced using a resin called a so-called liquid crystal polymer, and the liquid crystal polymer contains 2-hydroxyl-6-naphthoic acid and p-hydroxy. The main component is a polymer of benzoic acid. Since this wholly aromatic polyester fiber has a low dielectric constant and low dielectric loss tangent, it has excellent performance as a constituent material of an electrically insulating layer and can be used in the same manner as glass fiber and aramid fiber. is there.
[0030]
The thickness of the nonwoven fabric or woven fabric is not particularly limited, but when a thin multilayer printed wiring board is manufactured, it is preferable to use a thin nonwoven fabric or woven fabric having a thickness of 50 μm or less. . If the method for producing a copper foil with an insulating layer according to the present invention is adopted, even if a thin non-woven fabric having a thickness of 50 μm or less or a woven fabric having a thickness of 20 μm or less is used, it does not break or break, and is very thin. It is possible to manufacture a copper foil with an insulating layer including an insulating layer including a skeleton material.
[0031]
Further, after the skeleton material is bonded, a resin constituting the second thermosetting resin layer is applied to the surface of the skeleton material to form the second thermosetting resin layer. As with the first thermosetting resin layer, an epoxy resin is generally used. However, as the resin constituting the second thermosetting resin layer, if the resin has thermosetting properties and is used for a printed wiring board in the field of electric and electronic materials, the first thermosetting resin layer is used. Similar to the cured resin layer, there is no particular limitation. As the method for forming the second thermosetting resin layer, the method for forming the first thermosetting resin layer described above can be similarly applied.
[0032]
And since this 2nd thermosetting resin layer is used as a constituent material of a multilayer printed wiring board by laminating | stacking as said circuit formation composite base material and press-molding, it must be maintained in the semi-hardened state. . The thickness of the second thermosetting resin layer may be determined in consideration of the thickness of the nonwoven fabric or woven fabric that is the skeleton material. That is, since the thickness of the first thermosetting resin layer is equal to or less than the thickness of the nonwoven fabric or the woven fabric as described above, the skeleton material is pressure-bonded to the first thermosetting resin layer, and the first thermosetting resin layer is formed. Even if the constituent resin flows, there is a high possibility that the skeleton material is not completely covered with only the resin constituting the first thermosetting resin layer. Therefore, it is necessary to form the second thermosetting resin layer as a thickness capable of completely covering at least the surface of the skeleton material. Moreover, in consideration of the case where the copper foil is directly bonded to the second thermosetting resin layer by press molding, the copper foil has a certain degree to prevent direct contact between the unevenness of the roughened surface and the nonwoven fabric or woven fabric. Thickness is necessary. Therefore, considering the case where a general electrolytic copper foil is directly laminated on the semi-cured insulating layer of the copper foil with an insulating layer according to the present invention, the thickness of the second thermosetting resin layer is set to 5.0 μm or more. It is desirable. The thickness of the second thermosetting resin layer means that the substantial thickness is 5.0 μm or more in terms of a plane.
[0033]
After forming the second thermosetting resin layer in this way, the first and second thermosetting resin layers are semi-cured to form a semi-cured insulating layer, and the semi-cured insulating layer can be peeled off. Adhere the film. When a peelable protective film is attached to the exposed semi-cured insulating layer, it can be dealt with by bringing polyethylene terephthalate, polyethylene naphthalate or the like into contact with the semi-cured insulating layer and pressing with a hot roll.
[0034]
Next, as a second method for producing a copper foil with an insulating layer according to the present invention, a cured resin layer and a semi-cured insulating layer having a nonwoven fabric or a woven skeleton material are provided on one side of the copper foil. A method for producing a copper foil with an insulating layer, wherein a cured resin layer having a predetermined thickness is formed on one side of the copper foil, a liquid thermosetting resin layer is provided on the cured resin layer, and the thermosetting resin A non-woven fabric or woven fabric to be a skeletal material is placed on the layer, and the thermosetting resin layer is impregnated into the crimped skeletal material and exuded from the skeletal material, and the thermosetting resin layer is semi-cured. In this state, a semi-cured insulating layer is formed, and a peelable protective film is attached to the semi-cured insulating layer.
