JP4461480B2 - amplifier - Google Patents

amplifier Download PDF

Info

Publication number
JP4461480B2
JP4461480B2 JP2004239028A JP2004239028A JP4461480B2 JP 4461480 B2 JP4461480 B2 JP 4461480B2 JP 2004239028 A JP2004239028 A JP 2004239028A JP 2004239028 A JP2004239028 A JP 2004239028A JP 4461480 B2 JP4461480 B2 JP 4461480B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
terminal
operational amplifier
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004239028A
Other languages
Japanese (ja)
Other versions
JP2006060441A (en
Inventor
毅 有水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004239028A priority Critical patent/JP4461480B2/en
Publication of JP2006060441A publication Critical patent/JP2006060441A/en
Application granted granted Critical
Publication of JP4461480B2 publication Critical patent/JP4461480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Description

本発明は、入力電圧を増幅する増幅器に関し、詳しくは、入出力信号が共にシングルエンド信号であっても、電源電圧よりも大きな出力電圧を出力することができる増幅器に関するものである。   The present invention relates to an amplifier that amplifies an input voltage, and more particularly to an amplifier that can output an output voltage larger than a power supply voltage even when both input and output signals are single-ended signals.

図3は、従来の増幅器の構成を示した図である。図3において、増幅器100は、複数の端子(正入力端子INP、負入力端子INN、正出力端子OUTP、負出力端子OUTN、正電源端子P1、負電源端子P2、中点電源端子P3)を有する。また、増幅器100は、演算増幅器A1と抵抗R1,R2とからなる負帰還回路を有する。   FIG. 3 is a diagram showing a configuration of a conventional amplifier. In FIG. 3, the amplifier 100 has a plurality of terminals (a positive input terminal INP, a negative input terminal INN, a positive output terminal OUTP, a negative output terminal OUTN, a positive power supply terminal P1, a negative power supply terminal P2, and a midpoint power supply terminal P3). . The amplifier 100 has a negative feedback circuit including an operational amplifier A1 and resistors R1 and R2.

入力信号源Eiは、正入力端子INP、負入力端子INNに接続される。負荷RLは、正出力端子OUTP、負出力端子OUTNに接続される。正電源E11は、正電源端子P1、中点電源端子P3に接続される。負電源E12は、正電源E11と直列に設けられ、中点源端子P3、負電源端子P2に接続される。   The input signal source Ei is connected to the positive input terminal INP and the negative input terminal INN. The load RL is connected to the positive output terminal OUTP and the negative output terminal OUTN. The positive power supply E11 is connected to the positive power supply terminal P1 and the midpoint power supply terminal P3. The negative power supply E12 is provided in series with the positive power supply E11, and is connected to the midpoint source terminal P3 and the negative power supply terminal P2.

演算増幅器A1は、正電源入力端子が正電源端子P1に接続され、負電源入力端子が負電源端子P2に接続され、非反転入力端子が正入力端子INPに接続される。また、出力端子が、正出力端子OUTPに接続されると共に、直列に接続された抵抗R1,R2を介して負出力端子OUTN、負入力端子INN、中点電源端子P3に接続される。さらに、反転入力端子が、抵抗R1を介して出力端子に接続され、負帰還回路を構成する。   The operational amplifier A1 has a positive power supply input terminal connected to the positive power supply terminal P1, a negative power supply input terminal connected to the negative power supply terminal P2, and a non-inverting input terminal connected to the positive input terminal INP. The output terminal is connected to the positive output terminal OUTP, and is connected to the negative output terminal OUTN, the negative input terminal INN, and the midpoint power supply terminal P3 via resistors R1 and R2 connected in series. Further, the inverting input terminal is connected to the output terminal via the resistor R1 to constitute a negative feedback circuit.

このような増幅器の動作を説明する。
正電源E11、負電源E12が、直列に接続され、通常同じ電圧である。これにより、中点電源端子P3の電位が、正電源端子P1、負電源端子P2の中点電位となる。また、中点電源端子P3が、負入力端子INNと負出力端子OUTNに同時に接続されるので、これら(中点電源端子P3、負入力端子INN、負出力端子OUTN)は、共通電位となる。
The operation of such an amplifier will be described.
A positive power source E11 and a negative power source E12 are connected in series and are usually at the same voltage. Thereby, the potential of the midpoint power supply terminal P3 becomes the midpoint potential of the positive power supply terminal P1 and the negative power supply terminal P2. Further, since the midpoint power supply terminal P3 is simultaneously connected to the negative input terminal INN and the negative output terminal OUTN, these (the midpoint power supply terminal P3, the negative input terminal INN, and the negative output terminal OUTN) have a common potential.

