JPH03115812A - Load-cell type scale - Google Patents

Load-cell type scale

Info

Publication number
JPH03115812A
JPH03115812A JP25392889A JP25392889A JPH03115812A JP H03115812 A JPH03115812 A JP H03115812A JP 25392889 A JP25392889 A JP 25392889A JP 25392889 A JP25392889 A JP 25392889A JP H03115812 A JPH03115812 A JP H03115812A
Authority
JP
Japan
Prior art keywords
resistance value
resistor
gain
reference voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25392889A
Other languages
Japanese (ja)
Inventor
Shinichi Mori
森 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Tokyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Co Ltd filed Critical Tokyo Electric Co Ltd
Priority to JP25392889A priority Critical patent/JPH03115812A/en
Publication of JPH03115812A publication Critical patent/JPH03115812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent deterioration in a common-mode rejection ratio by a method wherein a synthesized resistance value of specific resistors of a reference voltage setting circuit and a first gain setting circuit is made equal to the resistance value of a specific resistor of a second gain setting circuit. CONSTITUTION:A synthesized resistance value of a resistance value of a reference voltage setting circuit 12 and a resistance value of a resistor R1 to be directly connected to the circuit 12 among first gain setting resistors 16 is assumed to be rx. A resistance value of a resistor R4 to be connected to an output of a two-stage operational amplifier 15 among second gain setting resistors 17 is assumed to be r4. The resistance value rx and the resistance value r4 are set equal. A common-mode rejection ratio of a circuit is determined by a ratio of a common mode gain A and a differential gain B, while since the resistors 17 are not connected to the circuit 12, the ratio is determined by the gain A. Therefore by making the resistance values rx and r4 equal, the gain A is zero so that the common-mode rejection ratio approaches zero, preventing deterioration.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、基準電圧設定回路から基準電圧が印加される
信号増幅器を介してロードセルからの電気信号を増幅す
るロードセル式秤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a load cell scale that amplifies an electrical signal from a load cell via a signal amplifier to which a reference voltage is applied from a reference voltage setting circuit.

[従来の技術] 従来、この種のロードセル式秤としては第2図に示すも
のが知られている。これは18Vの直流電源にロードセ
ル1を接続するとともに、抵抗R5、抵抗R6を直列接
続してなる基準電圧設定回路2を接続している。ロード
セル1は荷重に対応してa、b間に電気信号を出力する
もので、その電気信号を信号増幅回路3に供給している
。信号増幅回路3は、初段演算増幅器4と2段演算増幅
器5とを有し、初段演算増幅器4の非反転出力端子(+
)にロードセル1のa点電圧を入力するとともに2段演
算増幅器5の非反転出力端子(+)にロードセル1のb
点電圧を入力している。前記初段演算増幅器4には抵抗
R1と抵抗R2とを直列接続してなるゲイン設定用抵抗
器群6が設けられており、抵抗R1と抵抗R2との接続
点が初段演算増幅器4の反転入力端子(−)に接続され
、抵抗R2の他端が初段演算増幅器4の出力端子に接続
されている。抵抗R1の他端は演算増幅器で構成される
バッファ8の出力端子に接続されている。このバッファ
8の入力端子は前記基$電圧設定回路2における抵抗R
5と抵抗R6との接続点に接続されている。
[Prior Art] Conventionally, as this type of load cell type scale, one shown in FIG. 2 is known. The load cell 1 is connected to an 18V DC power source, and a reference voltage setting circuit 2 formed by connecting a resistor R5 and a resistor R6 in series is connected. The load cell 1 outputs an electric signal between a and b in response to a load, and supplies the electric signal to a signal amplification circuit 3. The signal amplification circuit 3 includes a first-stage operational amplifier 4 and a second-stage operational amplifier 5, and a non-inverting output terminal (+
), the voltage at point a of load cell 1 is input to the non-inverting output terminal (+) of the two-stage operational amplifier 5.
Point voltage is being input. The first stage operational amplifier 4 is provided with a gain setting resistor group 6 formed by connecting a resistor R1 and a resistor R2 in series, and the connection point between the resistors R1 and R2 is the inverting input terminal of the first stage operational amplifier 4. (-), and the other end of the resistor R2 is connected to the output terminal of the first stage operational amplifier 4. The other end of the resistor R1 is connected to the output terminal of a buffer 8 composed of an operational amplifier. The input terminal of this buffer 8 is connected to the resistor R in the base voltage setting circuit 2.
5 and the connection point between resistor R6.

また前記2段演算増幅器5には抵抗R3と抵抗R4とを
直列接続してなるゲイン設定用抵抗器群7が設けられて
おり、抵抗R3と抵抗R4との接続点が2段演算増幅器
5の反転入力端子(−)に接続され、抵抗R4の他端が
2段演算増幅器5の出力端子に接続されている。抵抗R
3の他端は前記初段演算増幅器4の出力端子に接続され
ている。
Further, the two-stage operational amplifier 5 is provided with a gain setting resistor group 7 formed by connecting a resistor R3 and a resistor R4 in series, and the connection point between the resistor R3 and the resistor R4 is connected to the two-stage operational amplifier 5. The resistor R4 is connected to the inverting input terminal (-), and the other end of the resistor R4 is connected to the output terminal of the two-stage operational amplifier 5. Resistance R
The other end of 3 is connected to the output terminal of the first stage operational amplifier 4.

前記信号増幅回路3はその2段演算増幅器5の出力端子
から増幅した電気信号を出力し、A/D(アナログ/デ
ィジタル)変換部9に供給している。このA/D変換部
9は入力された電気信号をディジタル信号に変換して出
力している。
The signal amplifying circuit 3 outputs an amplified electrical signal from the output terminal of its two-stage operational amplifier 5, and supplies it to an A/D (analog/digital) converter 9. This A/D converter 9 converts the input electrical signal into a digital signal and outputs the digital signal.

このような増幅回路においては、直流電源からの電圧が
基準電圧設定回路2の抵抗R5,R6によって分割され
て基準電圧が生成され、この基準電圧が秤のゼロ点とし
てバッファ8を介して信号増幅器3に供給されている。
In such an amplifier circuit, the voltage from the DC power supply is divided by the resistors R5 and R6 of the reference voltage setting circuit 2 to generate a reference voltage, and this reference voltage is used as the zero point of the scale to be sent to the signal amplifier via the buffer 8. 3.

ここで、上記バッファ8は基準電圧設定回路2の分割抵
抗R5,R6が信号増幅器3のゲイン設定用抵抗R1〜
R4と合成され、回路の同相成分除去比(CMRR)が
悪化するのを防止している。
Here, in the buffer 8, the dividing resistors R5 and R6 of the reference voltage setting circuit 2 are connected to the gain setting resistors R1 to R6 of the signal amplifier 3.
It is combined with R4 to prevent the common mode rejection ratio (CMRR) of the circuit from deteriorating.

[発明が解決しようとする課題] しかしこの従来のロードセル式秤においては、回路の同
相成分除去比が悪化するのを防止するために演算増幅器
からなるバッファ8を使用しているので、使用する部品
点数が多くなるとともにコスト高となる問題があった。
[Problems to be Solved by the Invention] However, in this conventional load cell type scale, the buffer 8 consisting of an operational amplifier is used to prevent the common-mode component rejection ratio of the circuit from deteriorating. There was a problem in that as the number of points increased, the cost also increased.

また、バッファ8のドリフトによって秤のゼロ点が変動
しやすい問題もあった。
Furthermore, there was also the problem that the zero point of the scale was likely to fluctuate due to the drift of the buffer 8.

そこで本発明は、回路の同相除去比が悪化するのを防止
することをバッファを使用せずに実現でき、使用部品点
数を減らすことができるとともにコストの低下をはかり
得、かつ秤のゼロ点を安定に得られるロードセル式秤を
提供しようとするものである。
Therefore, the present invention can prevent the common mode rejection ratio of the circuit from deteriorating without using a buffer, reduce the number of parts used, reduce costs, and reduce the zero point of the scale. The purpose is to provide a load cell type scale that can be stably obtained.