[0035]
Explaining this second manufacturing method, first, a cured resin layer is formed on one side of a copper foil. Then, a liquid thermosetting resin layer is provided on the surface of the cured resin layer, and a non-woven fabric or a woven fabric serving as a skeleton material is placed on the surface of the thermosetting resin layer. Subsequently, the constituent resin component of the thermosetting resin layer is impregnated using the capillary phenomenon of any one of the glass fibers, aramid fibers, and wholly aromatic polyester fibers constituting the nonwoven fabric or woven fabric, and The copper foil with an insulating layer according to the present invention is obtained by oozing to the opposite side of the contact surface of the nonwoven fabric or woven fabric with the thermosetting resin layer and completely covering the surface of the nonwoven fabric or woven fabric. .
[0036]
In the case of this production method, in consideration of the following points, it is preferable to impregnate a non-woven fabric or a woven fabric with resin and coat with resin. The thermosetting resin layer in a liquid state generally contains a large amount of a solvent. Therefore, when the non-woven fabric or woven fabric is placed on the surface of the thermosetting resin layer in the liquid state without removing the solvent at all, and finally in the semi-cured state, the cured resin layer and the non-woven fabric or woven fabric There is a tendency that bubbles are generated in the thermosetting resin layer. Therefore, it is preferable to remove a certain amount of solvent so as to prevent generation of bubbles before placing the nonwoven fabric or woven fabric on the surface of the thermosetting resin layer. The removal of the solvent may be performed simply by air drying or by heating to a temperature range below the curing temperature.
[0037]
Removing the solvent from the resin component of the thermosetting resin layer before placing the nonwoven fabric or woven fabric is nothing but a so-called semi-cured state. Therefore, the semi-cured resin of the thermosetting resin layer is impregnated into the non-woven fabric or the woven fabric constituting the skeleton material using a capillary phenomenon, and the skeleton material and the thermosetting resin layer are further impregnated. In order to ooze out to the opposite side of the contact surface, the thermosetting resin layer is reflowed by heating below the curing temperature.
[0038]
In addition, since it is the same as that of the 1st manufacturing method demonstrated previously regarding copper foil, the cured resin layer, a nonwoven fabric or a woven fabric, a thermosetting resin, a protective film, etc., description is abbreviate | omitted.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the copper foil with an insulating layer according to the present invention will be described based on the following embodiments.
[0040]
First embodiment In the first embodiment, a method for manufacturing the copper foil with an insulating layer according to the present invention shown in FIG. 1 will be described. FIG. 1 is a schematic cross-sectional view of a copper foil with an insulating layer according to the present invention. A cured resin layer 2 is formed between an electrolytic copper foil 1 and a semi-cured insulating layer 3. Further, the semi-cured insulating layer 3 includes a skeleton material 4 inside thereof, and a protective film 5 is coated on the side opposite to the surface in contact with the cured resin layer 2.
[0041]
In FIG. 2, the manufacturing flow schematic of the copper foil with an insulating layer shown in FIG. 1 is shown. In the manufacturing method shown in FIG. 2, the case where an electrolytic copper foil having a nominal thickness of 18 μm and a surface roughness (Rz) of the roughened surface 4 bonded to the cured resin layer of 3.5 μm is used as an example. .
[0042]
First, the epoxy resin composition used for forming the cured resin layer 2 will be described. Resins constituting the cured resin layer 2 are 30 parts by weight of bisphenol A type epoxy resin (trade name: YD-128, manufactured by Tohto Kasei Co., Ltd.), o-cresol type epoxy resin (trade name: ESCN-195XL80, Sumitomo Chemical) 50 parts by weight, 16 parts by weight of dicyandiamide (4 parts by weight as dicyandiamide) in the form of a dimethylformaldehyde solution having a solid content of 25% as an epoxy resin curing agent, and 2-ethyl 4-methylimidazole (trade name) as a curing accelerator : Casol 2E4MZ (manufactured by Shikoku Kasei Co., Ltd.) 0.5 parts by weight was dissolved in a mixed solvent of methyl ethyl ketone and dimethyl formaldehyde (mixing ratio: methyl ethyl ketone / dimethyl formaldehyde = 4/6) and a solid content of 60% was used. .
[0043]