ここで、入力信号源Eiの入力電圧がViであったとすれば、一般的に知られる計算により出力電圧Voは、下記の式(1)になる。
Vo=Vi・(R1+R2)/R2 (1)
Here, if the input voltage of the input signal source Ei is Vi, the output voltage Vo is represented by the following equation (1) by a generally known calculation.
Vo = Vi · (R1 + R2) / R2 (1)

簡単のため抵抗R1=抵抗R2とすれば、式(1)は式(2)で表され、増幅器100はゲインが2倍となる。
Vo=Vi・2 (2)
For the sake of simplicity, if resistor R1 = resistor R2, equation (1) is expressed by equation (2), and the gain of amplifier 100 is doubled.
Vo = Vi · 2 (2)

続いて、増幅器100の最大出力電圧について説明する。図3に示す構成では、最大出力電圧は、演算増幅器A1の最大出力電圧仕様に等しくなる。つまり、演算増幅器A1に、いわゆるRail-to-Rail出力の高性能なものを使用したとしても、高々、負電源E12〜正電源E11の電圧範囲しか出力できない。例えば、正電源E11と負電源E12との電圧が等しく、電源電圧値が(1/2)・Vsupとすれば、増幅器100の最大出力電圧は、±(1/2)・Vsupとなる。   Next, the maximum output voltage of the amplifier 100 will be described. In the configuration shown in FIG. 3, the maximum output voltage is equal to the maximum output voltage specification of the operational amplifier A1. That is, even if a high-performance so-called Rail-to-Rail output is used as the operational amplifier A1, only the voltage range of the negative power supply E12 to the positive power supply E11 can be output at most. For example, if the voltages of the positive power supply E11 and the negative power supply E12 are equal and the power supply voltage value is (1/2) · Vsup, the maximum output voltage of the amplifier 100 is ± (1/2) · Vsup.

次に、図4は、従来の増幅器のその他の構成を示した図である。図3は、最大出力電圧振幅が電源電圧よりも低いかほぼ同等の増幅器100の一例を示したが、図4は、入力電圧を電源電圧よりも大きな出力振幅に増幅できるBTL(Balanced Transformer-Less)増幅器200の一例である(例えば、特許文献1参照)。ここで、図3と同一のものには同一符号を付し、説明を省略する。図4において、正電源E11と負電源E12の代わりに単一の電源E1が設けられ、正電源端子P1、負電源端子P2に接続される。なお、中点電源端子P3は取り外される。そして、抵抗R2の一端が、中点電源端子P3,負入力端子INNには接続されず、負出力端子OUTNに接続される。   Next, FIG. 4 is a diagram showing another configuration of the conventional amplifier. FIG. 3 shows an example of the amplifier 100 whose maximum output voltage amplitude is lower than or substantially equal to the power supply voltage, but FIG. 4 shows a BTL (Balanced Transformer-Less) that can amplify the input voltage to an output amplitude larger than the power supply voltage. ) An example of the amplifier 200 (see, for example, Patent Document 1). Here, the same components as those in FIG. In FIG. 4, a single power supply E1 is provided instead of the positive power supply E11 and the negative power supply E12, and is connected to the positive power supply terminal P1 and the negative power supply terminal P2. The midpoint power supply terminal P3 is removed. One end of the resistor R2 is not connected to the midpoint power supply terminal P3 and the negative input terminal INN, but is connected to the negative output terminal OUTN.

負入力端子INNは、負電源端子P2に接続される。正入力端子INPは、演算増幅器A1の非反転入力端子に接続される代わりに、コンデンサC1,抵抗R5、R6を介して負出力端子OUTNに接続される。なお、コンデンサC1,抵抗R5、R6は直列に接続される。   The negative input terminal INN is connected to the negative power supply terminal P2. The positive input terminal INP is connected to the negative output terminal OUTN via the capacitor C1, resistors R5 and R6, instead of being connected to the non-inverting input terminal of the operational amplifier A1. The capacitor C1 and the resistors R5 and R6 are connected in series.

そして新たに、正電源端子P1と負電源端子P2の間に、抵抗R3,R4を直列に接続した分圧回路が設けられる。   Further, a voltage dividing circuit in which resistors R3 and R4 are connected in series is newly provided between the positive power supply terminal P1 and the negative power supply terminal P2.

また、第2の演算増幅器A2が新たに設けられる。演算増幅器A2は、正電源入力端子が正電源端子P1に接続され、負電源入力端子が負電源端子P2に接続される。また、非反転入力端子が、抵抗R3,R4の接続点、演算増幅器A1の非反転入力端子に接続され、反転入力端子が抵抗R5、R6の接続点に接続される。また、出力端子が、負出力端子OUTNに接続される。   A second operational amplifier A2 is newly provided. The operational amplifier A2 has a positive power supply input terminal connected to the positive power supply terminal P1, and a negative power supply input terminal connected to the negative power supply terminal P2. The non-inverting input terminal is connected to the connection point between the resistors R3 and R4 and the non-inverting input terminal of the operational amplifier A1, and the inverting input terminal is connected to the connection point between the resistors R5 and R6. The output terminal is connected to the negative output terminal OUTN.

