JPH03104819A - Production of high chromium steel - Google Patents

Production of high chromium steel

Info

Publication number
JPH03104819A
JPH03104819A JP24140989A JP24140989A JPH03104819A JP H03104819 A JPH03104819 A JP H03104819A JP 24140989 A JP24140989 A JP 24140989A JP 24140989 A JP24140989 A JP 24140989A JP H03104819 A JPH03104819 A JP H03104819A
Authority
JP
Japan
Prior art keywords
strand
high chromium
thickness
chromium steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24140989A
Other languages
Japanese (ja)
Inventor
Koichi Kushida
櫛田 宏一
Hidetoshi Ono
小野 秀俊
Hisakazu Mizota
久和 溝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24140989A priority Critical patent/JPH03104819A/en
Publication of JPH03104819A publication Critical patent/JPH03104819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high chromium steel having superior internal quality while obviating the necessity of complicated stages and operations by specifying molten steel superheating temp. in a tundish and carrying out rolling reduction working for a cast bloom strand, heating treatment, and rolling under respectively specified conditions at the time of producing a high chromium steel using a continuous bloom caster. CONSTITUTION:At the time of producing a high chromium steel by using a continuous bloom caster, molten steel superheating temp. in a tundish is regulated to 20-60 deg.C. Subsequently, a cast bloom strand prepared by continuous casting is subjected to rolling reduction 5-10 times unsolidification thickness in a region where the unsolidification thickness of the above cast bloom strand becomes 5-30% the thickness of this strand. Then, the above strand is heated up to 1150-1250 deg.C, held for 2-5hr, and rolled so that rolling reduction ratio is regulated to >=1.5. By this method, the high chromium steel can be obtained while obviating the necessity of complicated stages, without causing deterioration in quality.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は品質の劣化を伴ったり、複雑な工程を経るこ
となしに高クロム鋼を製造しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention aims to produce high chromium steel without deteriorating its quality or going through complicated processes.

(従来の技術) クロム含有率の高い鋼を連続鋳造して得た鋳片は鋳造後
そのまま空冷すると多くはマルテンサイトに変態するが
、一部が残留オーステナイトとなり、遅れ破壊を起こす
原因となることから、先ず均熱炉に装入し約600〜8
00℃の比較的低温で20〜30時間程度保持したのち
常温まで冷却する。そしてその後、鋳片の内部に存在す
るセンターボロシティがのちの熱処理によって酸化され
るのを防止するため鋳片の両端面に鉄板を溶接によって
はりつけた後、均熱炉にて1l50〜1350℃に加熱
・均熱後鋳片の中心部に存在する高濃度のPがδ−フエ
ライトになるのを防止する第1回目の圧延(拡散圧延)
を実施し、そして再び加熱炉にて1150〜1250℃
に加熱・均熱して10〜30時間の拡散焼鈍を実施して
丸ビレットとしてから造管圧延などの工程へ送られる。
(Conventional technology) When a slab obtained by continuous casting of steel with a high chromium content is air-cooled after casting, most of it transforms into martensite, but some of it becomes retained austenite, which causes delayed fracture. First, it is charged into a soaking furnace and heated to about 600 ~ 8
After being maintained at a relatively low temperature of 00°C for about 20 to 30 hours, it is cooled to room temperature. After that, in order to prevent the center borosity existing inside the slab from being oxidized by later heat treatment, iron plates are welded to both end faces of the slab, and then heated to 1 liter at 50-1350℃ in a soaking furnace. The first rolling (diffusion rolling) to prevent the high concentration of P present in the center of the slab from turning into δ-ferrite after heating and soaking.
and heated to 1150-1250℃ again in a heating furnace.
After heating and soaking, diffusion annealing is performed for 10 to 30 hours to form a round billet, which is then sent to a process such as tube-making rolling.

高クロム鋼はこのように良好な品質を確保するためには
複雑な工程を必要としコスト的にも不利な面があった。
High chromium steel requires complicated processes to ensure such good quality, and is also disadvantageous in terms of cost.

ここで連続鋳造によって得られた鋳片の品質改善、とく
に中心偏析を軽減する方法としては例えば特開昭61−
229450号公報に見られるようにタンディシュ内の
溶w4過熱温度を低下させた低温鋳造を行う技術が知ら
れている。
Here, as a method for improving the quality of slabs obtained by continuous casting, especially reducing center segregation, for example,
As seen in Japanese Patent No. 229450, there is known a technique for performing low-temperature casting in which the superheating temperature of the molten w4 in the tundish is lowered.

(発明が解決しようとする課題) 上記公報に開示の技術は溶鋼の過熱度(溶鋼温度〜液相
線温度)を低下させて連続鋳造を行うとともに鋳型内と
鋳片の最終凝固域において?′8鋼をかく拌するもので
ある。しかしながらこのような低温鋳造は、タンディシ
ュのノズル内における?容鋼の凝固などの操業上の問題
に加え、溶鋼の粘性の増大によって介在物の浮上を妨げ
、タンディシュの精錬機能低下させ清浄度の高い鋼の製
造が困難であった。この点、特開昭54−107831
号公報には高温鋳造を行うとともに得られた鋳片をロー
ルにて圧下して介在物の低減と中心偏折の軽減を図った
方法が開示されているが、この方法は鋳片の軽圧下によ
て中心偏析の軽戚をもたらすものであるから、高い偏析
軽滅効果を得るためには鋳片中心部を柱状品組織とする
とこが必須であり、これがためタンディシュ内溶鋼の過
熱度の適正範囲が高温側に限られ非常に狭くなるという
問題があった。上述したような複雑な工程や操作を経ず
とも内部品質の良好な高クロム鋼を製造できる新規な方
法を提案することがこの発明の目的である。
(Problems to be Solved by the Invention) The technology disclosed in the above publication performs continuous casting by lowering the degree of superheating of molten steel (molten steel temperature to liquidus temperature), and also performs continuous casting in the mold and in the final solidification region of the slab. '8 Steel is stirred. However, does such low-temperature casting work in the tundish nozzle? In addition to operational problems such as solidification of the molten steel, the increased viscosity of the molten steel prevented inclusions from floating, reducing the refining function of the tundish and making it difficult to produce highly clean steel. In this regard, JP-A-54-107831
The publication discloses a method in which high-temperature casting is performed and the resulting slab is rolled down using rolls to reduce inclusions and center deflection, but this method involves light rolling of the slab. Therefore, in order to obtain a high segregation reduction effect, it is essential to have a columnar structure in the center of the slab. There was a problem that the appropriate range was limited to the high temperature side and became very narrow. It is an object of the present invention to propose a new method for manufacturing high chromium steel with good internal quality without going through the complicated steps and operations described above.

(課題を解決するための手段) この発明はブルーム連鋳機を通用して高クロム期を製造
するに当たり、タンディシュ内の溶@過熱温度を20〜
60℃にして連続鋳造して得た鋳片ストランドに対して
、鋳片ストランドの未凝固厚が該ストランドの厚みの5
〜30%になる領域で未凝固厚みの1〜10倍の圧下を
加え、次いで1150〜1250℃の温度域に加熱して
2〜5時間保持した後、圧下比1.5以上になる圧延を
施すことを特徴とする高クロム鋼の製造方法である。
(Means for Solving the Problems) This invention, when producing a high chromium stage using a bloom continuous caster, reduces the melting @ superheating temperature in the tundish to 20~20°C.
For a slab strand obtained by continuous casting at 60°C, the unsolidified thickness of the slab strand is 5% of the thickness of the strand.
A reduction of 1 to 10 times the unsolidified thickness is applied in the region where the thickness becomes ~30%, then heated to a temperature range of 1150 to 1250°C and held for 2 to 5 hours, and then rolled to a reduction ratio of 1.5 or more. This is a method of manufacturing high chromium steel characterized by applying

なお、この発明において高クロム鋼とはクロムを6%以
上含有するものとする。
In this invention, high chromium steel is defined as containing 6% or more of chromium.

(作 用) 高クロム鋼の製造において高温鋳遣を行うと、鋼中にお
ける介在物の軽減には有利であるが、中心偏析が大きく
なり、またセンターポロシティも大きくなることから従
来の鋳造法を単に適用しただけでは品質の良好な高クロ
ム鋼は製造できなかったのである。この発明においては
介在物の軽減に有利な高思鋳造を行うが、鋳片の凝固完
了近傍域を上記の条件に従って圧下を加えるようにした
から、鋳片の中心偏析は軽減されるし、センターポロシ
ティなどの発生はなく、従って鋳片の両端にセンターボ
ロシイ内の酸化を防止するために取付けていた鉄板は全
く必要ない。また未凝固域の圧下によってPの或分偏析
の発生もないので拡散圧延とか拡散焼鈍といった工程は
全く不要となる。
(Function) High-temperature casting in the production of high chromium steel is advantageous in reducing inclusions in the steel, but it also increases center segregation and center porosity, so conventional casting methods are not recommended. It was not possible to produce high-quality high-chromium steel simply by applying it. In this invention, high density casting is performed which is advantageous for reducing inclusions, but since the area near the completion of solidification of the slab is rolled down according to the above conditions, the center segregation of the slab is reduced, and the center There is no occurrence of porosity, so there is no need for the iron plates that were attached to both ends of the slab to prevent oxidation within the center borossie. Furthermore, since no segregation of P occurs due to the reduction of the unsolidified region, steps such as diffusion rolling and diffusion annealing are completely unnecessary.

この発明では、ダンディシュ内の溶鋼過熱度を20〜6
0℃としたが、その理由は第1図に溶鋼の過熱度と鋳片
中の介在物の関係を示すとおり、鋳片中の介在物は溶t
JAの過熱度の上昇に応して減少し高クロム鋼における
介在物の軽減のためには、少な《とも?8fjI過熱度
を20℃にする必要があるからである。このように介在
物の低減にとっては溶鋼過熱度は高いほうがよいが、溶
鋼過熱度が高すぎると出鋼温度の上昇によって転炉での
負荷が大きくなる。?’?! wAA熱度の上限は介在
物の低減効果からみて60℃程度である。よってタンデ
ィシュ内の溶鋼過熱度は20〜60℃とした。
In this invention, the degree of superheating of the molten steel in the dandysh is set to 20 to 6.
The reason for this is that as shown in Figure 1, which shows the relationship between the degree of superheating of molten steel and the inclusions in the slab, the inclusions in the slab are
At least ? This is because the degree of superheating of 8fjI needs to be 20°C. As described above, it is better to have a high degree of superheating of molten steel in order to reduce inclusions, but if the degree of superheating of molten steel is too high, the load on the converter increases due to the rise in tapping temperature. ? '? ! The upper limit of the wAA thermal degree is about 60° C. in view of the effect of reducing inclusions. Therefore, the degree of superheating of the molten steel in the tundish was set to 20 to 60°C.

次に第2図に溶鋼過熱度と鋳片の中心偏折の関係をC含
有量の観点からC/Coで評価したグラフを示す。第2
図より溶鋼過熱度の上界に伴い中心偏析が劣化し、また
これとともにセンターボロシティも大きくなるのが明白
であり、従ってこの発明においてはこの点で鋳片ストラ
ンドに対して圧下加工を加える必要がある。鋳片ストラ
ントの未凝固厚が該ストランドの厚みの5〜30%にな
る領城で未凝固厚みの1〜10倍の圧下を加えることと
したのは、鋳片トスランドに対する圧下加工と中心偏析
の関係を第3図に示すように鋳片ストラントの未凝固厚
と同等の圧下を加えることにより、C/C0を1.1以
内に収めることが可能となり、一方未凝固厚みの2倍の
圧下を加えることによりC/Co〈1.025となり充
分な中心偏析軽戚効果が得られるからである。またセン
ターボロシティについても未凝固部分が圧着されること
になるから大きく軽滅され、しかもこの範囲を満足する
圧下を施すことによって鋳片中心部の結晶粒を微細化す
るとこができる。上記の圧下加工を行う領域として鋳片
ストランドの未凝固厚が該ストランドの厚みの5〜30
%の領域としたのは、鋳片ストランドの未凝固厚が該ス
トランドの厚みの5%未満ではすでに中心偏析が生して
いる部分があるからであり、方30%を越える部分で高
圧下を加えると負偏析が発生するおそれがあるからであ
る。ちなみに鋳片ストランドの未凝固厚が該ストランド
の厚みの35%を越える領域で圧下比が0.5以上にな
る圧下を行った場合ではC/Co<0.9となる。なお
、上掲第3図において明らかなように連続鋳造時の鋳片
ストランドに対する圧下加工において圧下比を大きくし
てもC/Coの改善効果に変化はな《、その上限は自ず
と定まりここでは実用上の圧下比が10倍で充分と言え
る。第4図にセンターボロシティ面積率と造管或績の関
係を示すが、鋳造過程で鋳片の未凝固域に圧下加工を施
すことによりセンターボロシティに起因した内部酸化が
全く発生せず、このために圧延成績が著しく向上する。
Next, FIG. 2 shows a graph in which the relationship between the degree of superheating of molten steel and the central deflection of a slab was evaluated from the viewpoint of C content using C/Co. Second
From the figure, it is clear that the center segregation deteriorates as the molten steel superheat increases, and the center volocity also increases. Therefore, in this invention, it is necessary to apply reduction to the slab strand at this point. There is. The reason why we decided to apply a reduction of 1 to 10 times the unsolidified thickness of the slab strand in regions where the unsolidified thickness of the slab strand is 5 to 30% of the thickness of the strand is to reduce the reduction of the slab toss strand and prevent center segregation. As shown in Figure 3, by applying a reduction equivalent to the unsolidified thickness of the slab strand, it is possible to keep C/C0 within 1.1, while by applying a reduction twice the unsolidified thickness. This is because by adding C/Co<1.025, a sufficient center segregation relative effect can be obtained. Center volocity is also greatly reduced because the unsolidified portion is compressed, and furthermore, by applying a reduction that satisfies this range, it is possible to refine the crystal grains in the center of the slab. The area where the above-mentioned reduction is performed is the unsolidified thickness of the slab strand, which is 5 to 30% of the thickness of the strand.
% range because if the unsolidified thickness of the slab strand is less than 5% of the strand thickness, there are areas where center segregation has already occurred, and if the unsolidified thickness of the slab strand exceeds 30%, high pressure is applied. This is because if it is added, negative segregation may occur. Incidentally, in the case where the rolling reduction ratio is 0.5 or more in a region where the unsolidified thickness of the slab strand exceeds 35% of the thickness of the strand, C/Co<0.9. As is clear from Fig. 3 above, even if the rolling reduction ratio is increased in the rolling process of the slab strand during continuous casting, there is no change in the C/Co improvement effect. It can be said that a reduction ratio of 10 times is sufficient. Figure 4 shows the relationship between the center volocity area ratio and the pipe-making performance. By applying reduction to the unsolidified area of the slab during the casting process, internal oxidation caused by center volocity does not occur at all. This significantly improves rolling performance.

次に鋳片の在炉時間と加熱温度の関係を第5図に示すが
、上記の圧下加工を経た鋳片ストランドを1l50〜1
250℃の温度域にて2〜5時間保持するのは、この温
度域をはずれると鋳片表面にδ−フエライトが発生し大
きな表面きずが生じるうれいがあり、この条件を満足す
ることにより表面きずなどの発生を極力小さくすること
ができるからである。
Next, the relationship between the furnace time and heating temperature of the slab is shown in Figure 5.
The reason for holding the temperature in the 250°C temperature range for 2 to 5 hours is that if the temperature is outside this range, δ-ferrite will occur on the surface of the slab and large surface flaws will occur. This is because the occurrence of scratches and the like can be minimized.

この発明では、この熱処理に続いて圧下比1.5以上に
なる圧延を施すこととしたが、これを造管成績との関係
で第6図に示したように圧下比を1.5以上とすること
により、造管威績指数を極めて小さくできる。
In this invention, this heat treatment is followed by rolling with a reduction ratio of 1.5 or more, but in relation to the pipe making results, the reduction ratio is set to 1.5 or more as shown in Figure 6. By doing so, the pipe manufacturing performance index can be made extremely small.

(実施例) 上表に示す成分組成になる溶鋼をブルーム連鋳機を適用
して という条件下に連続鋳造を行った。得られた鋳片につき
その内部品質を調査したところ、通常の連続鋳造にて得
られた鋳片では5〜8%のセンターボロシティが存在し
ていたのに対し、この発明に従って製造したものではセ
ンターボロシティは程度であり、品質にはなんら影響が
ないことが確かめられた。
(Example) Molten steel having the composition shown in the table above was continuously cast under the conditions of applying a bloom continuous caster. When we investigated the internal quality of the obtained slabs, we found that slabs obtained by conventional continuous casting had a center volosity of 5 to 8%, whereas those manufactured according to the present invention had center volosity of 5 to 8%. It was confirmed that the center volosity was only a matter of degree and had no effect on quality.

(発明の効果) かくしてこの発明によれば、均熱炉における溶体化処理
や拡散焼鈍、拡散圧延あるいは鋳片の端面に鉄板を取り
付ける作業を省略することができるので燃料原単位を有
利に削減できるし、これらの工程を省略しても介在物や
センターポロシティによる品質の劣化を招くことがなく
、高クロム鋼の製造にかかるコストを大幅に低減できる
。またヒレンドからのシームレスバイブの圧延において
もδ−フエライトに起因した造管歩留りの低下を防止で
きるから、それにかかる製造コストを極力低減できる。
(Effects of the Invention) Thus, according to the present invention, it is possible to omit the work of solution treatment in a soaking furnace, diffusion annealing, diffusion rolling, or attaching an iron plate to the end face of a cast slab, thereby advantageously reducing the fuel consumption rate. However, even if these steps are omitted, there will be no quality deterioration due to inclusions or center porosity, and the cost for manufacturing high chromium steel can be significantly reduced. Also, in the rolling of the seamless vibrator from Hillend, it is possible to prevent a decrease in the pipe production yield due to δ-ferrite, so that the manufacturing cost can be reduced as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はタンディシュ内の溶鋼加熱温度と鋳片介在物指
数の関係グラフ、 第2図はタンディシュ内の溶鋼加熱温度とC/C.の関
係グラフ、 第3図は圧下比とC/C0の関係グラフ、第4図はセン
ターポロシティ面積率と造管或績指数の関係グラフ、 第5図は在炉時間と加熱炉温度の関係グラフ、第6図は
圧下比と造管或績率の関係グラフである。
Fig. 1 is a graph of the relationship between the molten steel heating temperature in the tundish and the slab inclusion index, and Fig. 2 is a graph of the relationship between the molten steel heating temperature in the tundish and the C/C. Figure 3 is a graph of the relationship between rolling reduction ratio and C/C0, Figure 4 is a graph of the relationship between center porosity area ratio and pipe making performance index, Figure 5 is a graph of the relationship between furnace time and heating furnace temperature. , FIG. 6 is a graph showing the relationship between the rolling reduction ratio and the pipe-making rate.

Claims (1)

【特許請求の範囲】[Claims] 1、ブルーム連鋳機を適用して高クロム鋼を製造するに
当たり、タンディシュ内の溶鋼過熱温度を20〜60℃
にして連続鋳造して得た鋳片ストランドに対して、鋳片
ストランドの未凝固厚が該ストランドの厚みの5〜30
%になる領域で未凝固厚みの1〜10倍の圧下を加え、
次いで1150〜1250℃の温度域に加熱して2〜5
時間保持した後、圧下比1.5以上になる圧延を施すこ
とを特徴とする高クロム鋼の製造方法。
1. When manufacturing high chromium steel using a bloom continuous caster, the superheating temperature of molten steel in the tundish should be set at 20 to 60℃.
The unsolidified thickness of the slab strand obtained by continuous casting is 5 to 30 times the thickness of the strand.
%, apply a reduction of 1 to 10 times the unsolidified thickness,
Next, heat to a temperature range of 1150 to 1250°C for 2 to 5 minutes.
A method for producing high chromium steel, which comprises rolling at a rolling reduction ratio of 1.5 or more after holding for a period of time.
JP24140989A 1989-09-18 1989-09-18 Production of high chromium steel Pending JPH03104819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24140989A JPH03104819A (en) 1989-09-18 1989-09-18 Production of high chromium steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24140989A JPH03104819A (en) 1989-09-18 1989-09-18 Production of high chromium steel

Publications (1)

Publication Number Publication Date
JPH03104819A true JPH03104819A (en) 1991-05-01

Family

ID=17073860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24140989A Pending JPH03104819A (en) 1989-09-18 1989-09-18 Production of high chromium steel

Country Status (1)

Country Link
JP (1) JPH03104819A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667524A1 (en) * 1990-10-08 1992-04-10 Kawasaki Steel Co PROCESS FOR MANUFACTURING ROUND INGOTS FOR SOLDERLESS STEEL PIPES.
JPH06198394A (en) * 1992-12-28 1994-07-19 Kawasaki Steel Corp Production of structural thick steel plate excellent in lamellar tear resistance
EP1284167A1 (en) * 2001-03-27 2003-02-19 Kawasaki Steel Corporation Method for manufacturing seamless steel pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667524A1 (en) * 1990-10-08 1992-04-10 Kawasaki Steel Co PROCESS FOR MANUFACTURING ROUND INGOTS FOR SOLDERLESS STEEL PIPES.
JPH06198394A (en) * 1992-12-28 1994-07-19 Kawasaki Steel Corp Production of structural thick steel plate excellent in lamellar tear resistance
EP1284167A1 (en) * 2001-03-27 2003-02-19 Kawasaki Steel Corporation Method for manufacturing seamless steel pipe
EP1284167A4 (en) * 2001-03-27 2005-11-09 Jfe Steel Corp Method for manufacturing seamless steel pipe

Similar Documents

Publication Publication Date Title
RU2294386C2 (en) Method of manufacture of the steel strip
JP2018507110A (en) Hot rolled lightweight martensitic steel sheet and method for producing the same
KR20010113823A (en) Method for continuously casting ferritic stainless steel strips free of microcracks
JPH03104819A (en) Production of high chromium steel
KR100450611B1 (en) A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
CA2267564A1 (en) Method of manufacturing microalloyed structural steel
JP2004509770A (en) Steel strip manufacturing method
US5493766A (en) Process for hot working continuous-cast bloom and steel ingot
JPS6372457A (en) Continuous casting method for steel
JP3149763B2 (en) Prevention method of placing cracks in continuous cast slabs of bearing steel
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JPH07276020A (en) Continuous casting method
JPS63168260A (en) Hot working method for continuously cast billet
JPH07251244A (en) Method for preventing porosity of cast slab in twin roll type continuous casting method
JP3484605B2 (en) Stainless steel continuous casting method
JP2530522B2 (en) Continuous casting method
KR100260073B1 (en) Billet making method of tire cord
JPH0390263A (en) Continuous casting method
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JP2888071B2 (en) Thin slab continuous casting method
KR100276342B1 (en) Manufacturing Method of Special Welding Broom Casts with Excellent Internal Quality
RU2016681C1 (en) Method for making workpieces from killed carbon low-alloyed and alloyed steels
JPH0371902A (en) Manufacture of austenitic stainless thin steel strip of good surface property and excellent in ductility
JPH04305350A (en) Manufacture of billet of stainless steel for seamless steel tube
JPS63238953A (en) Method for casting molten metal by using twin rolls