And as shown to FIG. 2 (A), the above-mentioned epoxy resin composition is uniformly apply | coated to the roughening surface of the said electrolytic copper foil 1 with a nominal thickness of 18 micrometers, and it heat-processes at 190 degreeC for 30 minutes. And fully cured. The application amount of the epoxy resin composition at this time was set to 5 μm as the thickness of the cured resin layer 2.
[0044]
Next, the epoxy resin composition used for forming the first thermosetting resin layer 6 and the second thermosetting resin layer 7 formed on the cured resin layer 2 will be described. The resin used here was the same as that constituting the cured resin layer described above. However, in order to finish it in a semi-cured state, unlike the cured resin layer 2, the curing accelerator was 0.1 parts by weight of 2-ethyl 4-methylimidazole (trade name: KAZOLE 2E4MZ, manufactured by Shikoku Kasei Co., Ltd.).
[0045]
As shown in FIG. 2 (B), the epoxy resin composition forming the first thermosetting resin layer 6 was uniformly applied to the surface of the cured resin layer 2 and left at room temperature for 30 minutes. A certain amount of solvent was removed by blasting hot air at 150 ° C. for 2 minutes using a hot air dryer, and the first thermosetting resin layer 6 was dried in a semi-cured state. The coating amount of the epoxy resin composition at this time was 40 μm as the resin thickness after drying.
[0046]
Next, as shown in FIG. 2C, an aramid fiber nonwoven fabric 7 having a nominal thickness of 50 μm, which becomes the skeleton material 4, was laminated on the first thermosetting resin layer 6. In this lamination, the nonwoven fabric 7 is overlapped on the surface of the formed first thermosetting resin layer 6 and heated to 150 ° C., and 9 kg / cm. 2 It was possible to apply a laminating pressure of 2 mm between the heating rolls 8 at a speed of 20 cm / min. As a result, the total thickness of the first thermosetting resin layer 6 and the nonwoven fabric 7 in the bonded state was 90 μm on average.
[0047]
As described above, the second thermosetting resin layer 9 was formed following the end of the bonding of the nonwoven fabric 7 (FIG. 2D). Here, the epoxy resin composition used for constituting the second thermosetting resin layer 9 was the same as that used for forming the first thermosetting resin layer.
[0048]
As shown in FIG. 2 (D), the above-mentioned epoxy resin composition is uniformly applied on the nonwoven fabric 7 bonded to the first thermosetting resin layer 6 and left at room temperature for 30 minutes. A constant amount of the solvent was removed by blowing a warm air of 150 ° C. for 3 minutes using the and the second thermosetting resin layer 9 was dried in a semi-cured state. The coating amount of the epoxy resin composition at this time was such that the total thickness of the first thermosetting resin layer 6, the nonwoven fabric 7 and the second thermosetting resin layer 9 after drying was 110 μm. The first thermosetting resin layer 6, the nonwoven fabric 7 and the second thermosetting resin layer 9 constitute the semi-cured insulating layer 3. The total insulating layer thickness was 115 μm, which is the total thickness of the cured resin layer and the semi-cured insulating layer.
[0049]
Finally, on the exposed surface of the semi-cured insulating layer 3, a thickness of 50 μm
The film made from polyethylene terephthalate was piled up, and the protective film 5 was coat | covered by crimping with a hot roll (not shown), and the copper foil with an insulating layer which concerns on this invention was manufactured.
[0050]
Then, the manufacturing method different from the said manufacturing method is demonstrated based on the manufacturing flow shown in FIG. The manufacturing method based on FIG. 3 is a method of impregnating and infiltrating the resin component of the thermosetting resin layer into a non-woven cloth as a skeleton material when forming the semi-cured insulating layer. For this reason, parts different from the manufacturing method shown in FIG. 2 will be described.
[0051]
In the manufacturing flow of FIG. 3, the process of forming the cured resin layer 2 on the roughened surface of the electrolytic copper foil 1 (FIG. 2A) and the process of forming a protective film on the semi-cured insulating layer (FIG. 2E )) Is omitted because it is the same as in FIG.
[0052]
As shown in FIG. 3 (B ′), an epoxy resin composition having the same composition as the first thermosetting resin layer is formed on the surface of the cured resin layer 2 formed on the roughened surface of the electrolytic copper foil 1. Apply uniformly in a liquid state, leave it at room temperature for 30 minutes, and use a hot air dryer to blow air at 150 ° C. for 2 minutes to remove a certain amount of solvent, and in a semi-cured state The thermosetting resin layer 60 was formed with a thickness of 30 μm.
[0053]