このような増幅器200の動作を説明する。
図3において負荷RLは、一端が演算増幅器A1の出力によって駆動され、他端が電源E11,E12の中点に接続されていたのに対し、図4において負荷RLは、他端が演算増幅器A2の出力によって駆動される。
The operation of such an amplifier 200 will be described.
In FIG. 3, one end of the load RL is driven by the output of the operational amplifier A1 and the other end is connected to the midpoint of the power supplies E11 and E12, whereas in FIG. 4, the load RL has the other end connected to the operational amplifier A2. Driven by the output of

そして、演算増幅器A2が、入力信号の入力電圧Viを反転増幅して出力する。一方、演算増幅器A1が、演算増幅器A2の出力をもう一度反転増幅して出力する。この結果、負荷RLの各端OUTN、OUTPには、振幅が同じで位相が逆の信号が印加される。   Then, the operational amplifier A2 inverts and amplifies the input voltage Vi of the input signal and outputs it. On the other hand, the operational amplifier A1 inverts and amplifies the output of the operational amplifier A2 again and outputs the result. As a result, signals having the same amplitude and opposite phases are applied to the ends OUTN and OUTP of the load RL.

従って、増幅器200の最大出力電圧が、演算増幅器A1の最大出力電圧仕様と、演算増幅器A2の最大出力電圧仕様との和となる。ここで、演算増幅器A1,A2に印加される電源電圧をVsupとし、演算増幅器A1,A2にRail-to-Railタイプのものを使用すれば、増幅器200の最大出力電圧が、±Vsupとなる。つまり、図3に示す増幅器100に比べて2倍の出力振幅となる。なお、このような出力駆動方式は、一般にBTL方式と呼ばれる。   Therefore, the maximum output voltage of the amplifier 200 is the sum of the maximum output voltage specification of the operational amplifier A1 and the maximum output voltage specification of the operational amplifier A2. Here, if the power supply voltage applied to the operational amplifiers A1 and A2 is Vsup, and the operational amplifiers A1 and A2 are Rail-to-Rail type, the maximum output voltage of the amplifier 200 becomes ± Vsup. That is, the output amplitude is twice that of the amplifier 100 shown in FIG. Such an output driving method is generally called a BTL method.

特開平5−335850号公報JP-A-5-335850

図3に示す増幅器100では、正電源電圧〜負電源電圧の範囲Vsupに対し、最大出力電圧が±(1/2)・Vsupしか出力されず、電源E11、E12を2個用意する必要があった。これに対し、図4に示す増幅器200は、最大出力電圧が増幅器100の2倍であり、電源E1も1個でよい。   In the amplifier 100 shown in FIG. 3, the maximum output voltage is only ± (1/2) · Vsup with respect to the range Vsup of the positive power supply voltage to the negative power supply voltage, and it is necessary to prepare two power supplies E11 and E12. It was. On the other hand, the maximum output voltage of the amplifier 200 shown in FIG. 4 is twice that of the amplifier 100, and only one power supply E1 is required.

しかしながら、図4に示す増幅器200は、入力信号がシングルエンド信号なのに対し、出力信号がバランス信号であり、入出力信号の基準電位が異なるという問題があった。また、入力信号をコンデンサC1によりAC結合しなければならず、入力インピーダンスも低い(抵抗R5の値で制限される)という問題があった。   However, the amplifier 200 shown in FIG. 4 has a problem that the input signal is a single-ended signal, whereas the output signal is a balance signal, and the reference potentials of the input and output signals are different. Further, the input signal must be AC-coupled by the capacitor C1, and the input impedance is low (limited by the value of the resistor R5).

そこで本発明の目的は、入出力信号が共にシングルエンド信号であっても、電源電圧よりも大きな最大出力電圧を出力することができる増幅器を実現することにある。   Accordingly, an object of the present invention is to realize an amplifier capable of outputting a maximum output voltage larger than a power supply voltage even when both input and output signals are single-ended signals.

請求項1記載の発明は、
入力電圧を増幅する増幅器において、
出力端子から出力される出力電圧を分圧して反転入力端子に帰還し、非反転入力端子に入力される前記入力電圧を安定したゲインで増幅する第1の演算増幅器と、
この第1の演算増幅器に入力される正電源と負電源との電位を分圧し、分圧電位を出力する分圧回路と、
正電源入力端子、負電源入力端子のそれぞれが前記第1の演算増幅器の正電源入力端子、負電源入力端子に接続され、出力端子が基準電位に接続され、非反転入力端子に前記分圧回路の分圧電位が入力され、反転入力端子が前記第1の演算増幅器の非反転入力端子に接続された第2の演算増幅器と
設け、
前記第1の演算増幅器の非反転入力端子および前記第2の演算増幅器の反転入力端子に前記入力電圧が入力されることを特徴とするものである。

The invention described in claim 1
In an amplifier that amplifies the input voltage,
A first operational amplifier that divides the output voltage output from the output terminal, feeds back to the inverting input terminal, and amplifies the input voltage input to the non-inverting input terminal with a stable gain;
A voltage dividing circuit that divides the potentials of the positive power source and the negative power source input to the first operational amplifier and outputs the divided potential;
Each of a positive power input terminal and a negative power input terminal is connected to a positive power input terminal and a negative power input terminal of the first operational amplifier, an output terminal is connected to a reference potential, and the voltage dividing circuit is connected to a non-inverting input terminal. And a second operational amplifier having an inverting input terminal connected to a non-inverting input terminal of the first operational amplifier .
The input voltage is input to a non-inverting input terminal of the first operational amplifier and an inverting input terminal of the second operational amplifier .

