JPS58213493A - Electrically insulating board - Google Patents

Electrically insulating board

Info

Publication number
JPS58213493A
JPS58213493A JP9665282A JP9665282A JPS58213493A JP S58213493 A JPS58213493 A JP S58213493A JP 9665282 A JP9665282 A JP 9665282A JP 9665282 A JP9665282 A JP 9665282A JP S58213493 A JPS58213493 A JP S58213493A
Authority
JP
Japan
Prior art keywords
insulating layer
electrically insulating
synthetic resin
insulating substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9665282A
Other languages
Japanese (ja)
Other versions
JPH0219989B2 (en
Inventor
新田 克典
中浜 寛和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Risho Kogyo Co Ltd
Original Assignee
Risho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Risho Kogyo Co Ltd filed Critical Risho Kogyo Co Ltd
Priority to JP9665282A priority Critical patent/JPS58213493A/en
Publication of JPS58213493A publication Critical patent/JPS58213493A/en
Publication of JPH0219989B2 publication Critical patent/JPH0219989B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Insulating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、熱放散性、耐電圧特性、および機械加工性
の向りを目的とした電気絶縁基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrically insulating substrates intended for heat dissipation, voltage withstand properties, and machinability.

従来、発熱を伴う部品を含む回路基板や、折り曲げ加工
もしくは絞り加工を必要とする電気絶縁基板としては、
アルミニウム板や鉄板のような金属板に、表面処理後合
成樹脂系の接着絶縁層を設けて、銅箔等の金属箔萎加熱
加圧して貼り合わせた基板が使われている。しかし、こ
のような回路基板は、加熱加圧によって一体化するとき
に、合成樹脂が流出することがあって、絶縁層の膜厚が
不均一になりやすく、その結果、耐熱圧特性の信頼性が
著しく低下するという欠点があり、また、アルミニウム
板の表面をアルマイト処理したものは、加熱時に亀裂が
入りやすいという欠点があるため、電気絶縁基板として
″の信頼性はきわめて小さい。そこで、このような欠点
を改善する目的から、合成樹脂による電気絶縁層にガラ
ス繊維の織布もしくは不織布のようなガラス基材を介在
させた回路基板が開発されたが、この種の回路基板は絶
縁層の亀裂発生や絶縁層の不均一性は改善されるものの
絶縁層に気泡が存在しやすく、耐電圧時。
Conventionally, circuit boards that include parts that generate heat, and electrically insulating boards that require bending or drawing processing,
The substrate used is a metal plate such as an aluminum plate or a steel plate, after surface treatment, a synthetic resin-based adhesive insulating layer is provided, and a metal foil such as copper foil is bonded by heat and pressure. However, when such circuit boards are integrated by heating and pressurizing, the synthetic resin may flow out and the thickness of the insulating layer tends to be uneven, resulting in a decrease in the reliability of the heat and pressure resistance characteristics. This has the disadvantage that the surface of the aluminum plate is significantly reduced, and the aluminum plate surface treated with alumite tends to crack when heated. Therefore, the reliability of `` as an electrically insulating substrate is extremely low. In order to improve these shortcomings, a circuit board has been developed in which a glass base material such as woven or non-woven glass fiber is interposed between an electrically insulating layer made of synthetic resin. Although the generation and non-uniformity of the insulating layer are improved, bubbles tend to exist in the insulating layer, and when the voltage withstands.

性の信頼性は決して良いとは言えず、この信頼性を高め
るためには、絶縁層を著しく厚くしなければならない。
It cannot be said that the electrical reliability is good, and in order to improve this reliability, the insulating layer must be made significantly thicker.

ところが、この種電気絶縁基板においては、熱放散性の
点からは薄肉の絶縁層が望ましいことは当然であり、ま
た、ガラス基材が金属板に直接接触しているようなとき
には、折り曲げ加工、絞り加工等によって、ガラス基材
が折損したり、絶縁層に亀裂が発生して、結局、絶縁基
板の信頼性を低下させることになる。
However, in this type of electrically insulating substrate, it is natural that a thin insulating layer is desirable from the point of view of heat dissipation, and when the glass substrate is in direct contact with a metal plate, bending, Due to the drawing process or the like, the glass base material may break or cracks may occur in the insulating layer, resulting in a decrease in the reliability of the insulating substrate.

この発明は、このような現状に着目してなされたもので
あり、金属板の少なくとも片面に粉体塗装法によって合
成樹脂系の電気絶縁層を形成し、この上にガラス紙布を
介した合成樹脂系の電気絶縁層を形成したことを特徴と
する電気絶縁基板、および、この電気絶縁基板上にさら
に電気導体層を形成したことを特徴とする電気絶縁基板
を提供するものである。以下にその詳細を述べる。
This invention was made in view of the current situation, and consists of forming a synthetic resin electric insulating layer on at least one side of a metal plate using a powder coating method, and applying a synthetic resin layer on top of this using a glass paper cloth. The present invention provides an electrically insulating substrate characterized by forming a resin-based electrically insulating layer, and an electrically insulating substrate characterized by further forming an electrically conductive layer on the electrically insulating substrate. The details are described below.

まず、この発明に用いられる金層板は、通常、アルミニ
ウム板、鉄板もしくはステンレス鋼板であり、これら金
属板の表面を、機械的、化学的もしくは電気化学的処理
によって清浄にする。つぎに、この金属板表面に塗布さ
れる合成樹脂としては、エポキシ樹脂、ポリエステル樹
脂等の熱硬化性樹脂を例示することができる“が、これ
ら樹脂の塗布は一般に粉体静電塗装法が採用される。静
電塗装後金属板は乾燥炉によって通常120〜250℃
、5〜60分間加熱され、金属板表面に合成樹脂系電気
絶縁層が形成される。この電気絶縁層の熱伝導率を向上
させるために、Al2O3、Bed。
First, the gold plate used in this invention is usually an aluminum plate, iron plate, or stainless steel plate, and the surface of these metal plates is cleaned by mechanical, chemical, or electrochemical treatment. Next, examples of the synthetic resin applied to the surface of this metal plate include thermosetting resins such as epoxy resin and polyester resin, but powder electrostatic coating is generally used to apply these resins. After electrostatic coating, the metal plate is usually heated to 120-250℃ in a drying oven.
The metal plate is heated for 5 to 60 minutes to form a synthetic resin electrical insulation layer on the surface of the metal plate. To improve the thermal conductivity of this electrically insulating layer, Al2O3, Bed.

5in2等の金属酸化物、BN、AIN、Si3N4 
 等の金属窒化物、さらにはSiC等の金属炭化物を混
入するとよく、機械的強度、機械加工性および電気特性
を向」二させるためには、雲母族化合物を混入させると
大きい効果が得られる。
Metal oxides such as 5in2, BN, AIN, Si3N4
It is recommended to mix metal nitrides such as SiC, and metal carbides such as SiC.In order to improve mechanical strength, machinability, and electrical properties, it is highly effective to mix mica group compounds.

このようにして形成された電気絶縁層の厚さは、30〜
300μmか好ましい。なぜならば、30μmよりも薄
いと耐電圧特性の信頼性が低下するおそれがあるからで
あり、300μmより厚くなると絶縁層の機械的または
熱的強度を低下させるおそれがあるからである。さらに
耐電圧特性を向上させるためには、同一厚さの電気絶縁
層を形成するに当っても、複数の工程によって複数層の
積層とすることが望ましく、たとえば、100μm厚の
電気絶縁層を得ようとするときには、100μm厚の層
を1回の塗装で形成するよりは、50μmの層を2回に
わたって形成して合計100μm厚の層とする方が遥か
に良い。
The thickness of the electrically insulating layer thus formed is 30 to 30 mm.
300 μm is preferable. This is because if it is thinner than 30 μm, there is a risk that the reliability of withstand voltage characteristics will be reduced, and if it is thicker than 300 μm, there is a risk that the mechanical or thermal strength of the insulating layer will be reduced. In order to further improve the withstand voltage characteristics, it is desirable to laminate multiple layers through multiple steps even when forming electrical insulating layers of the same thickness. For example, to obtain an electrical insulating layer with a thickness of 100 μm, It is much better to apply two 50 μm layers for a total layer thickness of 100 μm than to apply a 100 μm thick layer in one coat.

つぎに以上のような方法によって形成された絶縁層の上
に、ガラス紙布を介在させた合成樹脂系の電気絶縁層、
を形成するが、ここで使用される合成樹脂はエポキシ樹
脂、ポリエステル樹脂、フェノール樹脂等の熱硬化性樹
脂が好ましく、また、ガラス紙布は厚さ30〜180μ
mのものが一般的であり、ガラス織布のときは平織り、
朱子織りのいずれでもよい。このようなガラス紙布に合
成樹脂を塗工するには、スプレー法、浸漬法等も採用で
きるが、電気絶縁用積層板を製造する際に従来使用され
ている塗布機を用いて塗布し、加熱乾燥してプリプレグ
を作り、粉体塗装法によって形成された電気絶縁層と重
ね合わせた後、加熱加圧して複合された電気絶縁層を形
成することができる。また、必要に応じて、銅箔等の金
属箔を同時に重ね合わせ、導体を形成してもよく、電気
絶縁層を形成した後、アディティブ法などによって導体
層を形成することもできる。
Next, on the insulating layer formed by the above method, a synthetic resin electrical insulating layer with a glass paper cloth interposed therein,
The synthetic resin used here is preferably a thermosetting resin such as epoxy resin, polyester resin, or phenol resin, and the glass paper cloth has a thickness of 30 to 180 μm.
m is common, and in the case of glass woven fabric, plain weave,
Any type of satin weave may be used. Spraying, dipping, etc. can be used to coat such glass paper cloth with synthetic resin, but it is preferable to apply it using a coating machine that is conventionally used when manufacturing electrically insulating laminates. A prepreg is produced by heating and drying, which is superimposed on an electrically insulating layer formed by a powder coating method, and then heated and pressed to form a composite electrically insulating layer. Furthermore, if necessary, a conductor may be formed by simultaneously overlapping metal foils such as copper foil, or a conductor layer may be formed by an additive method or the like after forming an electrically insulating layer.

このようにして、この発明による電気絶縁低板を得るこ
とができるが、この絶縁基板は、金属板表面にまず粉体
塗装によって電気絶縁層を形成するため、ガラス紙布を
介した電気絶縁層のみを形成したものに比べて、耐電圧
特性を低下させる要因となる気泡の発生、混入が著しく
減少し、しかも、塗工方法が粉体塗装のため、絶縁層の
膜厚を任意に調整することができ、必要に応じて重ね塗
りも可能である。その上、この絶縁層上にガラス紙布を
介した合成樹脂系の電気絶縁層を形成するため、電気絶
縁層の機械的強度および信頼性を高めることもできる。
In this way, the electrically insulating base plate according to the present invention can be obtained, but since the electrically insulating layer is first formed on the surface of the metal plate by powder coating, the electrically insulating layer is coated with glass paper cloth. Compared to the case where only a single insulating layer is formed, the generation and inclusion of air bubbles, which cause a decrease in withstand voltage characteristics, are significantly reduced.Furthermore, since the coating method is powder coating, the thickness of the insulating layer can be adjusted arbitrarily. It can be coated over and over again if necessary. Furthermore, since a synthetic resin-based electrical insulating layer is formed on this insulating layer via a glass paper cloth, the mechanical strength and reliability of the electrical insulating layer can be improved.

なお、この発明の電気絶縁層の形状から明らかなように
、がラス紙布が直接金属板に接触していないため、折り
曲げ加工や絞り加工等も容易にできるという利点があり
、この発明の意義はきわめて大きい。
Furthermore, as is clear from the shape of the electrical insulating layer of this invention, since the lath paper cloth is not in direct contact with the metal plate, it has the advantage that it can be easily bent, drawn, etc., and this is the significance of this invention. is extremely large.

以下番こ実施例および比較例を示す。Examples and comparative examples are shown below.

〔実施例1〕 表面を化学処理した1、5mm厚のアルミニウム板の片
面に、エポキシ樹脂系の粉体塗装を行ない、180℃、
30分間焼付は硬化した。・このとき形成された絶縁層
の厚みは100μmであ−った。つぎにこの絶縁層の上
にエポキシ樹脂を含浸した70μmのガラス布のプリプ
レグを3層重ね合わせ、160℃、30分間加熱加圧し
て電気絶縁基板を得た。なお、得られた絶縁層の厚さは
顕微鏡による実測値であり、破壊電圧および折り曲げ(
90°)加工性の特性の測定結果は表にまとめた。
[Example 1] One side of a 1.5 mm thick aluminum plate whose surface had been chemically treated was coated with epoxy resin powder and heated at 180°C.
The bake cured for 30 minutes. - The thickness of the insulating layer formed at this time was 100 μm. Next, three layers of 70 μm glass cloth prepreg impregnated with epoxy resin were superimposed on this insulating layer, and heated and pressed at 160° C. for 30 minutes to obtain an electrically insulating substrate. The thickness of the insulating layer obtained is an actual value measured using a microscope, and the breakdown voltage and bending (
90°) The measurement results of the processability characteristics are summarized in the table.

表 〔実施例2〕 表面を機械研摩した厚さ1.Q mmの鉄板(S I)
C2)の両面−こエポキシ樹脂系の粉体塗装を行ない、
180℃、15分間焼付は硬化した。このとき形成され
た電気絶縁層の厚みは100μmであった。つぎに、こ
の絶縁層の片面にエポキシ樹脂を含浸した100μmn
のガラス布を1枚乗せ、さらにこの上に35μmnの銅
箔を置いて、160’c、30分間加熱加圧して電気絶
縁基板を得た。得られた絶縁基板について、実施例1と
同様に諸性質を測定し、その結果を表に併記した。
Table [Example 2] Thickness of mechanically polished surface 1. Q mm iron plate (SI)
Both sides of C2) are coated with epoxy resin powder coating,
It was cured by baking at 180° C. for 15 minutes. The thickness of the electrically insulating layer formed at this time was 100 μm. Next, one side of this insulating layer was impregnated with 100 μm epoxy resin.
A sheet of glass cloth was placed thereon, and a 35 μm copper foil was further placed on top of the glass cloth, and heated and pressed at 160°C for 30 minutes to obtain an electrically insulating substrate. Various properties of the obtained insulating substrate were measured in the same manner as in Example 1, and the results are also listed in the table.

〔実施例3〕 表面を化学処理した厚さ2 mmのアルミニウム板の片
面にエポキシ樹脂系の粉体塗装を行ない、180℃、3
0分間焼付は硬化した。このとき絶縁層の厚みは70μ
mであった。つぎにこの絶縁層の上に、エポキシ樹脂を
含浸した70μmのガラス布を2枚重ね合わせ、160
’C130分間加熱加圧して電気絶縁基板を得た。得ら
れた絶縁基板について、実施例1と同様に諸性質を測定
し、その結果を表に併記した。
[Example 3] One side of a 2 mm thick aluminum plate whose surface had been chemically treated was coated with epoxy resin powder and heated at 180°C for 3
Baking for 0 minutes cured. At this time, the thickness of the insulating layer is 70μ
It was m. Next, on top of this insulating layer, two sheets of 70 μm glass cloth impregnated with epoxy resin were superimposed, and
'C130 minutes of heating and pressing was performed to obtain an electrically insulating substrate. Various properties of the obtained insulating substrate were measured in the same manner as in Example 1, and the results are also listed in the table.

〔比較例1〕 表面を化学処理した厚さl、 5 mmのアルミニウニ
二::Z二’7’ ::: ;:’8 &:: :bS
、o 1”60℃、30分間加熱加圧して、電気絶縁基
板を得た。
[Comparative Example 1] Aluminum sea urchin 2::Z2'7':::;:'8&:::bS with a thickness of l and 5 mm whose surface was chemically treated
, o 1'' was heated and pressed at 60° C. for 30 minutes to obtain an electrically insulating substrate.

得られた絶縁基板について、実施例1と同様に諸性質を
測定し、その結果を表に併記した。
Various properties of the obtained insulating substrate were measured in the same manner as in Example 1, and the results are also listed in the table.

〔比較例2〕 表面を機械研摩した厚さl mmの鉄板(SPC2)の
両面に、エポキシ樹脂を含浸した100μmのガラス布
のプリプレグを片面に1枚、他の面に2枚を重ね合わせ
て、さらに35μmの銅箔を置いて、160℃、30分
間加熱加圧して電気絶縁基板を得た。この絶縁基板につ
いて、実施例1と同様に諸性質を測定し、その結果を表
に併記した。
[Comparative Example 2] On both sides of a 1 mm thick iron plate (SPC2) whose surface was mechanically polished, one sheet of 100 μm glass cloth prepreg impregnated with epoxy resin was superimposed on one side and two sheets on the other side. Then, a 35 μm thick copper foil was placed and heated and pressed at 160° C. for 30 minutes to obtain an electrically insulating substrate. Regarding this insulating substrate, various properties were measured in the same manner as in Example 1, and the results are also listed in the table.

〔比較例3〕 表面を化学処理した厚さ2 mmのアルミニウム板の片
面に、エポキシ樹脂を含浸した70μmのガラス布のプ
リプレグを3枚重ね合せ、160℃、30分間加熱して
電気絶縁基板を得た。この絶縁基板について実施例1と
′同様に諸性質を測定し、その結果を表に併記した。
[Comparative Example 3] Three sheets of 70 μm glass cloth prepreg impregnated with epoxy resin were layered on one side of a 2 mm thick aluminum plate whose surface had been chemically treated, and heated at 160° C. for 30 minutes to form an electrically insulating substrate. Obtained. Various properties of this insulating substrate were measured in the same manner as in Example 1, and the results are also shown in the table.

以上、表から明らかなように、この発明による電気絶縁
板は、耐電圧特性が優れ、かつ、折り曲げ加工性も優れ
ていることが認められた。
As is clear from the table above, the electrical insulating board according to the present invention was found to have excellent withstand voltage characteristics and excellent bending workability.

特許出願人 利昌工業株式会社Patent applicant Risho Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)金属板の少なくとも片面に粉体塗装法によって合
成樹脂系の電気絶縁層を形成し、さらにこの上にガラス
紙布を介しζ合成樹脂系の電気絶縁層を形成したことを
特徴とする電気絶縁基板。
(1) A synthetic resin electrical insulating layer is formed on at least one side of the metal plate by powder coating, and a ζ synthetic resin electrical insulating layer is further formed on this via glass paper cloth. Electrical insulation board.
(2)  金属板の少なくとも片面に粉体塗装法によっ
て合成樹脂系の電気絶縁層を形成し、この上にガラス紙
布を介した合成樹脂系の電気絶縁層を形成し、さらにこ
の上に電気導体層を形成したことを特徴とする電気絶縁
基板。
(2) A synthetic resin-based electrical insulating layer is formed on at least one side of the metal plate by powder coating, a synthetic resin-based electrical insulating layer is formed on this using a glass paper cloth, and an electrically insulating layer is formed on this using a glass paper cloth. An electrically insulating substrate characterized by forming a conductor layer.
JP9665282A 1982-06-04 1982-06-04 Electrically insulating board Granted JPS58213493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9665282A JPS58213493A (en) 1982-06-04 1982-06-04 Electrically insulating board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9665282A JPS58213493A (en) 1982-06-04 1982-06-04 Electrically insulating board

Publications (2)

Publication Number Publication Date
JPS58213493A true JPS58213493A (en) 1983-12-12
JPH0219989B2 JPH0219989B2 (en) 1990-05-07

Family

ID=14170757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9665282A Granted JPS58213493A (en) 1982-06-04 1982-06-04 Electrically insulating board

Country Status (1)

Country Link
JP (1) JPS58213493A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166317A (en) * 1984-09-06 1986-04-05 鐘淵化学工業株式会社 Method of producing high insulating substrate
JPS6173141U (en) * 1984-10-19 1986-05-17
JP2014221698A (en) * 2013-05-14 2014-11-27 株式会社ノリタケカンパニーリミテド Metal-joined component, and joining material for metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166317A (en) * 1984-09-06 1986-04-05 鐘淵化学工業株式会社 Method of producing high insulating substrate
JPS6173141U (en) * 1984-10-19 1986-05-17
JP2014221698A (en) * 2013-05-14 2014-11-27 株式会社ノリタケカンパニーリミテド Metal-joined component, and joining material for metal

Also Published As

Publication number Publication date
JPH0219989B2 (en) 1990-05-07

Similar Documents

Publication Publication Date Title
JPH0574457B2 (en)
JPS6068690A (en) Method of producing printed circuit board
JPS63119285A (en) Manufacture of metallized substrate for printed circuit
JPS58213493A (en) Electrically insulating board
JPH05291711A (en) Board for high-frequency circuit use
JP2000013024A (en) Manufacture of multilayer board and plate for multilayer board manufacture
JPS60190344A (en) Laminated board for electricity
JPS5831757B2 (en) Manufacturing method for electrical insulating laminates and metal foil laminates for printed circuits
JPS60214953A (en) Metallic base printed wiring substrate
JP3353377B2 (en) Manufacturing method of laminated board
JPS63168072A (en) Metal base printed circuit substrate
JPH02253941A (en) Preparation of ceramic coated laminated sheet
JPH0716089B2 (en) Electric laminate
JPS6256583A (en) Copper foil and laminated plate using it
JPH0584214B2 (en)
JPH01268188A (en) Manufacture of metal base board
JPS60214951A (en) Metallic base printed wiring substrate
JPH05315717A (en) Electrical laminated plate
JPS62162530A (en) Manufacture of metallic base laminated board
JPS6394840A (en) Laminated board for metallic base printed circuit
JPH0339245A (en) Laminated sheet for electric apparatus
JPH05152741A (en) Manufacture of metal foil clad ceramic board
JPH06336528A (en) Single-copper-clad laminate for printed circuit
JPH02164530A (en) Manufacture of ceramic coated thermoplastic resin laminated sheet
JPH06326430A (en) Multilayer printed wiring board and manufacture thereof