Next, on the semi-cured thermosetting resin layer 60, an aramid fiber non-woven fabric 7 having a nominal thickness of 30 μm and serving as the skeleton material 4 was laminated. In this lamination, the nonwoven fabric 7 is overlapped on the surface of the formed thermosetting resin layer 60 and heated to 100 ° C., and 5 kg / cm. 2 The laminating pressure was applied between the heating rolls 8 so as to be able to apply the laminating pressure at a speed of 50 cm / min to allow gentle adhesion (FIG. 3 (C ′)). At this time, the total thickness of the nonwoven fabric 7 and the thermosetting resin layer 60 was 60 μm, the resin did not ooze out from the surface of the nonwoven fabric 7, and the resin was not transferred to the heating roll 8.
[0054]
After the lamination of the nonwoven fabric 7 is completed in this manner, the thermosetting resin layer 60 is reflowed by maintaining it in an atmosphere of 150 ° C. for 1 minute using a hot air dryer, and the thermosetting resin layer. 60. The constituent resin component of 60 is impregnated by utilizing the capillary action of the aramid fiber of the nonwoven fabric 7 and is further oozed out to the opposite side of the contact surface of the nonwoven fabric 7 with the thermosetting resin layer 60, so that the surface of the nonwoven fabric 7 is completely (Fig. 3 (D ')). By this drying treatment, the thermosetting resin layer 60 and the non-woven fabric 7 constitute the semi-cured insulating layer 3, and the total thickness after drying of the thermosetting resin layer 60 and the nonwoven fabric 7 at this time is 45 μm. Met. The thermosetting resin layer 60 and the nonwoven fabric 7 constitute the semi-cured insulating layer 3. The total insulating layer thickness was 50 μm, which is the total thickness of the cured resin layer 2 and the semi-cured insulating layer 3 of 5 μm. In addition, about the coating | cover of the protective film 5, since it is the same as that of description of FIG.2 (E), it abbreviate | omits.
[0055]
Second embodiment In this second embodiment, a copper foil with an insulating layer obtained by the manufacturing method described with reference to FIG. 3 of the first embodiment (copper foil thickness 18 μm, cured resin layer thickness 5 μm, semi-cured insulating layer 45 μm) A case where a three-layer printed wiring board is formed will be described.
[0056]
FIG. 4 shows a schematic cross-sectional view of a manufacturing flow when a three-layer printed wiring board is manufactured using the above-described copper foil with an insulating layer of the present embodiment. FIG. 4A shows a copper foil 100 with an insulating layer obtained by the manufacturing method described in FIG. First, for the copper foil 100 with an insulating layer provided with the protective film 5, a predetermined circuit 101 was formed on the electrolytic copper foil 1 by using a general dry film laminating method (FIG. 4 ( b)). For this circuit formation, a cupric chloride etching solution was used, and after etching, washing and drying were performed. A circuit-forming composite base material 200 on which this circuit was formed was prepared.
[0057]
The circuit-formed surface of this circuit-forming composite substrate 200 was analyzed with an EPMA analyzer (JXA-8100 manufactured by JEOL Ltd.). As a result, no copper component was detected on the surface of the cured resin layer 2 exposed by etching the copper foil. Further, in the adhesion state between the formed circuit 101 and the cured resin layer 2, no phenomenon such as circuit peeling was confirmed, and it was confirmed that the adhesion strength was at a level causing no problem in practice. For these reasons, it was expected that no phenomenon such as migration would occur even when a multilayer printed wiring board was formed using this circuit-forming composite substrate.
[0058]
Next, as shown in FIG.4 (c), the circuit formation composite base material 210 and the copper foil 110 with an insulating layer which peeled off the protective film 5, and nominal thickness 18 micrometers, surface roughness (Rz) 3 of a roughening surface A 5 μm thick electrolytic copper foil 1 was laminated. In this case, the circuit-forming composite substrate 210 on the inner layer side and the copper foil 110 with the insulating layer on the outer layer side are the circuit-formed surface of the circuit-forming composite substrate 210 on the inner layer side and the copper foil 110 with the insulating layer. The surface of the copper foil 10 is in the same direction (upward in FIG. 4), and the roughened surface of the electrolytic copper foil 10 faces the semi-cured insulating layer 3 side of the circuit-forming composite substrate 210 on the inner layer side. The layers were laminated as follows. And the three-layer printed wiring board was manufactured by pressing (FIG.4 (d)). Pressing is performed at a pressing temperature of 180 ° C. and a pressing pressure of 20 kgf / cm. 2 It was performed under hot pressing conditions for 2 hours.
[0059]