請求項2記載の発明は、請求項1記載の発明において、
第1の演算増幅器の出力端子は、出力電圧を分圧するための複数の抵抗を介して、前記第2の演算増幅器の出力端子に接続されることを特徴とするものである。
請求項3記載の発明は、請求項1または2記載の発明において、
分圧回路は、複数の抵抗を直列に接続した抵抗直列回路であることを特徴とするものである。
The invention according to claim 2 is the invention according to claim 1,
The output terminal of the first operational amplifier is connected to the output terminal of the second operational amplifier via a plurality of resistors for dividing the output voltage.
The invention according to claim 3 is the invention according to claim 1 or 2,
The voltage dividing circuit is a resistor series circuit in which a plurality of resistors are connected in series.

本発明によれば、以下のような効果がある。
請求項1〜3によれば、第1、第2の演算増幅器が、共通の電源電圧で動作する。そして、第2の演算増幅器が、増幅器の出力電圧(第1の演算増幅器の出力電圧)の変化をカバーするように電源電圧をシフトさせる。すなわち、入力電圧に追従して正電源電圧、負電源電圧をシフトさせる。これにより、増幅器は、電源電圧よりも大きな振幅の出力電圧を出力する。また、第1、第2の演算増幅器が、共通の基準電位で動作する。従って、入出力信号が共にシングルエンド信号であっても、電源電圧よりも大きな出力電圧を出力することができる。
The present invention has the following effects.
According to the first to third aspects, the first and second operational amplifiers operate with a common power supply voltage. Then, the second operational amplifier shifts the power supply voltage so as to cover the change in the output voltage of the amplifier (the output voltage of the first operational amplifier). That is, the positive power supply voltage and the negative power supply voltage are shifted following the input voltage. As a result, the amplifier outputs an output voltage having an amplitude larger than the power supply voltage. Further, the first and second operational amplifiers operate at a common reference potential. Therefore, even if the input / output signals are both single-ended signals, an output voltage larger than the power supply voltage can be output.

以下図面を用いて本発明の実施の形態を説明する。
図1は、本発明の一実施例を示す構成図である。ここで、図4と同一のものは同一符号を付し、説明を省略する。図1において、増幅器300は、複数の端子(正入力端子INP、負入力端子INN、正出力端子OUTP、負出力端子OUTN、正電源端子P1、負電源端子P2)を有する。また、増幅器300は、第1の演算増幅器A1、第2の演算増幅器A2、抵抗R1〜R4を有する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention. Here, the same components as those in FIG. In FIG. 1, an amplifier 300 has a plurality of terminals (a positive input terminal INP, a negative input terminal INN, a positive output terminal OUTP, a negative output terminal OUTN, a positive power supply terminal P1, and a negative power supply terminal P2). The amplifier 300 includes a first operational amplifier A1, a second operational amplifier A2, and resistors R1 to R4.

演算増幅器A1,A2の正電源入力端子が正電源端子P1に接続され、負電源入力端子が負電源端子P2に接続される。つまり、演算増幅器A1,A2は、電源E1から電源電圧が供給され動作する。   The positive power supply input terminals of the operational amplifiers A1 and A2 are connected to the positive power supply terminal P1, and the negative power supply input terminal is connected to the negative power supply terminal P2. That is, the operational amplifiers A1 and A2 operate by being supplied with the power supply voltage from the power supply E1.

また、演算増幅器A1の非反転入力端子と演算増幅器A2の反転入力端子とが、正入力端子INPに接続される。そして、演算増幅器A1の出力端子が、正出力端子OUTPに接続されると共に、直列に接続された抵抗R1,R2を介して負出力端子OUTN、負入力端子INN、演算増幅器A2の出力端子に接続される。さらに、演算増幅器A1の反転入力端子が、抵抗R1と抵抗R2の接続点に接続される。つまり、演算増幅器A1の出力電圧が分圧されて反転入力端子に負帰還する。   The non-inverting input terminal of the operational amplifier A1 and the inverting input terminal of the operational amplifier A2 are connected to the positive input terminal INP. The output terminal of the operational amplifier A1 is connected to the positive output terminal OUTP, and connected to the negative output terminal OUTN, the negative input terminal INN, and the output terminal of the operational amplifier A2 via the resistors R1 and R2 connected in series. Is done. Further, the inverting input terminal of the operational amplifier A1 is connected to the connection point between the resistors R1 and R2. That is, the output voltage of the operational amplifier A1 is divided and negatively fed back to the inverting input terminal.

