JPH03114635A - Method for guiding cast slab utilizing metallurgical characteristic - Google Patents

Method for guiding cast slab utilizing metallurgical characteristic

Info

Publication number
JPH03114635A
JPH03114635A JP25207189A JP25207189A JPH03114635A JP H03114635 A JPH03114635 A JP H03114635A JP 25207189 A JP25207189 A JP 25207189A JP 25207189 A JP25207189 A JP 25207189A JP H03114635 A JPH03114635 A JP H03114635A
Authority
JP
Japan
Prior art keywords
mold
slab
cast slab
casting
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25207189A
Other languages
Japanese (ja)
Inventor
Masanori Minagawa
昌紀 皆川
Hideyuki Misumi
三隅 秀幸
Takafumi Matsuzaki
松崎 孝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25207189A priority Critical patent/JPH03114635A/en
Publication of JPH03114635A publication Critical patent/JPH03114635A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve cooling effect and to eliminate bulging by beforehand predicting heat shrinkage and transformation expansion in the structure transforming in casting direction of surface layer at shell part in a cast slab, deciding short side interval of a mold based on them and executing casting. CONSTITUTION:When the molten steel having <=0.765wt.% C is cast into the mold and continuous casting is executed to make the cast slab by drawing while cooling, in the case of using B for width of the cast slab and (x) for distance in casting direction from meniscus in the cast slab, the relation of the equation I is obtd., i.e., B=ax<2>+bx+c (a<0, c>0) in gamma structure single part at the shell part in the cast slab. Further, the relation of the equation II, i.e., B=dx+e (d>0) in gamma+alpha structure part and the equation III, i.e., B=fx+g (f<=0) in alpha structure single part is obtd. By which, the short side interval at right and left sides in the cast slab is determined so as to continue the equations I, II and III related to (x). By this method, fear of the development of breakout is eliminated and the productivity is improved and the production cost is reduced, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は連続鋳造の鋳型幅寸法をメタラジ−特性を利用
して決定し、その鋳型を使って鋳片を案内する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for determining the width of a continuous casting mold using metallurgy characteristics and guiding a slab using the mold.

[従来の技術] 通常行なわれているスラブの連続鋳造は、水冷銅鋳型を
使用し、フラックスを潤滑剤として厚み200〜300
 mm前後、幅1000〜2000mm前後の鋳片を、
1〜2 m/minの速度で鋳造しており、鋳造過程の
抜熱量は7 X 105kcal/h−m2程度である
ので鋳型内シェルは全域でγ(オーステナイト)組織で
凝固を完了する。
[Prior art] The conventional continuous casting of slabs uses a water-cooled copper mold and uses flux as a lubricant to cast slabs with a thickness of 200 to 300 mm.
Slabs with a width of around 1000 to 2000 mm,
Casting is carried out at a speed of 1 to 2 m/min, and the amount of heat removed during the casting process is approximately 7 x 105 kcal/h-m2, so that the shell within the mold is completely solidified with a γ (austenite) structure throughout the entire area.

このような連続鋳造方法において、コーナー縦割れはブ
レイクアウトの原因の一つであり、コーナー縦割れを防
止するため、その要因であるコーナ一部のホットスポッ
トの発生を抑制するため、鋳型短辺にテーパーをつりて
鋳片を案内する方法が実施されている。
In such continuous casting methods, vertical corner cracks are one of the causes of breakout. A method has been implemented in which the slab is guided by a taper.

例えば、鉄と鋼Vo1.67、No、8.1203頁に
、鋳造速度1.6m/minの連続鋳造において鋳型短
辺にQ、9mm/mの一定勾配のテーパーをつけて、コ
ーナー縦割れ発生率を13.:196から5.2木に改
善した報告がある。
For example, in Tetsu to Hagane Vol. 1.67, No. 8, page 1203, vertical corner cracks occur when the short side of the mold is tapered with a constant slope of Q, 9 mm/m during continuous casting at a casting speed of 1.6 m/min. Rate 13. : There is a report that it has been improved from 196 to 5.2 trees.

これを参考に、本発明者らは、連続鋳造効率を増大させ
る目的で、前記0.9mm/mの一定勾配のテーパーを
つけた短辺を使用して、厚み50mm、幅1.2mの鋳
片を抜熱量2 X l06kcal/h−m2程度て連
続鋳造したところ、鋳片短辺の凝固効率が悪く充分に凝
固せず、鋳片の凝固シェルの厚さは、第2図の従来例に
示すごとくになった。その結果、冷却所要時間、冷却所
要距離が長くなって連続鋳造効率が低下すると共にバル
ジングは大きくなりブレイクアウトの発生も見られた。
Referring to this, the present inventors used the short side tapered with a constant slope of 0.9 mm/m to increase the continuous casting efficiency, and created a casting with a thickness of 50 mm and a width of 1.2 m. When the slab was continuously cast with a heat removal amount of about 2 x 106kcal/h-m2, the solidification efficiency of the short side of the slab was poor and it did not solidify sufficiently, and the thickness of the solidified shell of the slab was the same as that of the conventional example shown in Fig. 2. It became as shown. As a result, the time required for cooling and the distance required for cooling became longer, the continuous casting efficiency decreased, bulging increased, and breakout occurred.

[発明が解決しようとする・課題] 本発明は、鋳造過程の鋳型内の抜熱量を高くした場合に
おける連続鋳造効率を増大させかつコーナー縦割れ、短
辺バルジングまたはブレイクアウトの発生のない鋳型を
開発し、それを用いて鋳片を案内する方法を確立するこ
とを課題とするものである。一般に、鋳型内の抜熱量を
高くしてゆくと、鋳型内での鋳片表面温度低下が著しく
鋳型内で発生する凝固シェルの組織はδ単相からδ+γ
2相→γ単相→γ+α2相→α単相に変化してゆくこと
になる。
[Problems to be Solved by the Invention] The present invention provides a mold that increases continuous casting efficiency when the amount of heat removed from the mold during the casting process is increased, and that does not cause vertical corner cracks, short side bulging, or breakouts. The objective of this project is to develop a method for guiding slabs using the developed method. Generally, as the amount of heat removed from the mold increases, the surface temperature of the slab inside the mold decreases significantly.
It will change from 2 phase → γ single phase → γ + α 2 phase → α single phase.

[課題を解決するための手段] 本発明は、鋳型内での抜熱量を高めた場合における前記
課題を、鋳型内で発生する凝固シェルの組織に注目し、
その組織が持つ特性つまり熱収縮や変態膨張量に基づい
て鋳型の短辺間隔を決定し、その鋳型で鋳片を案内する
新規な鋳片の案内力法を提供することを目的とする。
[Means for Solving the Problems] The present invention solves the above problem when the amount of heat removed in the mold is increased by focusing on the structure of the solidified shell generated in the mold,
The purpose of this invention is to provide a new slab guiding force method that determines the short side spacing of a mold based on the characteristics of its structure, that is, the amount of thermal contraction and transformation expansion, and guides the slab with the mold.

本発明はその目的を達成するために下記の手段を採用す
るものである。
The present invention employs the following means to achieve the object.

1、溶鋼を鋳型に注入して冷却しつつ引き抜いて鋳片を
連続鋳造するに際して、事前に想定した鋳片シェル部表
層の鋳造方向で変態する組織の熱収縮・変態膨張量に基
づいて、前記鋳型の短辺間隔を決定し、その鋳型で鋳片
を案内することを特徴とするメタラジ−特性を利用した
鋳片の案内方法。
1. When continuously casting slabs by injecting molten steel into a mold and drawing it out while cooling, the above-mentioned A method for guiding a slab using metallurgy characteristics, characterized by determining the short side spacing of a mold and guiding the slab using the mold.

2、重量*で炭素量が0.765!6以下の溶鋼を、鋳
型に注入して冷却しつつ引き抜いて鋳片を連続鋳造する
に際して、事前に想定した鋳片シェル部表層の鋳造方向
で変態するγ(オーステナイト)→γ+α(フェライト
)→α組織の変態膨張量に基づいて、前記鋳型の短辺間
隔を決定し、その鋳型で鋳片を案内することを特徴とす
るメタラジ−特性を利用した鋳片の案内方法。
2. When continuously casting molten steel with a carbon content of 0.765!6 or less by weight* into a mold and drawing it out while cooling, transformation occurs in the casting direction of the surface layer of the shell part of the slab, which was assumed in advance. Based on the transformation expansion amount of the γ (austenite) → γ + α (ferrite) → α structure, the short side spacing of the mold is determined, and the slab is guided by the mold. How to guide slabs.

3、#r記γ+α組織の範囲で、前記鋳型の短辺間隔が
広がることを特徴とする航記2記載のメタラジ−特性を
利用した鋳片の案内方法。
3. The method for guiding a slab using the metallurgy characteristics described in 2. #r, characterized in that the distance between the short sides of the mold is widened in the range of the γ+α structure described in #r.

[作用] 本発明者らは、上記手段を確立するため、一定テーバー
鋳型による連続鋳造の問題点を解明する実験、検討を重
ねた。
[Operation] In order to establish the above means, the present inventors conducted repeated experiments and studies to clarify the problems of continuous casting using a constant Taber mold.

このとき用いた供試鋼は特に割れ感受性の強い0.15
96C−0,254ksi −0,74jiMn −0
,01%; P −0,005!hS−0,02零八旦
の中炭へ文−に#lである。一方、鋳型内の抜熱量を高
める手段として、鋳造速度4m/min 、鋳型短辺は
第1図に点線で示すごとく、定勾配テーパーで鋳片と同
期して移動する非水冷ブロック、鋳型長辺は35m37
m1nの水冷機能を有する厚さ1.2 mmの鋼板ベル
トからなる連続鋳造機を使用した。
The test steel used at this time was 0.15, which is particularly susceptible to cracking.
96C-0,254ksi-0,74jiMn-0
,01%; P -0,005! hS-0,02 Zero Yadan's Nakatan is #l. On the other hand, as a means to increase the amount of heat removed from the mold, the casting speed was 4 m/min, the short side of the mold was a non-water-cooled block that moved in synchronization with the slab with a constant slope taper, as shown by the dotted line in Figure 1, and the long side of the mold was is 35m37
A continuous casting machine consisting of a 1.2 mm thick steel plate belt with a water cooling function of 1 mm was used.

本発明者らは実験を解析した結果、第1図に示すごとく
、鋳型短辺と鋳片短辺との間に大きなキャップが形成さ
れており、そのため鋳片短辺は第2図に点線で示すとと
メニスカスから0.25mまでは凝固シェルが成長する
が、0.25mから0.75mまでは大きなギャップの
形成の影響で凝固が停滞し、O’、75mを過ぎて再び
凝固が進行し、全体を通じて凝固効率が大幅に低下し、
バルジングの発生が避けられず、ブレイクアウトの危険
性もあることを知見した。
As a result of our experimental analysis, the inventors found that a large cap was formed between the short side of the mold and the short side of the slab, as shown in Figure 1, and therefore the short side of the slab was indicated by the dotted line in Figure 2. As shown, a solidified shell grows up to 0.25 m from the meniscus, but solidification stagnates from 0.25 m to 0.75 m due to the formation of a large gap, and solidification progresses again after O', 75 m. , the coagulation efficiency decreased significantly throughout;
It was discovered that bulging is unavoidable and there is a risk of breakout.

そこで該鋳片の凝固過程を詳細に調査したところ、この
連続鋳造の鋳型的冷却過程においては凝固鋳片の組織は
第4図に示すごとく、メニスカス直下からδ(フェライ
ト)、δ+γ、γ、γ+α、αと変態しており、その変
態体積変化と熱収縮との関係から第1図の鋳片短辺に示
す形状になっていることが判明した。ただし、δ→γ変
態は時間的に急激に生じ、また凝固シェルの剛性が小さ
いため殆ど無視できるので実用的にはγ、γ+α、αの
変態として扱ってもよいことを確認した。また」1記の
現象は第5図に示ずFe −C系状態図より、重量*で
炭素量が0.765%以下の鋼について起こり得ること
が推定できる。
Therefore, we investigated the solidification process of the slab in detail, and found that during the mold-like cooling process of continuous casting, the structure of the solidified slab is as shown in Figure 4, starting from just below the meniscus, δ (ferrite), δ + γ, γ, γ + α. , α, and from the relationship between the transformation volume change and thermal contraction, it was found that the shape was shown on the short side of the slab in FIG. However, it was confirmed that the δ→γ transformation occurs rapidly over time and can be almost ignored because the rigidity of the solidified shell is small, so it can be treated as γ, γ+α, and α transformations in practical terms. Furthermore, it can be estimated from the Fe--C system phase diagram (not shown in FIG. 5) that the phenomenon described in item 1 can occur in steel having a carbon content of 0.765% or less by weight*.

本発明者らは、この事実を基に検討・工夫したものであ
り、具体的には、連続鋳造効率を増大させかつコーナー
縦割れ、短辺バルジングまたはブレイクアウトの発生の
ない鋳型を開発し、それを用いて鋳片を案内する方法を
確立するという課題は、鋳型内で、鋳片の表面と鋳型内
面との間隔を鋳型内の鋳造方向でほぼ一定の狭い範囲に
確保する(特に高温域程)ことであるとの考えに基づい
て検討した。
The present inventors have studied and devised based on this fact, and specifically, have developed a mold that increases continuous casting efficiency and does not cause vertical corner cracks, short side bulging, or breakout. The challenge of establishing a method for guiding the slab using it is to ensure that the distance between the surface of the slab and the inner surface of the mold is within a narrow, almost constant range in the casting direction within the mold (particularly in the high temperature region). This study was conducted based on the idea that this is the case.

鋳型の長辺面は鋳型ベルトの裏側より水圧で支えている
ので、鋳片の鋳型の間隔に配慮する必要はなく、鋳型の
短辺面つまり左右の鋳型短辺の間隔のみが対象となる。
Since the long side surfaces of the molds are supported by water pressure from the back side of the mold belt, there is no need to consider the spacing between the molds of the slab, and only the short side surfaces of the molds, that is, the spacing between the left and right short sides of the molds.

鋳片シェル部がγ組織率体部分では、鋳片の温度降下量
が大きいので主に熱収縮により鋳片幅Bはメニスカスか
らの鋳造方向の距離Xの2乗の関数まで考慮する必要が
ある。
When the slab shell part is a γ-structured part, the temperature drop of the slab is large, so the slab width B needs to be considered as a function of the square of the distance X in the casting direction from the meniscus, mainly due to thermal contraction. .

つまり次の(1)式のようにXが大きくなる程Bは狭く
なる。
In other words, as shown in the following equation (1), the larger X becomes, the narrower B becomes.

B = a x 2+b x + c        
(1)ただし、a<O,c>0 次に鋳片シェル部がγ+α組織部分では、Xにつれてα
組織の比率が増大するにつれて変態膨張量による変化が
主体となり、さらに熱収縮を組み合わせることにより、
Xにつれて鋳片幅Bが大きくなる次の(2)式のように
なる。
B = a x 2 + b x + c
(1) However, a<O, c>0 Next, in the γ+α texture part of the slab shell part, as
As the ratio of the structure increases, the change mainly depends on the amount of transformation expansion, and by combining it with thermal contraction,
The slab width B increases as X increases, as shown in equation (2) below.

B = d x + e            (2
)ただし、d>0 更に、鋳片シェル部がα組織単相部分ては、鋳片幅Bは
熱収縮により狭くなるが、γ組織単相のときと比較する
と温度降下が非常にゆるやかなので、次の(3)式のよ
うに鋳片幅BはXの一次関数で狭くなると近似できる。
B = d x + e (2
) However, d>0 Furthermore, when the slab shell part is a single phase α structure, the slab width B becomes narrower due to thermal contraction, but the temperature drop is very gradual compared to when the slab shell is a single phase γ structure. As shown in the following equation (3), the slab width B can be approximated as being narrowed by a linear function of X.

B =fx+g            (3)ただし
、f≦0 以−1二のことより、具体的には左右の鋳片短辺間隔を
、Xにつれて、前記の(1)式、(2)式および(3)
式をつなぎ合わせたように実現すればよい。
B = fx + g (3) However, f≦0 From the following -12, specifically, as the distance between the short sides of the left and right slab increases as X, the above formulas (1), (2), and (3)
All you have to do is connect the expressions together.

ただし実用的には(3)式の領域が存在しなかったり、
存在しても狭いので、無視しても影響はほとんどない。
However, in practical terms, the region of equation (3) does not exist,
Even if it does exist, it is so narrow that ignoring it will have little effect.

更に、具体的には、鋼種に合わせて鋳型内での抜熱量お
よび鋳造速度等を調整してγ組織単相部分の長さをほぼ
一定になるようにすることにより、鋳型形状を単純な形
状でかつ特定化させることができる。
Furthermore, specifically, by adjusting the amount of heat removed in the mold and the casting speed, etc. according to the steel type so that the length of the single phase part of the γ structure is almost constant, the mold shape can be made into a simple shape. It can be made large and specific.

モし一〇設備的には、第1図に示すように鋳片と直接接
触する短辺ブロック群(あるいはそのガイド)の案内軌
道を前記の(1)式、(2)式をつなぎ合わせるように
実現すればよい。尚、(1)式と(2)式のつなぎは@
後20〜30mmをスムーズになるようにする方が望ま
しい。このようにして実現した鋳片短辺を従来のテーパ
ータイプと対比したのが第2図であり、本発明例が冷却
がスムーズで連続鋳造効率が良いのが明らかである。
In terms of equipment, as shown in Figure 1, the guide trajectory of the short-side block group (or its guide) that comes into direct contact with the slab is connected by connecting equations (1) and (2) above. It should be realized. Furthermore, the link between equations (1) and (2) is @
It is preferable to make the rear 20 to 30 mm smooth. FIG. 2 shows a comparison of the short side of the cast slab realized in this manner with that of the conventional tapered type, and it is clear that the example of the present invention has smooth cooling and good continuous casting efficiency.

更に、短辺ブロックに温度計をつけて実験したところ、
第3図のように本発明例の方が、第2図と同様に冷却が
鋳型内てスムーズでかつ連続鋳造効率が向上しているの
が確認された。これにより本発明は連続鋳造効率が向上
したばかりでなくコーナー縦割れ、短辺パルジンクおよ
びブレイクアウトの発生がほぼ皆無となった。
Furthermore, when we experimented by attaching a thermometer to the short side block, we found that
As shown in FIG. 3, it was confirmed that in the example of the present invention, as in FIG. 2, cooling was smoother within the mold and the continuous casting efficiency was improved. As a result, the present invention not only improved the continuous casting efficiency, but also virtually eliminated the occurrence of vertical corner cracks, short side pulsing, and breakouts.

[実施例] (1)供試鋼 0.1596C−0,25*5i−0,7*Mn −o
、o1%; P −0,005!6S −0,0296
八交の中炭へ立−に鋼(2)連続鋳造条件 鋳造速度:4m/min 鋳型短辺:エンドレスに構成した非水冷銅ブロック 鋳型長辺: 35m3/minの水冷機能を有する1、
2 mm厚みの鋼板ベルト  0 鋳片寸法:厚み !’i 0mm、幅 600 mm(
3)短辺ブロック案内軌道 第4図に示すような形状に決定した。
[Example] (1) Test steel 0.1596C-0,25*5i-0,7*Mn-o
, o1%; P -0,005!6S -0,0296
Steel (2) Continuous casting conditions Casting speed: 4 m/min Short side of the mold: Endless non-water cooled copper block Long side of the mold: 35 m3/min Water cooling function 1.
2 mm thick steel plate belt 0 Slab dimensions: Thickness! 'i 0mm, width 600mm (
3) Short side block guide trajectory The shape as shown in Figure 4 was determined.

・γ組MIi単相部分 y (mm) = Ilx 2(m) メニスカスからの距離x=O〜600 ・γ+α組織部分 y(mm)=用、7 (mm/m) + hx =  
600〜1100mm ・α組織部分 (5)式の延長とする x  = 1100〜1200mm ・鋳型の長さ 1200mm (4)鋳造結果 (本発明)   (従来例) バルジング    片側0.4 mvn   片側1.
8 +nn+ブレイクアウト  0回/25ch   
2回/19ch[発明の効果] 本発明は、以上に述べたごとく、連続鋳造中に鋳片表面
に現れる組織変態体積変化、熱収縮に応1 じて鋳型短辺を案内して鋳片短辺な冷却するので、冷却
効率が高く、バルジングが皆無となり、ブレイクアウト
の発生の危険性がなくなり、生産性の向上、生産費の低
減等当業分野にもたらす効果は大きい。
・γ group MIi single phase portion y (mm) = Ilx 2 (m) Distance from meniscus x = O ~ 600 ・γ + α tissue portion y (mm) = for, 7 (mm/m) + hx =
600 to 1100 mm ・Extension of α structure part (5) x = 1100 to 1200 mm ・Length of mold 1200 mm (4) Casting results (invention) (Conventional example) Bulging 0.4 mvn on one side 1.
8 +nn+breakout 0 times/25ch
2 times/19ch [Effects of the Invention] As described above, the present invention is capable of shortening the length of a slab by guiding the short side of the mold in response to the structural transformation volume change and thermal contraction that appear on the slab surface during continuous casting. Since cooling is carried out locally, the cooling efficiency is high, there is no bulging, there is no risk of breakout, and this has great effects on the industry, such as improving productivity and reducing production costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋳片短辺の本発明例と従来例の対比図、第2図
は本発明例と従来例における鋳型内の鋳造方向での短辺
シェル厚の生成状況の対比図、第3図は本発明例と従来
例における鋳型内の鋳造方向での短辺ブロック温度の対
比図、第4図は本発明の一実施例における鋳造短辺の形
状図、第5図はFe−C系状態図である。
Fig. 1 is a comparative diagram of the short side of the inventive example and the conventional example, Fig. 2 is a comparative diagram of the generation situation of the short side shell thickness in the casting direction in the mold in the inventive example and the conventional example. The figure is a comparison diagram of the short side block temperature in the casting direction in the mold in the example of the present invention and the conventional example, Figure 4 is a shape diagram of the short side of the casting in an example of the present invention, Figure 5 is Fe-C system FIG.

Claims (1)

【特許請求の範囲】 1、溶鋼を鋳型に注入して冷却しつつ引き抜いて鋳片を
連続鋳造するに際して、事前に想定した鋳片シェル部表
層の鋳造方向で変態する組織の熱収縮・変態膨張量に基
づいて、前記鋳型の短辺間隔を決定し、その鋳型で鋳片
を案内することを特徴とするメタラジー特性を利用した
鋳片の案内方法。 2、重量%で炭素量が0.765%以下の溶鋼を、鋳型
に注入して冷却しつつ引き抜いて鋳片を連続鋳造するに
際して、事前に想定した鋳片シェル部表層の鋳造方向で
変態するγ(オーステナイト)→γ+α(フェライト)
→α組織の変態膨張量に基づいて、前記鋳型の短辺間隔
を決定し、その鋳型で鋳片を案内することを特徴とする
メタラジー特性を利用した鋳片の案内方法。 3、前記γ+α組織の範囲で、前記鋳型の短辺間隔が広
がることを特徴とする請求項2記載のメタラジー特性を
利用した鋳片の案内方法。
[Claims] 1. When continuously casting a slab by pouring molten steel into a mold and drawing it out while cooling, the thermal contraction and transformation expansion of the structure that transforms in the casting direction of the surface layer of the slab shell, which is assumed in advance. A method for guiding a slab using metallurgical properties, characterized in that the spacing between short sides of the mold is determined based on the amount of the mold, and the slab is guided by the mold. 2. When pouring molten steel with a carbon content of 0.765% or less by weight into a mold and drawing it out while cooling to continuously cast slabs, the surface layer of the slab shell undergoes transformation in the casting direction assumed in advance. γ (austenite) → γ + α (ferrite)
→A method for guiding a slab using metallurgy characteristics, characterized in that the spacing between short sides of the mold is determined based on the amount of transformation expansion of the α structure, and the slab is guided by the mold. 3. The method for guiding a slab using metallurgical properties according to claim 2, wherein the distance between the short sides of the mold increases within the range of the γ+α structure.
JP25207189A 1989-09-29 1989-09-29 Method for guiding cast slab utilizing metallurgical characteristic Pending JPH03114635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25207189A JPH03114635A (en) 1989-09-29 1989-09-29 Method for guiding cast slab utilizing metallurgical characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25207189A JPH03114635A (en) 1989-09-29 1989-09-29 Method for guiding cast slab utilizing metallurgical characteristic

Publications (1)

Publication Number Publication Date
JPH03114635A true JPH03114635A (en) 1991-05-15

Family

ID=17232147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25207189A Pending JPH03114635A (en) 1989-09-29 1989-09-29 Method for guiding cast slab utilizing metallurgical characteristic

Country Status (1)

Country Link
JP (1) JPH03114635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535868A (en) * 1993-08-23 1996-07-16 Aisin Seiki Kabushiki Kaisha Viscous fluid coupling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535868A (en) * 1993-08-23 1996-07-16 Aisin Seiki Kabushiki Kaisha Viscous fluid coupling device

Similar Documents

Publication Publication Date Title
RU2142861C1 (en) Method for continuous casting of peritectic steels
US4519439A (en) Method of preventing formation of segregations during continuous casting
JP4337565B2 (en) Steel slab continuous casting method
JPH03114635A (en) Method for guiding cast slab utilizing metallurgical characteristic
JP3380412B2 (en) Mold for continuous casting of molten steel
JP3237177B2 (en) Continuous casting method
US3918514A (en) Method of bending or straightening a continuously cast metal strand with controlled cooling
JP3390606B2 (en) Steel continuous casting method
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPH0390261A (en) Continuous casting method
GB1129332A (en) A method of and apparatus for treating metal melts such as steel melts at varying pressures
JPS5684157A (en) Horizontal continuous casting method of molten metal
JPS58184049A (en) Continuous casting method of steel in curbed type
JP2024004032A (en) Continuous casting method
JPS63180351A (en) Cast slab casting method
JPH03104819A (en) Production of high chromium steel
JPH0519165Y2 (en)
JPS61115653A (en) Continuous casting method of medium-carbon steel
JP3030596B2 (en) Continuous casting method
JPH0573506B2 (en)
Vaterlaus Continuous Casting Developments with Special Consideration of Billet and Bloom Casting and Rail Production
JPS61245949A (en) Continuous casting method
JPS55136550A (en) Continuous casting method
JPH03142046A (en) Continuous casting method
JPH03193254A (en) Method for continuously casting extremely low carbon steel