Thereafter, a circuit is formed on the electrolytic copper foils located on both outer layers, and a carbon dioxide laser (irradiation condition: frequency 2000 Hz, mask diameter 5.0 mm, pulse width 60 μsec, pulse energy 16.0 mJ is formed on a part of the circuit forming portion. Then, laser drilling was performed using an offset of 0.8 and a laser beam diameter of 120 μm (FIG. 4E). And although illustration is abbreviate | omitted, the three-layer printed wiring board 310 which interconnected the inner layer circuit and the outer layer circuit was formed by performing a known through-hole plating process. The thickness of the obtained wiring board was 136 μm (outer layer copper foil thickness 18 μm, inner layer insulating layer thickness (50 + 50) μm, other outer layer copper foil thickness 18 μm). Here, the drilling process using a carbon dioxide laser has been described as an example, but it is naturally possible to use a YAG laser or drilling using a drill.
[0060]
Evaluation of solder heat resistance for the three-layer printed wiring board manufactured as described above
Evaluation of circuit peeling strength and wiring board bending strength were performed. The solder heat resistance evaluation was performed by immersing the substrate piece in a solder bath at 260 ° C. and measuring the time until swelling occurred by a method based on JIS C 6481. The evaluation of the circuit peeling strength is a value measured for a 0.2 mm width circuit in accordance with JIS C 6481. Moreover, the wiring board bending strength evaluation measured the bending strength of the insulating resin board for evaluation based on JISK7171. As a result, the heat resistance evaluation of the solder was measured for 600 seconds or more. The circuit peeling strength was 1.2 kgf / cm. The bending strength was 400 MPa. From this result, even if compared with the three-layer printed wiring board obtained by the conventional method, a three-layer printed wiring board that is practically inferior could be produced. And since the three-layer printed wiring board of this embodiment is what is called coreless (a core material is not required), it was cheap and high in productivity and could be manufactured. The printed wiring board manufacturing method described above can also be applied to manufacturing a multilayer printed wiring board having four or more layers.
[0061]
Third embodiment In this third embodiment, a circuit-forming composite base material having a smooth substrate shape is formed by using the copper foil with an insulating layer obtained by the manufacturing method described with reference to FIG. The case where a layer printed wiring board is formed will be described with reference to FIG.
[0062]
The copper foil 100 with an insulating layer used here is obtained by forming a cured resin layer 2 having a thickness of 15 μm on an electrolytic copper foil 1 having a thickness of 9 μm (surface roughness Rz 2.5 μm on the roughened surface). The thickness conditions of the layer, the protective film, etc. were the same as in the second embodiment. Moreover, the circuit formation composite base material formed using this copper foil with an insulating layer is the same as the method demonstrated by said 2nd embodiment, and prepared this circuit formation composite base material 200 two or more (FIG. 5 (a) (B)).
[0063]
And this circuit formation composite copper foil 200 is inserted | pinched between the stainless steel mirror plates used in the case of a press work, and it hot-presses at the temperature (about 130 degreeC) which a semi-hardened insulating layer does not harden | cure (press pressure 10kgf / cm). 2 , 30 minutes). By this pressing, the circuit 101 was embedded in the cured resin layer 2 as shown in FIG. As a result, the surface positions of the surface of the circuit 101 and the surface of the cured resin layer 2 were the same, and a circuit-forming composite base material 220 having a smooth surface was obtained. As a result of EPMA analysis on the surface of the circuit-forming composite base material 220, no copper component was detected on the exposed surface of the cured resin layer 2.
[0064]
Next, as shown in FIG. 4 (C), two circuit-forming composite base materials 230 obtained by peeling off the protective film 5 of the circuit-forming composite base material 220 in a smooth state, a surface having a nominal thickness of 9 μm and a roughened surface An electrolytic copper foil having a roughness (Rz) of 2.5 μm was laminated. In this case, the electrolytic copper foil 1 has a roughened surface on the inner layer side so that the circuit-formed composite substrate 230 on the inner layer side and the circuit-formed composite substrate 230 on the outer layer side are in the same direction. The circuit-forming composite base material 230 is laminated so as to face the semi-cured insulating layer 3 side. And the three-layer printed wiring board 320 was manufactured by pressing. Pressing is performed at a press temperature of 180 ° C. and a press pressure of 5 kgf / cm. 2 It was performed under hot pressing conditions for 2 hours.
[0065]