正電源端子P1と負電源端子P2の間に抵抗R3,R4が直列に設けられ、この抵抗直列回路が、演算増幅器A1、A2に入力される正電源と負電源との電位を分圧し、分圧電位を出力する。なお、抵抗R3,R4は、分圧回路である。さらに、演算増幅器A2の非反転入力端子が、抵抗R3,R4の接続点に接続され、分圧電位が入力される。   Resistors R3 and R4 are provided in series between the positive power supply terminal P1 and the negative power supply terminal P2, and this resistance series circuit divides the potential between the positive power supply and the negative power supply input to the operational amplifiers A1 and A2, Outputs the voltage potential. The resistors R3 and R4 are voltage dividing circuits. Further, the non-inverting input terminal of the operational amplifier A2 is connected to the connection point of the resistors R3 and R4, and the divided potential is input.

ここで説明を簡単にするため、負出力端子OUTN、負入力端子INN、演算増幅器A2の出力端子が互いに接続されているが、この点をグランドGNDと称し、基準電位として説明をする。   Here, in order to simplify the description, the negative output terminal OUTN, the negative input terminal INN, and the output terminal of the operational amplifier A2 are connected to each other. This point is referred to as the ground GND and will be described as a reference potential.

なお、演算増幅器A1,A2の電源電圧(つまり、正電源端子P1と負電源端子P2間の電圧)をVsupとし、グランドGNDと正電源端子P1間の電圧をVp1(以下、正電源電圧Vp1と呼ぶ)とし、グランドGNDと負電源端子P2間の電圧をVp2(以下、負電源電圧Vp2と呼ぶ)とする。   Note that the power supply voltage of the operational amplifiers A1 and A2 (that is, the voltage between the positive power supply terminal P1 and the negative power supply terminal P2) is Vsup, and the voltage between the ground GND and the positive power supply terminal P1 is Vp1 (hereinafter referred to as the positive power supply voltage Vp1). The voltage between the ground GND and the negative power supply terminal P2 is Vp2 (hereinafter referred to as the negative power supply voltage Vp2).

このような増幅器の動作を説明する。
まず、演算増幅器A1の動作を説明する。演算増幅器A1が、図3と同様に、非反転入力端子に入力される入力電圧Viを安定したゲインで増幅し、出力電圧Voで出力する。なお、出力電圧Voと入力電圧Viの関係は、図3で示したように式(1)となる。
Vo=Vi・(R1+R2)/R2 (1)
The operation of such an amplifier will be described.
First, the operation of the operational amplifier A1 will be described. As in FIG. 3, the operational amplifier A1 amplifies the input voltage Vi input to the non-inverting input terminal with a stable gain, and outputs it with the output voltage Vo. Note that the relationship between the output voltage Vo and the input voltage Vi is expressed by Equation (1) as shown in FIG.
Vo = Vi · (R1 + R2) / R2 (1)

簡単のため抵抗R1=抵抗R2とすれば、式(1)は式(2)で表され、演算増幅器A1が、2倍のゲインで入力電圧Viを増幅する。
Vo=Vi・2 (2)
If resistance R1 = resistor R2 for simplicity, Expression (1) is expressed by Expression (2), and the operational amplifier A1 amplifies the input voltage Vi with a double gain.
Vo = Vi · 2 (2)

次に演算増幅器A2の動作を説明する。また、図2は、入力電圧Viと各部の電圧(グランドGNDを基準)との関係を示した図である。図3に示す増幅器100は、負出力端子OUTN、負入力端子INNは共に、中点電源端子P3に接続されていた。一方、図1に示す増幅器300は、負出力端子OUTN,負入力端子INNは共に、演算増幅器A2の出力端子に接続される。   Next, the operation of the operational amplifier A2 will be described. FIG. 2 is a diagram showing the relationship between the input voltage Vi and the voltages of the respective parts (referenced to the ground GND). In the amplifier 100 shown in FIG. 3, the negative output terminal OUTN and the negative input terminal INN are both connected to the midpoint power supply terminal P3. On the other hand, in the amplifier 300 shown in FIG. 1, both the negative output terminal OUTN and the negative input terminal INN are connected to the output terminal of the operational amplifier A2.

また、分圧回路が、電源電圧Vsupの分圧電位を、演算増幅器A2の非反転入力端子に出力する。例えば、抵抗R3=R4とすれば、分圧電位が、正電源電圧Vp1と負電源電圧Vp2との中点電位となる。また、演算増幅器A2の反転入力端子と演算増幅器A1の非反転入力端子とが互いに接続され、正入力端子INPとも接続されている。そして、入力信号源Eiが、入力端子INP,INN間に接続されている。従って、演算増幅器A2の出力が、入力信号源Eiを介して演算増幅器A2の反転入力端子に負帰還される。   The voltage dividing circuit outputs the divided potential of the power supply voltage Vsup to the non-inverting input terminal of the operational amplifier A2. For example, if the resistance R3 = R4, the divided potential is a midpoint potential between the positive power supply voltage Vp1 and the negative power supply voltage Vp2. The inverting input terminal of the operational amplifier A2 and the non-inverting input terminal of the operational amplifier A1 are connected to each other and also connected to the positive input terminal INP. An input signal source Ei is connected between the input terminals INP and INN. Therefore, the output of the operational amplifier A2 is negatively fed back to the inverting input terminal of the operational amplifier A2 via the input signal source Ei.

ここで、入力信号源Eiの入力電圧Vi=0[V]の場合を説明すると、演算増幅器A2が、正電源電圧Vp1と負電源電圧Vp2との中点を、演算増幅器A2の非反転入力端子の電位と一致するように制御する。このとき各部(入力電圧Vi、出力電圧Vo、正電源電圧Vp1、負電源電圧Vp2)の電位が、グランドGNDを基準にすると下記になる。
Vi=0
Vo=0
Vp1=+(1/2)・Vsup (3)
Vp2=−(1/2)・Vsup (4)
Here, the case of the input voltage Vi = 0 [V] of the input signal source Ei will be described. The operational amplifier A2 uses the midpoint between the positive power supply voltage Vp1 and the negative power supply voltage Vp2 as the non-inverting input terminal of the operational amplifier A2. Control is made to match the potential of. At this time, the potential of each part (input voltage Vi, output voltage Vo, positive power supply voltage Vp1, negative power supply voltage Vp2) is as follows with reference to the ground GND.
Vi = 0
Vo = 0
Vp1 = + (1/2) · Vsup (3)
Vp2 =-(1/2) .Vsup (4)

次に、入力電圧Vi=+(1/2)・Vsupの場合、各部の電位が下記になる。
Vi=+(1/2)・Vsup
Vo=+Vsup
Vp1=+Vsup (5)
Vp2=0 (6)
従って、式(3)、(4)と式(5)、(6)を比べると、電源電圧Vp1,Vp2が正方向に(1/2)・Vsupだけシフトしている。
Next, when the input voltage Vi = + (1/2) · Vsup, the potential of each part is as follows.
Vi = + (1/2) · Vsup
Vo = + Vsup
Vp1 = + Vsup (5)
Vp2 = 0 (6)
Therefore, when the expressions (3) and (4) are compared with the expressions (5) and (6), the power supply voltages Vp1 and Vp2 are shifted by (1/2) · Vsup in the positive direction.

次に、入力電圧Vi=−(1/2)・Vsupの場合、各部の電位が下記になる。
Vi=−(1/2)・Vsup
Vo=−Vsup
Vp1=0 (7)
Vp2=−Vsup (8)
Next, when the input voltage Vi = − (1/2) · Vsup, the potential of each part is as follows.
Vi =-(1/2) .Vsup
Vo = -Vsup
Vp1 = 0 (7)
Vp2 = −Vsup (8)

従って、式(3)、(4)と式(7)、(8)を比べると、電源電圧Vp1,Vp2が負方向に(1/2)・Vsupだけシフトしている。つまり、図2に示すように、演算増幅器A2が、出力電圧Voの変化をカバーするように、電源電圧Vsupをシフトさせるような動作をする。従って、増幅器300は、図4に示したBTL増幅器であるかのように動作し、電源電圧Vsupの2倍の電圧振幅を出力する。つまり、出力電圧Voを広い範囲まで出力できる。   Therefore, when the expressions (3) and (4) are compared with the expressions (7) and (8), the power supply voltages Vp1 and Vp2 are shifted by (1/2) · Vsup in the negative direction. That is, as shown in FIG. 2, the operational amplifier A2 operates to shift the power supply voltage Vsup so as to cover the change in the output voltage Vo. Therefore, the amplifier 300 operates as if it is the BTL amplifier shown in FIG. 4, and outputs a voltage amplitude that is twice the power supply voltage Vsup. That is, the output voltage Vo can be output to a wide range.

このように、演算増幅器A1,A2が、共通の電源E1で動作する。そして、演算増幅器A2が、増幅器300の出力電圧(演算増幅器A1の出力電圧)Voの変化をカバーするように電源E1の電源電圧Vsupをシフトさせる。すなわち、入力信号源E1の入力電圧Viに追従して正電源電圧Vp1,負電源電圧Vp2をシフトさせる。これにより、増幅器300は、電源電圧Vsupよりも大きな振幅(本実施例では、2倍)の出力電圧Voを出力する。また、演算増幅器A1、A2共に共通の基準電位(本実施例では、グランドGND)で動作する。従って、入出力信号が共にシングルエンド信号であっても、電源電圧よりも大きな出力電圧を出力することができる。   In this manner, the operational amplifiers A1 and A2 operate with the common power supply E1. Then, the operational amplifier A2 shifts the power supply voltage Vsup of the power supply E1 so as to cover the change in the output voltage of the amplifier 300 (output voltage of the operational amplifier A1) Vo. That is, the positive power supply voltage Vp1 and the negative power supply voltage Vp2 are shifted following the input voltage Vi of the input signal source E1. As a result, the amplifier 300 outputs an output voltage Vo having a larger amplitude (twice in this embodiment) than the power supply voltage Vsup. Further, the operational amplifiers A1 and A2 operate at a common reference potential (in this embodiment, the ground GND). Therefore, even if the input / output signals are both single-ended signals, an output voltage larger than the power supply voltage can be output.

また、演算増幅器A1、A2の正電源入力端子、負電源入力端子のそれぞれが、共通に接続されるので、図3に示す増幅器100と比較して、電源E1が1個ですむ。   Further, since the positive power supply input terminal and the negative power supply input terminal of the operational amplifiers A1 and A2 are connected in common, only one power supply E1 is required as compared with the amplifier 100 shown in FIG.

また、図4に示すBTL増幅器200と比較して、増幅器300への入力、出力ともにDC結合であって、結合コンデンサC1が不要となる。さらに、入力信号が、演算増幅器A1,A2に入力されるので、入力インピーダンスが高くなる。   Compared with the BTL amplifier 200 shown in FIG. 4, both the input and output to the amplifier 300 are DC coupled, and the coupling capacitor C1 is not required. Furthermore, since the input signal is input to the operational amplifiers A1 and A2, the input impedance is increased.

つまり、図3、図4の問題点を解消した上で、両者の長所を併せ持つ増幅器300となっている。   That is, the amplifier 300 has the advantages of both after solving the problems of FIGS.

そして、増幅器300は、電源電圧Vsupよりも大きな出力電圧振幅となる。これにより、低電源電圧・低消費電力のオーディオ・パワーアンプを利用するもの、例えば、携帯電話端末、ポータブルカセットデッキ、携帯型ラジオ等に広く用いることができる。また、シングルエンド入出力でありながら、精度のよい大振幅が得られるので、バッテリー駆動の可搬型測定器の出力増幅回路、センサ回路等にも適している。   The amplifier 300 has an output voltage amplitude larger than the power supply voltage Vsup. Thus, it can be widely used in devices that use audio power amplifiers with low power supply voltage and low power consumption, such as mobile phone terminals, portable cassette decks, and portable radios. In addition, since a large amplitude with high accuracy can be obtained while being a single-ended input / output, it is also suitable for an output amplifier circuit, a sensor circuit, etc. of a battery-driven portable measuring instrument.

なお、本発明はこれに限定されるものではなく、以下のようなものでもよい。
抵抗R1=抵抗R2として説明をしたが、抵抗値は等しくなくともよい。同様に抵抗R3=抵抗R4として説明をしたが、抵抗値は等しくなくともよい。
In addition, this invention is not limited to this, The following may be sufficient.
Although the description has been made assuming that the resistor R1 = the resistor R2, the resistance values may not be equal. Similarly, the resistance R3 = the resistance R4 has been described, but the resistance values may not be equal.

また、説明を簡単にするために、負入力端子INN、負出力端子OUTN、演算増幅器A2の出力の共通点をグランドGNDとして扱ったが、グランドGNDにしなくともよい。   For simplicity of explanation, the common point of the negative input terminal INN, the negative output terminal OUTN, and the output of the operational amplifier A2 is treated as the ground GND. However, the ground GND may not be used.

さらに、演算増幅器A2と抵抗R3,R4による部分は、電源E1の正電源電圧Vp1、負電源電圧Vp2をシフトさせる目的で動作するので、演算増幅器A2と抵抗R3,R4は、高精度な部品とする必要がない。つまり、出力信号となる出力電圧の精度は、演算増幅器A1,抵抗R1,R2によって決定されるので、ここだけを注意して部品選定すればよい。   Further, since the portion of the operational amplifier A2 and the resistors R3 and R4 operates for the purpose of shifting the positive power supply voltage Vp1 and the negative power supply voltage Vp2 of the power supply E1, the operational amplifier A2 and the resistors R3 and R4 are high-precision components. There is no need to do. That is, the accuracy of the output voltage that becomes the output signal is determined by the operational amplifier A1 and the resistors R1 and R2.

本発明の一実施例を示した構成図である。It is the block diagram which showed one Example of this invention. 図1に示す装置における各部の電圧を示した図である。It is the figure which showed the voltage of each part in the apparatus shown in FIG. 従来の増幅器の構成を示した図である。It is the figure which showed the structure of the conventional amplifier. 従来のBTL増幅器の構成を示した図である。It is the figure which showed the structure of the conventional BTL amplifier.

符号の説明Explanation of symbols

300 増幅器
A1 第1の演算増幅器
A2 第2の演算増幅器
R1〜R4 抵抗
300 Amplifier A1 First operational amplifier A2 Second operational amplifier R1-R4 Resistance

Claims (3)

入力電圧を増幅する増幅器において、
出力端子から出力される出力電圧を分圧して反転入力端子に帰還し、非反転入力端子に入力される前記入力電圧を安定したゲインで増幅する第1の演算増幅器と、
この第1の演算増幅器に入力される正電源と負電源との電位を分圧し、分圧電位を出力する分圧回路と、
正電源入力端子、負電源入力端子のそれぞれが前記第1の演算増幅器の正電源入力端子、負電源入力端子に接続され、出力端子が基準電位に接続され、非反転入力端子に前記分圧回路の分圧電位が入力され、反転入力端子が前記第1の演算増幅器の非反転入力端子に接続された第2の演算増幅器と
設け、
前記第1の演算増幅器の非反転入力端子および前記第2の演算増幅器の反転入力端子に前記入力電圧が入力されることを特徴とした増幅器。
In an amplifier that amplifies the input voltage,
A first operational amplifier that divides the output voltage output from the output terminal, feeds back to the inverting input terminal, and amplifies the input voltage input to the non-inverting input terminal with a stable gain;
A voltage dividing circuit that divides the potentials of the positive power source and the negative power source input to the first operational amplifier and outputs the divided potential;
Each of a positive power input terminal and a negative power input terminal is connected to a positive power input terminal and a negative power input terminal of the first operational amplifier, an output terminal is connected to a reference potential, and the voltage dividing circuit is connected to a non-inverting input terminal. And a second operational amplifier having an inverting input terminal connected to a non-inverting input terminal of the first operational amplifier .
The amplifier, wherein the input voltage is input to a non-inverting input terminal of the first operational amplifier and an inverting input terminal of the second operational amplifier.
第1の演算増幅器の出力端子は、出力電圧を分圧するための複数の抵抗を介して、前記第2の演算増幅器の出力端子に接続されることを特徴とする請求項1記載の増幅器。   2. The amplifier according to claim 1, wherein the output terminal of the first operational amplifier is connected to the output terminal of the second operational amplifier via a plurality of resistors for dividing the output voltage. 分圧回路は、複数の抵抗を直列に接続した抵抗直列回路であることを特徴とする請求項1または2記載の増幅器。   3. The amplifier according to claim 1, wherein the voltage dividing circuit is a resistor series circuit in which a plurality of resistors are connected in series.
JP2004239028A 2004-08-19 2004-08-19 amplifier Expired - Fee Related JP4461480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239028A JP4461480B2 (en) 2004-08-19 2004-08-19 amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239028A JP4461480B2 (en) 2004-08-19 2004-08-19 amplifier

Publications (2)

Publication Number Publication Date
JP2006060441A JP2006060441A (en) 2006-03-02
JP4461480B2 true JP4461480B2 (en) 2010-05-12

Family

ID=36107569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239028A Expired - Fee Related JP4461480B2 (en) 2004-08-19 2004-08-19 amplifier

Country Status (1)

Country Link
JP (1) JP4461480B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355760A (en) * 1976-11-01 1978-05-20 Horiba Ltd Electric signal processing power supply circuit
JP2696986B2 (en) * 1988-09-16 1998-01-14 松下電器産業株式会社 Low frequency amplifier

Also Published As

Publication number Publication date
JP2006060441A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
US9473088B2 (en) Signal processing circuit, resolver digital converter, and multipath nested mirror amplifier
JP5215399B2 (en) Improved low power, low noise amplifier system
US7292098B2 (en) Operational amplifier
US7479826B2 (en) Chopper amplifier circuit and semiconductor device
US20120154048A1 (en) Amplifier common-mode control methods
JP2003110375A (en) Self-operating pwm (pulse width modulation) amplifier
JP4515241B2 (en) Output amplifier circuit and sensor device using the same
CN108694962B (en) Amplifier and semiconductor device using the same
JP2001223546A (en) Multistage signal amplifier circuit
JP2005509347A (en) Power amplifier with distortion compensation
US7961042B2 (en) Amplifier circuit and magnetic sensor
JP2010220195A (en) Current conveyor based instrumentation amplifier
US10819293B2 (en) Power amplifier
JP4295109B2 (en) Power amplifier module
JP2011151705A (en) Differential amplifier circuit
JP2013121160A (en) Fully-differential feedback amplifier circuit and electrical equipment
US20160181997A1 (en) Signal amplifying circuit
JP4461480B2 (en) amplifier
KR100770747B1 (en) Digital amplifier and method of reproducing sound
US7199655B2 (en) Multistage amplifier circuit without interstage coupling capacitor
JP2007060069A (en) Differential output circuit
JP5320503B2 (en) Amplifier circuit
US7786796B2 (en) Audio amplifier
WO2006025417A1 (en) Balanced output circuit and electronic device using the same
JP2019118060A (en) Operational amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees