JPH0219989B2 - - Google Patents
Info
- Publication number
- JPH0219989B2 JPH0219989B2 JP9665282A JP9665282A JPH0219989B2 JP H0219989 B2 JPH0219989 B2 JP H0219989B2 JP 9665282 A JP9665282 A JP 9665282A JP 9665282 A JP9665282 A JP 9665282A JP H0219989 B2 JPH0219989 B2 JP H0219989B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- electrically insulating
- synthetic resin
- insulating substrate
- electrical insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000758 substrate Substances 0.000 claims description 22
- 239000011521 glass Substances 0.000 claims description 20
- 239000004744 fabric Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 229920003002 synthetic resin Polymers 0.000 claims description 15
- 239000000057 synthetic resin Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 description 11
- 229920000647 polyepoxide Polymers 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009503 electrostatic coating Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 101000601394 Homo sapiens Neuroendocrine convertase 2 Proteins 0.000 description 1
- 102100037732 Neuroendocrine convertase 2 Human genes 0.000 description 1
- -1 SiC Chemical class 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
- Insulating Bodies (AREA)
Description
この発明は、熱放散性、耐電圧特性、および機
械加工性の向上を目的とした電気絶縁基板に関す
るものである。
従来、発熱を伴う部品を含む回路基板や、折り
曲げ加工もしくは絞り加工を必要とする電気絶縁
基板としては、アルミニウム板や鉄板のような金
属板に、表面処理後合成樹脂系の接着絶縁層を設
けて、銅箔等の属属箔を加熱加圧して貼り合わせ
た基板が使われている。しかし、このような回路
基板は、加熱加圧によつて一体化するときに、合
成樹脂が流出することがあつて、絶縁層の膜厚が
不均一になりやすく、その結果、耐熱圧特性の信
頼性が著しく低下するという欠点があり、また、
アルミニウム板の表面をアルマイト処理したもの
は、加熱時に亀裂が入りやすいという欠点がある
ため、電気絶縁基板としての信頼性はきわめて小
さい。そこで、このような欠点を改善する目的か
ら、合成樹脂による電気絶縁層にガラス繊維の織
布もしくは不織布のようなガラス基材を介在させ
た回路基板が開発されたが、この種の回路基板は
絶縁層の亀裂発生や絶縁層の不均一性は改善され
るものの絶縁層に気泡が存在しやすく、耐電圧特
性の信頼性は決して良いとは言えず、この信頼性
を高めるためには、絶縁層を著しく厚くしなけれ
ばならない。ところが、この種電気絶縁基板にお
いては、熱放散性の点からは薄肉の絶縁層が望ま
しいことは当然であり、また、ガラス基材が金属
板に直接接触しているようなときには、折り曲げ
加工、絞り加工等によつて、ガラス基材が折損し
たり、絶縁層に亀裂が発生して、結局、絶縁基板
の信頼性を低下させることになる。
この発明は、このような現状に着目してなされ
たものであり、金層板の少なくとも片面に粉体塗
装法によつて合成樹脂系の電気絶縁層を形成し、
この上にガラス紙布を介した合成樹脂系の電気絶
縁層を形成したことを特徴とする電気絶縁基板、
および、この電気絶縁基板上にさらに電気導体層
を形成したことを特徴とする電気絶縁基板を提供
するものである。以下にその詳細を述べる。
まず、この発明に用いられる金層板は、通常、
アルミニウム板、鉄板もしくはステンレス鋼板で
あり、これら金属板の表面を、機械的、化学的も
しくは電気化学的処理によつて清浄にする。つぎ
に、この金属板表面に塗布される合成樹脂として
は、エポキシ樹脂、ポリエステル樹脂等の熱硬化
性樹脂を例示することができるが、これら樹脂の
塗布は一般に粉体静電塗装法が採用される。静電
塗装後金属板は乾燥炉によつて通常120〜250℃、
5〜60分間加熱され、金属板表面に合成樹脂系電
気絶縁層が形成される。この電気絶縁層の熱伝導
率を向上させるために、Al2O3、BeO、SiO2等の
金属酸化物、BN、AlN、Si3N4等の金属窒化物、
さらにはSiC等の金属炭化物を混入するとよく、
機械的強度、機械加工性および電気特性を向上さ
せるためには、雲母族化合物を混入させると大き
い効果が得られる。
このようにして形成された電気絶縁層の厚さ
は、30〜300μmが好ましい。なぜならば、30μm
よりも薄いと耐電圧特性の信頼性が低下するおそ
れがあるからであり、300μmより厚くなると絶
縁層の機械的または熱的強度を低下させるおそれ
があるからである。さらに耐電圧特性を向上させ
るためには、同一厚さの電気絶縁層を形成するに
当つても、複数の工程によつて複数層の積層とす
ることが望ましく、たとえば、100μm厚の電気
絶縁層を得ようとするときには、100μm厚の層
を1回の塗装で形成するよりは、50μmの層を2
回にわたつて形成して合計100μm厚の層とする
方が遥かに良い。
つぎに以上のような方法によつて形成された絶
縁層の上に、ガラス紙布を介在させた合成樹脂系
の電気絶縁層を形成するが、ここで使用される合
成樹脂はエポキシ樹脂、ポリエステル樹脂、フエ
ノール樹脂等の熱硬化性樹脂が好ましく、また、
ガラス紙布は厚さ30〜180μmのものが一般的で
あり、ガラス織布のときは平織り、朱子織りのい
ずれでもよい。このようなガラス紙布に合成樹脂
を塗工するには、スプレー法、浸漬法等も採用で
きるが、電気絶縁用積層板を製造する際に従来使
用されている塗布機を用いて塗布し、加熱乾燥し
てプリプレグを作り、粉体塗装法によつて形成さ
れた電気絶縁層と重ね合わせた後、加熱加圧して
複合された電気絶縁層を形成することができる。
また、必要に応じて、銅箔等の金属箔を同時に重
ね合わせ、導体を形成してもよく、電気絶縁層を
形成した後、アデイテイブ法などによつて導体層
を形成することもできる。
このようにして、この発明による電気絶縁基板
を得ることができるが、この絶縁基板は、金属板
表面にまず粉体塗装によつて電気絶縁層を形成す
るため、ガラス紙布を介した電気絶縁層のみを形
成したものに比べて、耐電圧特性を低下させる要
因となる気泡の発生、混入が著しく減少し、しか
も、塗工方法が粉体塗装のため、絶縁層の膜厚を
任意に調整することができ、必要に応じて重ね塗
りも可能である。その上、この絶縁層上にガラス
紙布を介した合成樹脂系の電気絶縁層を形成する
ため、電気絶縁層の機械的強度および信頼性を高
めることもできる。なお、この発明の電気絶縁層
の形状から明らかなように、ガラス紙布が直接金
属板に接触していないため、折り曲げ加工や絞り
加工等も容易にできるという利点があり、この発
明の意義はきわめて大きい。
以下に実施例および比較例を示す。
実施例 1
表面を化学処理した1.5mm厚のアルミニウム板
の片面に、エポキシ樹脂系の粉体塗装を行ない、
180℃、30分間焼付け硬化した。このとき形成さ
れた絶縁層の厚みは100μmであつた。つぎにこ
の絶縁層の上にエポキシ樹脂を含浸した70μmの
ガラス布のプリプレグを3層重ね合わせ、160℃、
30分間加熱加圧して電気絶縁基板を得た。なお、
得られた絶縁層の厚さは顕微鏡による実測値であ
り、被壊電圧および折り曲げ(90°)加工性の特
性の測定結果は表にまとめた。
The present invention relates to an electrically insulating substrate aimed at improving heat dissipation properties, voltage resistance characteristics, and machinability. Conventionally, for circuit boards that include parts that generate heat, or electrically insulating boards that require bending or drawing, a synthetic resin-based adhesive insulating layer is applied to a metal plate such as an aluminum plate or iron plate after surface treatment. For this purpose, a substrate made by bonding metal foils such as copper foils together under heat and pressure is used. However, when such circuit boards are integrated by heating and pressurizing, the synthetic resin may flow out and the thickness of the insulating layer tends to be uneven, resulting in poor heat and pressure resistance characteristics. It has the disadvantage of significantly decreasing reliability, and
An aluminum plate whose surface is alumite-treated has the disadvantage that it tends to crack when heated, so its reliability as an electrically insulating substrate is extremely low. Therefore, in order to improve these shortcomings, a circuit board was developed in which a glass base material such as woven or non-woven glass fiber was interposed between an electrically insulating layer made of synthetic resin, but this type of circuit board Although cracks in the insulating layer and non-uniformity of the insulating layer can be improved, bubbles are likely to exist in the insulating layer, and the reliability of the withstand voltage characteristics cannot be said to be good. The layer must be significantly thicker. However, in this type of electrically insulating substrate, it is natural that a thin insulating layer is desirable from the point of view of heat dissipation, and when the glass substrate is in direct contact with a metal plate, bending, Due to the drawing process or the like, the glass base material may break or cracks may occur in the insulating layer, resulting in a decrease in the reliability of the insulating substrate. This invention was made in view of the current situation, and includes forming a synthetic resin electrically insulating layer on at least one side of a gold plate by powder coating,
An electrically insulating substrate, characterized in that a synthetic resin-based electrically insulating layer is formed on the glass paper cloth,
The present invention also provides an electrically insulating substrate characterized in that an electrically conductive layer is further formed on the electrically insulating substrate. The details are described below. First, the gold plate used in this invention is usually
These are aluminum plates, iron plates, or stainless steel plates, and the surfaces of these metal plates are cleaned by mechanical, chemical, or electrochemical treatment. Next, examples of the synthetic resin applied to the surface of the metal plate include thermosetting resins such as epoxy resin and polyester resin, but powder electrostatic coating is generally used to apply these resins. Ru. After electrostatic coating, the metal plate is usually heated to 120 to 250℃ in a drying oven.
The metal plate is heated for 5 to 60 minutes to form a synthetic resin electrical insulation layer on the surface of the metal plate. In order to improve the thermal conductivity of this electrical insulating layer, metal oxides such as Al 2 O 3 , BeO, SiO 2 , metal nitrides such as BN, AlN, Si 3 N 4 , etc.
Furthermore, it is better to mix metal carbides such as SiC,
In order to improve the mechanical strength, machinability, and electrical properties, a great effect can be obtained by incorporating a mica group compound. The thickness of the electrically insulating layer thus formed is preferably 30 to 300 μm. Because 30μm
This is because if the thickness is thinner than 300 μm, the reliability of the withstand voltage characteristics may decrease, and if it is thicker than 300 μm, the mechanical or thermal strength of the insulating layer may decrease. In order to further improve the withstand voltage characteristics, it is desirable to laminate multiple layers through multiple steps even when forming electrical insulating layers of the same thickness. For example, a 100 μm thick electrical insulating layer When trying to obtain
It is much better to form the layer in layers to give a total layer thickness of 100 μm. Next, on the insulating layer formed by the above method, a synthetic resin electrical insulating layer with glass paper cloth interposed is formed.The synthetic resin used here is epoxy resin, polyester, etc. Thermosetting resins such as resins and phenolic resins are preferred, and
Glass paper cloth generally has a thickness of 30 to 180 μm, and woven glass cloth may be either plain weave or satin weave. Spraying, dipping, etc. can be used to coat such glass paper cloth with synthetic resin, but it is preferable to apply it using a coating machine that is conventionally used when manufacturing electrically insulating laminates. A prepreg is produced by heating and drying, and after being laminated with an electrically insulating layer formed by a powder coating method, a composite electrically insulating layer can be formed by heating and pressing.
Furthermore, if necessary, a conductor may be formed by simultaneously overlapping metal foils such as copper foil, or a conductor layer may be formed by an additive method or the like after forming an electrically insulating layer. In this way, an electrically insulating substrate according to the present invention can be obtained, but since an electrically insulating layer is first formed on the surface of a metal plate by powder coating, the electrically insulating substrate is coated with a glass paper cloth. Compared to a product with only a layer formed, the generation and inclusion of air bubbles, which can cause a decrease in voltage resistance properties, is significantly reduced.Furthermore, since the coating method is powder coating, the thickness of the insulating layer can be adjusted as desired. It can be coated over and over again if necessary. Furthermore, since a synthetic resin-based electrical insulating layer is formed on this insulating layer via a glass paper cloth, the mechanical strength and reliability of the electrical insulating layer can be improved. Furthermore, as is clear from the shape of the electrical insulating layer of this invention, since the glass paper cloth is not in direct contact with the metal plate, it has the advantage that it can be easily bent, drawn, etc., and the significance of this invention is as follows. Extremely large. Examples and comparative examples are shown below. Example 1 Epoxy resin powder coating was applied to one side of a 1.5 mm thick aluminum plate whose surface had been chemically treated.
It was baked and hardened at 180°C for 30 minutes. The thickness of the insulating layer formed at this time was 100 μm. Next, three layers of 70μm glass cloth prepreg impregnated with epoxy resin were superimposed on this insulating layer, and heated at 160℃.
An electrically insulating substrate was obtained by heating and pressurizing for 30 minutes. In addition,
The thickness of the obtained insulating layer was an actual value measured using a microscope, and the measurement results of breakdown voltage and bending (90°) workability characteristics are summarized in the table.
【表】
実施例 2
表面を機械研摩した厚さ1.0mmの鉄板(SPC2)
の両面にエポキシ樹脂系の粉体塗装を行ない、
180℃、15分間焼付けを硬化した。このとき形成
された電気絶縁層の厚みは100μmであつた。つ
ぎに、この絶縁層の片面にエポキシ樹脂を含浸し
た100μmのガラス布を1枚乗せ、さらにこの上
に35μmの銅箔を置いて、160℃、30分間加熱加
圧して電気絶縁基板を得た。得られた絶縁基板に
ついて、実施例1と同様に諸性質を測定し、その
結果を表に併記した。
実施例 3
表面を化学処理した厚さ2mmのアルミニウム板
の片面にエポキシ樹脂系の粉体塗装を行ない、
180℃、30分間焼付け硬化した。このとき絶縁層
の厚みは70μmであつた。つぎにこの絶縁層の上
に、エポキシ樹脂を含浸した70μmのガラス布を
2枚重ね合わせ、160℃、30分間加熱加圧して電
気絶縁基板を得た。得られた絶縁基板について、
実施例1と同様に諸性質を測定し、その結果を表
に併記した。
比較例 1
表面を化学処理した厚さ1.5mmのアルミニウム
板の片面に、エポキシ樹脂を含浸した70μmのガ
ラス布のプリプレグを8枚重ね合わせ、160℃、
30分間加熱加圧して、電気絶縁基板を得た。得ら
れた絶縁基板について、実施例1と同様に諸性質
を測定し、その結果を表に併記した。
比較例 2
表面を機械研摩した厚さ1mmの鉄板(SRC2)
の両面に、エポキシ樹脂を含浸した100μmのガ
ラス布のプリプレグを片面に1枚、他の面に2枚
を重ね合わせて、さらに35μmの銅箔を置いて、
160℃、30分間加熱加圧して電気絶縁基板を得た。
この絶縁基板について、実施例1と同様に諸性質
を測定し、その結果を表に併記した。
比較例 3
表面を化学処理した厚さ2mmのアルミニウム板
の片面に、エポキシ樹脂を含浸した70μmのガラ
ス布のプリプレグを3枚重ね合せ、160℃、30分
間加熱して電気絶縁基板を得た。この絶縁基板に
ついて実施例1と同様に諸性質を測定し、その結
果を表に併記した。
以下、表から明らかなように、この発明による
電気絶縁板は、耐電圧特性が優れ、かつ、折り曲
げ加工性も優れていることが認められた。[Table] Example 2 1.0mm thick iron plate with mechanically polished surface (SPC2)
Epoxy resin powder coating is applied to both sides of the
Cured by baking at 180℃ for 15 minutes. The thickness of the electrically insulating layer formed at this time was 100 μm. Next, a sheet of 100 μm glass cloth impregnated with epoxy resin was placed on one side of this insulating layer, and a 35 μm copper foil was further placed on top of this and heated and pressed at 160°C for 30 minutes to obtain an electrically insulating board. . Various properties of the obtained insulating substrate were measured in the same manner as in Example 1, and the results are also listed in the table. Example 3 Epoxy resin powder coating was applied to one side of a 2 mm thick aluminum plate whose surface had been chemically treated.
It was baked and hardened at 180°C for 30 minutes. At this time, the thickness of the insulating layer was 70 μm. Next, two sheets of 70 μm glass cloth impregnated with epoxy resin were placed on top of this insulating layer, and heated and pressed at 160° C. for 30 minutes to obtain an electrically insulating substrate. Regarding the obtained insulating substrate,
Various properties were measured in the same manner as in Example 1, and the results are also listed in the table. Comparative Example 1 Eight sheets of 70 μm glass cloth prepreg impregnated with epoxy resin were stacked on one side of a 1.5 mm thick aluminum plate whose surface had been chemically treated, and heated at 160°C.
Heat and pressure was applied for 30 minutes to obtain an electrically insulating substrate. Various properties of the obtained insulating substrate were measured in the same manner as in Example 1, and the results are also listed in the table. Comparative example 2 1mm thick iron plate with mechanically polished surface (SRC2)
100μm glass cloth prepreg impregnated with epoxy resin was placed on both sides, one sheet on one side and two sheets on the other side, and then a 35μm copper foil was placed on top.
An electrically insulating substrate was obtained by heating and pressing at 160°C for 30 minutes.
Regarding this insulating substrate, various properties were measured in the same manner as in Example 1, and the results are also listed in the table. Comparative Example 3 Three sheets of 70 μm glass cloth prepreg impregnated with epoxy resin were superimposed on one side of a 2 mm thick aluminum plate whose surface had been chemically treated, and heated at 160° C. for 30 minutes to obtain an electrically insulating substrate. Various properties of this insulating substrate were measured in the same manner as in Example 1, and the results are also shown in the table. As is clear from the table below, the electrical insulating plate according to the present invention was found to have excellent withstand voltage characteristics and excellent bending workability.
Claims (1)
て合成樹脂系の電気絶縁層を形成し、さらにこの
上にガラス紙布を介した合成樹脂系の電気絶縁層
を形成したことを特徴とする電気絶縁基板。 2 金属板の少なくとも片面に粉体塗装法によつ
て合成樹脂系の電気絶縁層を形成し、この上にガ
ラス紙布を介した合成樹脂系の電気絶縁層を形成
し、さらにこの上に電気導体層を形成したことを
特徴とする電気絶縁基板。[Scope of Claims] 1. A synthetic resin-based electrical insulating layer is formed on at least one side of a metal plate by a powder coating method, and a synthetic resin-based electrical insulating layer is further formed on this using a glass paper cloth. An electrically insulating board characterized by: 2. A synthetic resin electrical insulating layer is formed on at least one side of the metal plate by powder coating, a synthetic resin electrical insulating layer is formed on this using glass paper cloth, and an electrical insulating layer is formed on top of this using a glass paper cloth. An electrically insulating substrate characterized by forming a conductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9665282A JPS58213493A (en) | 1982-06-04 | 1982-06-04 | Electrically insulating board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9665282A JPS58213493A (en) | 1982-06-04 | 1982-06-04 | Electrically insulating board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58213493A JPS58213493A (en) | 1983-12-12 |
JPH0219989B2 true JPH0219989B2 (en) | 1990-05-07 |
Family
ID=14170757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9665282A Granted JPS58213493A (en) | 1982-06-04 | 1982-06-04 | Electrically insulating board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58213493A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0793068B2 (en) * | 1984-09-06 | 1995-10-09 | 鐘淵化学工業株式会社 | Highly insulating substrate manufacturing method |
JPS6173141U (en) * | 1984-10-19 | 1986-05-17 | ||
JP6027941B2 (en) * | 2013-05-14 | 2016-11-16 | 株式会社ノリタケカンパニーリミテド | Metal bonding parts and metal bonding materials |
-
1982
- 1982-06-04 JP JP9665282A patent/JPS58213493A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58213493A (en) | 1983-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0574457B2 (en) | ||
JPH0219989B2 (en) | ||
CN210579458U (en) | Metal-based copper-clad laminate | |
JPH05291711A (en) | Board for high-frequency circuit use | |
JP2000013024A (en) | Manufacture of multilayer board and plate for multilayer board manufacture | |
JP3001400B2 (en) | High frequency printed wiring board and method of manufacturing the same | |
JPH0521957A (en) | Multilayered copper-clad board | |
JP3299501B2 (en) | Laminate molding plate and laminate | |
JPH0584214B2 (en) | ||
JP3275782B2 (en) | Manufacturing method of laminated board | |
JPS62295930A (en) | Preparation of laminated sheet | |
JPH02130146A (en) | Electrical laminate | |
JPH0334677B2 (en) | ||
JPS61118245A (en) | Copper lined laminated board | |
JPS6021593A (en) | Method of producing laminated board | |
JPS60214953A (en) | Metallic base printed wiring substrate | |
JPS63166533A (en) | Manufacture of metallic core metal-clad laminated board | |
JPH0564877B2 (en) | ||
JPH05152741A (en) | Manufacture of metal foil clad ceramic board | |
JPH01268188A (en) | Manufacture of metal base board | |
JPH07245457A (en) | Metal wiring board and its manufacture | |
JPS6137100B2 (en) | ||
JPS6256583A (en) | Copper foil and laminated plate using it | |
JPH10235796A (en) | Production of laminate | |
JPH0339245A (en) | Laminated sheet for electric apparatus |