When the cross-section of the three-layer printed wiring board 320 thus manufactured was observed, it was found that the insulating layer thickness w1 between the circuits shown in FIG. 5E was 55 μm and w2 was 55 μm. In addition, when the insulating layer thickness between the circuits was examined at a number of locations, it was found to be 55 ± 2 μm at any position, and a very uniform insulating layer thickness was realized. Therefore, if the smooth substrate-like circuit-forming composite base material of the present embodiment is used, the insulating layer thickness between the circuits can be easily formed in an extremely uniform state, and the impedance control in the insulating layer can be accurately controlled. It will be something that can be done.
[0066]
Comparative example : Finally, as a comparison between the second and third embodiments, a case where a three-layer printed wiring board according to a conventional method is formed will be described. First, the inner core material 400 is formed on a single-sided copper-clad laminate in which an electrolytic copper foil having a thickness of 18 μm is laminated on a prepreg having a thickness of 50 μm, and a predetermined circuit 101 is formed using a general dry film laminating method. (FIG. 6A) was prepared in advance.
[0067]
A prepreg 500 having a thickness of 50 μm is disposed on both sides of the inner layer core material 400, and an electrolytic copper foil 10 having a thickness of 18 μm is further stacked on the outer side. This laminate is pressed (pressing temperature 180 ° C., pressing pressure 20 kgf / cm 2 (Hot pressing conditions for 2 hours) were performed (FIG. 6B). Subsequently, a three-layer printed wiring board 330 was manufactured by performing circuit formation on the outer layer side using a dry film laminating method (FIG. 6C).
[0068]
As can be seen from FIG. 6C, when the three-layer printed wiring board 330 is manufactured by the conventional manufacturing method, the insulating layer thicknesses w1 and w2 between the circuits are different. Therefore, some warping was recognized in the manufactured wiring board. In addition, in order to make the insulating layer thicknesses w1 and w2 between the circuits the same in this conventional manufacturing method, prepregs having different thicknesses must be laminated, particularly for manufacturing a thin three-layer printed wiring board. Should use the thinnest prepreg possible.
[0069]
When comparing the case of the three-layer printed wiring board according to the conventional manufacturing method shown in this comparative example and the case of the second and third embodiments, first, in the case of this embodiment, the impedance control is easy. It can be seen that a multilayer printed wiring board having a uniform insulating layer thickness between circuits can be realized. And in the case of this embodiment, since a multilayer printed wiring board can be formed corelessly, cheap and high productivity can be implement | achieved. Furthermore, in the case of this embodiment, it is possible to manufacture a multilayer printed wiring board by batch press processing only by preparing a circuit-forming composite substrate on which circuit formation has been performed in advance, so that the number of presses can be greatly reduced. Thus, since there is an advantage of easy handling, the work efficiency can be greatly improved at the same time.
[0070]
【The invention's effect】
As described above, according to the copper foil with an insulating layer according to the present invention, the number of presses when manufacturing a multilayer printed wiring board is greatly reduced, and the handling is easy, and the multilayer printed wiring is high in production efficiency. A board can be manufactured. In addition, since the thickness of the insulating layer can be easily adjusted, a thin multilayer printed wiring board can be easily manufactured, and the thickness of the insulating layer between circuits of the obtained multilayer printed wiring board can be made extremely uniform, thereby controlling the impedance. Can be done accurately.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a copper foil with an insulating layer according to the present invention.
FIG. 2 is a schematic diagram showing a manufacturing flow of a copper foil with an insulating layer according to the present invention.
FIG. 3 is a schematic diagram showing a part of a manufacturing flow of a copper foil with an insulating layer according to the present invention.
FIG. 4 is a schematic diagram showing a manufacturing flow of a three-layer printed wiring board according to the second embodiment.
FIG. 5 is a schematic diagram showing a manufacturing flow of a three-layer printed wiring board according to the third embodiment.
FIG. 6 is a schematic diagram showing a manufacturing flow of a three-layer printed wiring board by a conventional manufacturing method.
[Explanation of symbols]
1 Electrolytic copper foil
2 Cured resin layer
3 Semi-cured insulation layer
4 Skeletal material
5 Protective film
6 First thermosetting resin layer
7 Nonwoven fabric (or woven fabric)
8 Crimp roll
9 Second thermosetting resin layer
100 Copper foil with insulation layer
101 circuit
200 Circuit-forming composite substrate
300 Three-layer printed wiring board
400 Inner core material
500 prepreg