[課題を解決するための手段] 本発明は、荷重に対応した電気信号を出力するロードセ
ルと、基準電圧を出力する基準電圧設定回路と、ロード
セルからの一方の電気信号が直接入力されるとともに基
準電圧設定回路からの基準電圧が第1のゲイン設定用抵
抗群を介して入力される初段演算増幅器およびロードセ
ルからの他方の電気信号が直接入力されるとともに初段
演算増幅器の出力電圧が第2のゲイン設定用抵抗群を介
して入力される2段演算増幅器を有し、ロードセルから
の電気信号を増幅する信号増幅回路と、この信号増幅回
路から出力される電気信号をディジタル信号に変換する
A/D変換部とからなるロードセル式秤において、基準
電圧設定回路の抵抗値と第1のゲイン設定用抵抗群にお
ける基準電圧設定回路に直接接続される抵抗の抵抗値と
の合成抵抗値を、第2のゲイン設定用抵抗群における2
段演算増幅器の出力側に接続される抵抗の抵抗値に等し
くしたものである。
[Means for Solving the Problems] The present invention includes a load cell that outputs an electric signal corresponding to a load, a reference voltage setting circuit that outputs a reference voltage, and one electric signal from the load cell is directly inputted, and the reference voltage setting circuit outputs a reference voltage. The reference voltage from the voltage setting circuit is inputted via the first gain setting resistor group to the first stage operational amplifier, and the other electric signal from the load cell is directly inputted, and the output voltage of the first stage operational amplifier is inputted via the first gain setting resistor group. A signal amplification circuit that has a two-stage operational amplifier that is input via a group of setting resistors and amplifies the electrical signal from the load cell, and an A/D that converts the electrical signal output from this signal amplification circuit into a digital signal. In a load cell type scale comprising a conversion section, the combined resistance value of the resistance value of the reference voltage setting circuit and the resistance value of the resistor directly connected to the reference voltage setting circuit in the first gain setting resistor group is 2 in the gain setting resistor group
It is made equal to the resistance value of the resistor connected to the output side of the stage operational amplifier.

[作用] このような構成の本発明においては、基準電圧設定回路
の抵抗値と第1のゲイン設定用抵抗群における基準電圧
設定回路に直接接続されている抵抗の抵抗値との合成抵
抗値をRxとし、第1のゲイン設定用抵抗器群の残りの
抵抗の抵抗値をRaとしたとき、初段演算増幅器の利得
G1は次の(1)式で表される。
[Function] In the present invention having such a configuration, the combined resistance value of the resistance value of the reference voltage setting circuit and the resistance value of the resistor directly connected to the reference voltage setting circuit in the first gain setting resistor group is calculated as follows. When Rx is Rx and the resistance value of the remaining resistors in the first gain setting resistor group is Ra, the gain G1 of the first stage operational amplifier is expressed by the following equation (1).

G1−Ra/Rx          =il)また、
第2のゲイン設定用抵抗群における2段演算増幅器の出
力側に接続される抵抗の抵抗値をRbとし、第2のゲイ
ン設定用抵抗群における残りの抵抗の抵抗値をRcとし
たとき、2段演算増幅器の利得G2は次の(2)式で表
される。
G1-Ra/Rx =il) Also,
When the resistance value of the resistor connected to the output side of the two-stage operational amplifier in the second gain setting resistor group is Rb, and the resistance value of the remaining resistor in the second gain setting resistor group is Rc, 2 The gain G2 of the stage operational amplifier is expressed by the following equation (2).

G2=Rb/Re          ・(2)従って
、回路の同相利得Aは次の(3)式で表され、差動利得
Bは次の(4)式で表される。
G2=Rb/Re (2) Therefore, the common mode gain A of the circuit is expressed by the following equation (3), and the differential gain B is expressed by the following equation (4).

A−1−01・G2        ・・・(3)B−
1+02            ・・・(4)ここで
、第1のゲイン設定用抵抗器群の残りの抵抗の抵抗値R
aと第2のゲイン設定用抵抗群における残りの抵抗の抵
抗値Rcとを等しいと定義したとき、前記(3)式で示
される同相利得Aは次の(5)式で表される。
A-1-01・G2...(3)B-
1+02...(4) Here, the resistance value R of the remaining resistors in the first gain setting resistor group
When a and the resistance value Rc of the remaining resistors in the second gain setting resistor group are defined to be equal, the common mode gain A shown by the above equation (3) is expressed by the following equation (5).

A−1−Rb/Rx         −(5)一方、
回路の同相成分除去比(CMRR)は同相利得Aと差動
利得Bとの比で求められる。ただし、差動利得Bは(4
)式から明らかなように第2のゲイン設定用抵抗群にお
ける抵抗値RbとRcとによって定められ、この抵抗値
RbとRcは第2のゲイン設定用抵抗群が基準電圧設定
回路に接続されていないためにこの回路の影響を受けな
い。
A-1-Rb/Rx-(5) On the other hand,
The common mode rejection ratio (CMRR) of the circuit is determined by the ratio of the common mode gain A to the differential gain B. However, the differential gain B is (4
) As is clear from the equation, it is determined by the resistance values Rb and Rc in the second gain setting resistor group, and these resistance values Rb and Rc are determined by the resistance values Rb and Rc when the second gain setting resistor group is connected to the reference voltage setting circuit. Therefore, it is not affected by this circuit.

したがって、同相成分除去比に影響を及ぼすのは同相利
得Aであり、前記(5)式により抵抗値Rxによること
になる。すなわち、基準電圧設定回路の抵抗値と第1の
ゲイン設定用抵抗群における基準電圧設定回路に直接接
続されている抵抗の抵抗値との合成抵抗値Rxによって
同相成分除去比は変化する。換言すればRxmRbとす
ることで同相成分除去比は“0″に近付くことになり、
同相成分除去比の悪化は防止される。
Therefore, it is the common-mode gain A that influences the common-mode component rejection ratio, which depends on the resistance value Rx according to the above equation (5). That is, the common-mode component rejection ratio changes depending on the combined resistance value Rx of the resistance value of the reference voltage setting circuit and the resistance value of the resistors directly connected to the reference voltage setting circuit in the first gain setting resistor group. In other words, by setting RxmRb, the common-mode component removal ratio approaches "0",
Deterioration of the common-mode component removal ratio is prevented.

[実施例コ 以下、本発明の一実施例を図面を参照しながら説明する
[Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図に示すように、18Vの直流電源にロードセル1
1を接続するとともに、抵抗R5、抵抗R6を直列接続
してなる基準電圧設定回路12を接続している。ロード
セル11は荷重に対応してa、b間に電気信号を出力す
るもので、その電気信号を信号増幅回路13に供給して
いる。信号増幅回路13は、初段演算増幅器14と2段
演算増幅器15とを有し、初段演算増幅器14の非反転
出力端子(+)にロードセル11のa点電圧を入力する
とともに2段演算増幅器15の非反転出力端子(+)に
ロードセル11のb点電圧を入力している。前記初段演
算増幅器14には抵抗R1と抵抗R2とを直列接続して
なる第1のゲイン設定用抵抗器群16が設けられており
、抵抗R1と抵抗R2との接続点が初段演算増幅器14
の反転入力端子(−)に接続され、抵抗R2の他端が初
段演算増幅器14の出力端子に接続されている。抵抗R
1の他端は前記基準電圧設定回路12における抵抗R5
と抵抗R6との接続点に接続されている。
As shown in Figure 1, load cell 1 is connected to 18V DC power supply.
1 and a reference voltage setting circuit 12 formed by connecting a resistor R5 and a resistor R6 in series. The load cell 11 outputs an electric signal between a and b in response to a load, and supplies the electric signal to a signal amplification circuit 13. The signal amplification circuit 13 has a first-stage operational amplifier 14 and a two-stage operational amplifier 15 , and inputs the point a voltage of the load cell 11 to the non-inverting output terminal (+) of the first-stage operational amplifier 14 . The voltage at point b of the load cell 11 is input to the non-inverting output terminal (+). The first stage operational amplifier 14 is provided with a first gain setting resistor group 16 formed by connecting a resistor R1 and a resistor R2 in series, and the connection point between the resistors R1 and R2 is connected to the first stage operational amplifier 14.
The other end of the resistor R2 is connected to the output terminal of the first stage operational amplifier 14. Resistance R
The other end of 1 is the resistor R5 in the reference voltage setting circuit 12.
and the connection point between the resistor R6 and the resistor R6.

また前記2段演算増幅器15には抵抗R3と抵抗R4と
を直列接続してなる第2のゲイン設定用抵抗器群17が
設けられており、抵抗R3と抵抗R4との接続点が2段
演算増幅器15の反転入力端子(=)に接続され、抵抗
R4の他端が2段演算増幅器15の出力端子に接続され
ている。抵抗R3の他端は前記初段演算増幅器14の出
力端子に接続されている。
Further, the two-stage operational amplifier 15 is provided with a second gain setting resistor group 17 formed by connecting a resistor R3 and a resistor R4 in series, and the connection point between the resistor R3 and the resistor R4 is connected to the two-stage operational amplifier 15. The resistor R4 is connected to the inverting input terminal (=) of the amplifier 15, and the other end of the resistor R4 is connected to the output terminal of the two-stage operational amplifier 15. The other end of the resistor R3 is connected to the output terminal of the first stage operational amplifier 14.

前記信号増幅回路13はその2段演算増幅器15の出力
端子から増幅した電気信号を出力し、A/D (アナロ
グ/ディジタル)変換部18に供給している。このA/
D変換部18は入力された電気信号をディジタル信号に
変換して出力している。
The signal amplification circuit 13 outputs an amplified electrical signal from the output terminal of its two-stage operational amplifier 15, and supplies it to an A/D (analog/digital) converter 18. This A/
The D converter 18 converts the input electrical signal into a digital signal and outputs the digital signal.

そして、前記基準電圧設定回路12の抵抗値と前記第1
のゲイン設定用抵抗群16における前記基準電圧設定回
路12に直接接続される抵抗R1の抵抗値との合成抵抗
値を、前記第2のゲイン設定用抵抗群17における前記
2段演算増幅器15の出力側に接続される抵抗R4の抵
抗値に等しく設定している。
Then, the resistance value of the reference voltage setting circuit 12 and the first
The combined resistance value of the resistance value of the resistor R1 directly connected to the reference voltage setting circuit 12 in the gain setting resistor group 16 is calculated as the output of the two-stage operational amplifier 15 in the second gain setting resistor group 17. The resistance value is set equal to the resistance value of the resistor R4 connected to the side.

このような構成の本実施例においては、基準電圧設定回
路12の抵抗R5の抵抗値をr5、抵抗R6の抵抗値を
r6とし、第1のゲイン設定用抵抗器群16における抵
抗R1の抵抗値を「1としたとき、基準電圧設定回路1
2の抵抗値と第1のゲイン設定用抵抗器群16における
抵抗R1の抵抗値との合成抵抗値「Xは次の(6)式で
表される。
In this embodiment having such a configuration, the resistance value of the resistor R5 of the reference voltage setting circuit 12 is r5, the resistance value of the resistor R6 is r6, and the resistance value of the resistor R1 in the first gain setting resistor group 16 is When set to 1, reference voltage setting circuit 1
The combined resistance value "X" of the resistance value of R2 and the resistance value of the resistor R1 in the first gain setting resistor group 16 is expressed by the following equation (6).

rx−rl+r5・r6/(r5+r6)  −(6)
従って、第1のゲイン設定用抵抗器群16における抵抗
R2の抵抗値をr2としたとき、初段演算増幅器14の
利得G1は次の(7)式で表される。
rx-rl+r5・r6/(r5+r6) −(6)
Therefore, when the resistance value of the resistor R2 in the first gain setting resistor group 16 is set to r2, the gain G1 of the first stage operational amplifier 14 is expressed by the following equation (7).

Gl−r2/rx          =47)また、
第2のゲイン設定用抵抗群17における抵抗R4の抵抗
値をr4とし、第2のゲイン設定用抵抗群17における
抵抗R3の抵抗値をr3としたとき、2段演算増幅器1
5の利得G2は次の(8)式で表される。
Gl-r2/rx = 47) Also,
When the resistance value of the resistor R4 in the second gain setting resistor group 17 is r4, and the resistance value of the resistor R3 in the second gain setting resistor group 17 is r3, the two-stage operational amplifier 1
The gain G2 of 5 is expressed by the following equation (8).

G2−r4/r3          =18)従って
、回路の同相利得Aは次の(9)式で表され、差動利得
Bは次の(10)式で表される。
G2-r4/r3 = 18) Therefore, the common mode gain A of the circuit is expressed by the following equation (9), and the differential gain B is expressed by the following equation (10).

A−1−Gl・G2        ・・・(9)B 
−1+02           −(10)ここで、
第1のゲイン設定用抵抗器群16における抵抗R2の抵
抗値r2と第2のゲイン設定用抵抗群17における抵抗
R3の抵抗値r3とを等しいと定義したとき、前記(9
)式で示される同相利得Aは次の(11)式で表される
A-1-Gl・G2...(9)B
−1+02 −(10) where,
When the resistance value r2 of the resistor R2 in the first gain setting resistor group 16 and the resistance value r3 of the resistor R3 in the second gain setting resistor group 17 are defined as being equal, the above (9
) is expressed by the following equation (11).

A −1−r4/ r x         =ill
)一方、回路の同相成分除去比(CMRR)は同相利得
Aと差動利得Bとの比(A/B)で求められる。ただし
、差動利得Bは前記(1o)式から明らかなように第2
のゲイン設定用抵抗群17における抵抗R3および抵抗
R4の抵抗値r3.r4によって定められ、この抵抗値
r3.r4は第2のゲイン設定用抵抗群17が基準電圧
設定回路12に接続されていないためにこの回路12の
影響を受けない。したがって、同相成分除去比に影響を
及ぼすのは同相利得Aであり、前記(II)式により抵
抗値「Xによることになる。
A-1-r4/rx=ill
) On the other hand, the common mode component rejection ratio (CMRR) of the circuit is determined by the ratio of the common mode gain A to the differential gain B (A/B). However, as is clear from equation (1o) above, the differential gain B is
The resistance value r3. of the resistor R3 and the resistor R4 in the gain setting resistor group 17. r4, and this resistance value r3. Since the second gain setting resistor group 17 is not connected to the reference voltage setting circuit 12, r4 is not affected by this circuit 12. Therefore, it is the common-mode gain A that influences the common-mode component rejection ratio, which depends on the resistance value "X" according to the above equation (II).

すなわち、基準電圧設定回路12の抵抗値[r5・r6
/(r5+r6)]と第1のゲイン設定用抵抗群16に
おける基準電圧設定回路12に直接接続されている抵抗
R1の抵抗値「1との合成抵抗値rxによって同相成分
除去比は変化する。
That is, the resistance value of the reference voltage setting circuit 12 [r5・r6
/(r5+r6)] and the resistance value "1" of the resistor R1 directly connected to the reference voltage setting circuit 12 in the first gain setting resistor group 16. The common-mode component rejection ratio changes depending on the combined resistance value rx.

ここで、本実施例においては、合成抵抗値rxを第2の
ゲイン設定用抵抗器群17における2段演算増幅器15
の出力側に接続される抵抗R4の抵抗値r4と等しくし
ているので、前記(11)式から明らかなように同相利
得Aがほぼ“0゛となる。
Here, in this embodiment, the combined resistance value rx is transferred to the two-stage operational amplifier 15 in the second gain setting resistor group 17.
Since the resistance value r4 is made equal to the resistance value r4 of the resistor R4 connected to the output side of the resistor R4, the common mode gain A becomes approximately "0", as is clear from the above equation (11).

従って、同相成分除去比は“0”に近付くことになり、
同相成分除去比の悪化は防止される。よって、電源電圧
の変動によるロードセル11出力の変化に対して同相成
分の除去能力を高く維持できる。
Therefore, the common-mode component removal ratio approaches "0",
Deterioration of the common-mode component removal ratio is prevented. Therefore, the ability to remove the common mode component can be maintained at a high level against changes in the output of the load cell 11 due to fluctuations in the power supply voltage.

このように本実施例によれば、従来の演算増幅器からな
るバッファ8を使用すること無く、しかも抵抗値を所定
値に設定するだけの簡単な構成で、回路の同相成分除去
比の悪化を防止することができるので、使用する部品点
数を減らすことができるとともにコストの低下をはかり
得る。また、バッファ8のドリフトに起因する基準電圧
の変動がなくなるので、秤のゼロ点を安定に得られるよ
うになる。
In this way, according to this embodiment, the deterioration of the common-mode component rejection ratio of the circuit can be prevented without using the buffer 8 made of a conventional operational amplifier, and with a simple configuration that only requires setting the resistance value to a predetermined value. Therefore, the number of parts used can be reduced and costs can be reduced. Furthermore, since fluctuations in the reference voltage due to drift of the buffer 8 are eliminated, the zero point of the scale can be stably obtained.

[発明の効果] 以上詳述したように本発明によれば、回路の同相除去比
が悪化するのを防止することをバッファを使用せずに簡
単に実現でき、使用部品点数を減らすことができるとと
もにコストの低下をはかり得、かつ秤のゼロ点を安定に
得られるロードセル式秤を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to easily prevent the common mode rejection ratio of the circuit from deteriorating without using a buffer, and the number of parts used can be reduced. At the same time, it is possible to provide a load cell scale that can reduce costs and stably obtain the zero point of the scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は従来
例を示す回路図である。 11・・・ロードセル、12・・・基準電圧設定回路、
13・・・信号増幅回路、14・・・初段演算増幅器、
15・・・2段演算増幅器、16.17・・・第1.第
2のゲイン設定用抵抗群、18・・・A/D変換部。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a circuit diagram showing a conventional example. 11... Load cell, 12... Reference voltage setting circuit,
13... Signal amplification circuit, 14... First stage operational amplifier,
15... Two-stage operational amplifier, 16.17... First. Second gain setting resistor group, 18...A/D conversion section.

Claims (1)

【特許請求の範囲】 荷重に対応した電気信号を出力するロードセルと、基準
電圧を出力する基準電圧設定回路と、前記ロードセルか
らの一方の電気信号が直接入力されるとともに前記基準
電圧設定回路からの基準電圧が第1のゲイン設定用抵抗
群を介して入力される初段演算増幅器および前記ロード
セルからの他方の電気信号が直接入力されるとともに前
記初段演算増幅器の出力電圧が第2のゲイン設定用抵抗
群を介して入力される2段演算増幅器を有し、前記ロー
ドセルからの電気信号を増幅する信号増幅回路と、この
信号増幅回路から出力される電気信号をディジタル信号
に変換するA/D変換部とを備えたロードセル式秤にお
いて、 前記基準電圧設定回路の抵抗値と前記第1のゲイン設定
用抵抗群における前記基準電圧設定回路に直接接続され
る抵抗の抵抗値との合成抵抗値を、前記第2のゲイン設
定用抵抗群における前記2段演算増幅器の出力側に接続
される抵抗の抵抗値に等しくしたことを特徴とするロー
ドセル式秤。
[Scope of Claims] A load cell that outputs an electric signal corresponding to a load, a reference voltage setting circuit that outputs a reference voltage, and one electric signal from the load cell is directly inputted, and the electric signal from the reference voltage setting circuit is inputted directly. A first-stage operational amplifier to which a reference voltage is input via a first gain-setting resistor group and the other electric signal from the load cell is directly input, and an output voltage of the first-stage operational amplifier is input to a second gain-setting resistor. a signal amplification circuit that includes a two-stage operational amplifier that is inputted via the load cell, and that amplifies the electrical signal from the load cell; and an A/D conversion section that converts the electrical signal output from the signal amplification circuit into a digital signal. In the load cell type scale, the combined resistance value of the resistance value of the reference voltage setting circuit and the resistance value of the resistor directly connected to the reference voltage setting circuit in the first gain setting resistor group is determined by the resistance value of the resistance value of the reference voltage setting circuit. A load cell type weigher, characterized in that the resistance value is equal to the resistance value of the resistor connected to the output side of the two-stage operational amplifier in the second gain setting resistor group.
JP25392889A 1989-09-29 1989-09-29 Load-cell type scale Pending JPH03115812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25392889A JPH03115812A (en) 1989-09-29 1989-09-29 Load-cell type scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25392889A JPH03115812A (en) 1989-09-29 1989-09-29 Load-cell type scale

Publications (1)

Publication Number Publication Date
JPH03115812A true JPH03115812A (en) 1991-05-16

Family

ID=17257973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25392889A Pending JPH03115812A (en) 1989-09-29 1989-09-29 Load-cell type scale

Country Status (1)

Country Link
JP (1) JPH03115812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955802B2 (en) 2015-04-08 2018-05-01 Fasteners For Retail, Inc. Divider with selectively securable track assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955802B2 (en) 2015-04-08 2018-05-01 Fasteners For Retail, Inc. Divider with selectively securable track assembly
US10588426B2 (en) 2015-04-08 2020-03-17 Fasteners For Retail, Inc. Divider with selectively securable track assembly
US11122915B2 (en) 2015-04-08 2021-09-21 Fasteners For Retail, Inc. Divider with selectively securable track assembly
US11690463B2 (en) 2015-04-08 2023-07-04 Fasteners For Retail, Inc. Divider with selectively securable track assembly

Similar Documents

Publication Publication Date Title
CN100523736C (en) Output amplifier circuit and sensor device using the same
JPS59136869A (en) Digital switch analog signal adjustor
JP3007431B2 (en) Balanced microhorn preamplifier in CMOS technology.
EP0415080B1 (en) Device for converting unbalanced analog electric signals into fully-differential signals
EP0453680B1 (en) Three-terminal operational amplifier and applications thereof
EP0526423B1 (en) An integrated instrumentation amplifier with differential input and a single power supply, with integrated frequency-compensating capacitance
JPS6041882B2 (en) An amplifier comprising first and second amplification elements
JPH03115812A (en) Load-cell type scale
US4739280A (en) Amplifier circuit having reduced crossover distortion
JP2739952B2 (en) Audio amplifier circuit
EP0680151A1 (en) Analog-to-digital conversion device for low frequency low amplitude differential signals
JP2993532B2 (en) Excitation circuit of Wheatstone bridge type load cell
JPH062335Y2 (en) Balanced amplifier
JPS62120723A (en) Bias circuit for analog-digital converter
JPH0398305A (en) Differential amplifier
JP2529354B2 (en) Voltage conversion circuit
JPS62223630A (en) Load cell scale
JPH0212744Y2 (en)
JPH0328579Y2 (en)
JP4461480B2 (en) amplifier
JPH0418481B2 (en)
JPS62221209A (en) Gain control amplifier
JPH0637449Y2 (en) Reference voltage generator
JPH07177036A (en) D/a conversion circuit device
Bowers et al. The operational conveyor amplifier-a new circuit design block