Claims (4)

銅箔の片面に、硬化済み樹脂層と、不織布または織布の骨格材を有する半硬化絶縁層とを備える絶縁層付き銅箔の製造方法であって、
銅箔の片面に、所定厚みの硬化済み樹脂層を形成し、
該硬化済み樹脂層へ第一熱硬化性樹脂層を設け、当該第一熱硬化性樹脂層に、骨格材となる不織布または織布を圧着し、
圧着した骨格材表面に第二熱硬化性樹脂層を形成し、
第一及び第二熱硬化樹脂層を半硬化状態にして半硬化絶縁層を形成し、該半硬化絶縁層に引き剥がし可能な保護フィルムを付着することを特徴とする絶縁層付き銅箔の製造方法。
A method for producing a copper foil with an insulating layer comprising a cured resin layer and a semi-cured insulating layer having a nonwoven fabric or a woven fabric skeleton material on one side of the copper foil,
Form a cured resin layer with a predetermined thickness on one side of the copper foil,
A first thermosetting resin layer is provided on the cured resin layer, and a non-woven fabric or a woven fabric serving as a skeleton material is pressure-bonded to the first thermosetting resin layer,
Form a second thermosetting resin layer on the surface of the skeleton material that has been crimped,
A first and second thermosetting resin layers are semi-cured to form a semi-cured insulating layer, and a peelable protective film is attached to the semi-cured insulating layer. Method.
銅箔の片面に、硬化済み樹脂層と、不織布または織布の骨格材を有する半硬化絶縁層とを備える絶縁層付き銅箔の製造方法であって、
銅箔の片面に、所定厚みの硬化済み樹脂層を形成し、
該硬化済み樹脂層へ液状の熱硬化性樹脂層を設け、該熱硬化性樹脂層に骨格材となる不織布または織布を載置して、当該熱硬化性樹脂層の構成樹脂を圧着した骨格材に含浸させて骨格材から滲み出させて、
該熱硬化樹脂層を半硬化状態にして半硬化絶縁層を形成し、該半硬化絶縁層に引き剥がし可能な保護フィルムを付着することを特徴とする絶縁層付き銅箔の製造方法。
A method for producing a copper foil with an insulating layer comprising a cured resin layer and a semi-cured insulating layer having a nonwoven fabric or a woven fabric skeleton material on one side of the copper foil,
Form a cured resin layer with a predetermined thickness on one side of the copper foil,
A skeleton obtained by providing a liquid thermosetting resin layer on the cured resin layer, placing a nonwoven fabric or a woven fabric as a skeleton material on the thermosetting resin layer, and press-bonding the constituent resin of the thermosetting resin layer Impregnate the material and let it exude from the skeletal material,
A method for producing a copper foil with an insulating layer, wherein the thermosetting resin layer is made into a semi-cured state, a semi-cured insulating layer is formed, and a peelable protective film is attached to the semi-cured insulating layer.
硬化済みの樹脂層は銅箔の回路形成時のエッチングに対して耐食性を有する樹脂硬化物である請求項1または請求項2に記載の絶縁層付き銅箔の製造方法。 The method for producing a copper foil with an insulating layer according to claim 1 , wherein the cured resin layer is a cured resin having corrosion resistance against etching during circuit formation of the copper foil. 硬化済み樹脂層の厚さは、1〜50μmである請求項1〜請求項3いずれかに記載の絶縁層付き銅箔の製造法。 The method for producing a copper foil with an insulating layer according to any one of claims 1 to 3 , wherein the thickness of the cured resin layer is 1 to 50 µm .
JP2003148162A 2003-05-26 2003-05-26 Method for producing copper foil with insulating layer Expired - Fee Related JP4286060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148162A JP4286060B2 (en) 2003-05-26 2003-05-26 Method for producing copper foil with insulating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148162A JP4286060B2 (en) 2003-05-26 2003-05-26 Method for producing copper foil with insulating layer

Publications (2)

Publication Number Publication Date
JP2004349654A JP2004349654A (en) 2004-12-09
JP4286060B2 true JP4286060B2 (en) 2009-06-24

Family

ID=33534481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148162A Expired - Fee Related JP4286060B2 (en) 2003-05-26 2003-05-26 Method for producing copper foil with insulating layer

Country Status (1)

Country Link
JP (1) JP4286060B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3046400A2 (en) 2015-01-16 2016-07-20 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3048864A2 (en) 2015-01-21 2016-07-27 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
EP3054751A2 (en) 2015-02-06 2016-08-10 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
EP3232747A1 (en) 2016-04-15 2017-10-18 JX Nippon Mining & Metals Corp. Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258697A (en) * 2006-02-27 2007-10-04 Nippon Steel Chem Co Ltd Method of manufacturing multilayer printed wiring board
JP5636159B2 (en) * 2007-12-28 2014-12-03 三井金属鉱業株式会社 Copper foil with resin and method for producing copper foil with resin
WO2009084533A1 (en) * 2007-12-28 2009-07-09 Mitsui Mining & Smelting Co., Ltd. Copper foil with resin and process for producing copper foil with resin
TWI611922B (en) * 2008-03-25 2018-01-21 Ajinomoto Co., Inc. Insulating resin sheet and method of manufacturing multilayer printed circuit board using the same
JP5291553B2 (en) * 2009-07-02 2013-09-18 三井金属鉱業株式会社 Copper foil with composite resin layer, method for producing copper foil with composite resin layer, flexible double-sided copper-clad laminate and method for producing three-dimensional molded printed wiring board
US9955583B2 (en) 2013-07-23 2018-04-24 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
KR101909352B1 (en) 2013-07-24 2018-10-17 제이엑스금속주식회사 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
CN113950204B (en) * 2020-07-16 2024-04-12 深南电路股份有限公司 Manufacturing method of prefabricated circuit board and prefabricated circuit board
CN114727497A (en) * 2022-04-26 2022-07-08 马鞍山海尊电子科技有限公司 Printing process of circuit board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3046400A2 (en) 2015-01-16 2016-07-20 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3048864A2 (en) 2015-01-21 2016-07-27 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
EP3054751A2 (en) 2015-02-06 2016-08-10 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
US9839124B2 (en) 2015-02-06 2017-12-05 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
EP3232747A1 (en) 2016-04-15 2017-10-18 JX Nippon Mining & Metals Corp. Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device

Also Published As

Publication number Publication date
JP2004349654A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP5816239B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP4025177B2 (en) Method for producing copper foil with insulating layer
JP5251866B2 (en) Laminate production method and laminate
JP4286060B2 (en) Method for producing copper foil with insulating layer
JP2003249739A (en) Method of manufacturing prepreg, prepreg obtained with the same method, method of manufacturing copper foil with insulation layer, and copper foil with insulation layer manufactured with the same method
WO2014034112A1 (en) Exfoliable copper foil attached substrate and circuit board producing method
WO2002034023A1 (en) Circuit forming board producing method, circuit forming board, and material for circuit forming board
TW517504B (en) Circuit board and a method of manufacturing the same
JP4992514B2 (en) Method for manufacturing printed wiring board
JP5018181B2 (en) Manufacturing method of multilayer printed wiring board
JPH07106728A (en) Rigid-flexible printed wiring board and manufacture thereof
JPH03239390A (en) Metal cored board and manufacture thereof
JPH1126938A (en) Manufacture of laminated board with inner layer circuit
JP2002124762A (en) Production method for multilayered printed wiring board
JP2004072071A (en) Method of manufacturing multilayer wiring board, and multilayer wiring board
JP2010194930A (en) Method of manufacturing supporting material with insulating layer, supporting material with insulating layer, printed wiring board, and method of manufacturing supporting material with insulating layer
JP3154350B2 (en) Printed wiring board and its manufacturing method
JP2004179202A (en) Multilayered printed board and insulating sheet with metal foil for manufacturing the same
JP3092117B2 (en) Printed wiring board and its manufacturing method
JP2001203453A (en) Manufacturing method for multilayer laminated board
JP2001230550A (en) Method for manufacturing multil ayer printed wiring board circuit substrate
JP2003023222A (en) Printed circuit board
JPH10337785A (en) Manufacture of laminate
JPH11238965A (en) Manufacture of multilayered printed wiring board
JPH06338663A (en) Rigid-flex printed wiring board and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060518

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080904

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080908

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081007

A521 Written amendment

Effective date: 20081105

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120403

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees