JPH04305350A - Manufacture of billet of stainless steel for seamless steel tube - Google Patents

Manufacture of billet of stainless steel for seamless steel tube

Info

Publication number
JPH04305350A
JPH04305350A JP6653091A JP6653091A JPH04305350A JP H04305350 A JPH04305350 A JP H04305350A JP 6653091 A JP6653091 A JP 6653091A JP 6653091 A JP6653091 A JP 6653091A JP H04305350 A JPH04305350 A JP H04305350A
Authority
JP
Japan
Prior art keywords
billet
slab
stainless steel
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6653091A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakagawa
康弘 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6653091A priority Critical patent/JPH04305350A/en
Publication of JPH04305350A publication Critical patent/JPH04305350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the inner flaw from generating at the time of making tube from billet. CONSTITUTION:When cast billet for high chrome stainless steel tube stock is continuously cast and the obtained cast billet is hot rolled and the billet is manufactured, the central part of the cast billet is made to the negative segregation by executing with roll reduction an unsolidified thickness 50-100% at the position that the solid phase rate shows 0.5-0.9 at the preceding stage before completing the solidification of the inside of case billet in the continuous casting of the cast billet.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、13Crステンレス鋼
など連鋳鋳片中心の偏析部に生ずるδフェライトによっ
て継目無鋼管として熱間で穿孔して造管する際、著しく
加工性が低下する素材についてその熱間加工性を改善す
ることができる継目無鋼管用ステンレス鋼用ビレットの
製造方法に関するものである。
[Industrial Application Field] The present invention deals with materials such as 13Cr stainless steel, which significantly reduce workability when forming seamless steel pipes by hot drilling due to δ ferrite that occurs in the segregated part at the center of continuously cast slabs. The present invention relates to a method for producing stainless steel billets for seamless steel pipes, which can improve the hot workability of stainless steel billets.

【0002】0002

【従来の技術】高クロム鋼またはマルテンサイト系ステ
ンレス鋼など高クロム合金鋼では高温域でγ相と共存す
るα相が生じる(以後これをδフェライトと呼ぶ)。こ
のように2つの相が共存すると両相の熱間での加工性が
異なるためにマンドレルミルで穿孔を行う時、激しい加
工を受けて材料の塑性変形が追従できずにパイプの内面
疵が多発することになる。
BACKGROUND OF THE INVENTION In high chromium steel or high chromium alloy steel such as martensitic stainless steel, an α phase coexisting with a γ phase is generated in a high temperature range (hereinafter referred to as δ ferrite). When two phases coexist in this way, the hot workability of both phases differs, so when drilling with a mandrel mill, the plastic deformation of the material cannot follow the intense processing, resulting in frequent internal defects of the pipe. I will do it.

【0003】連鋳鋳片に形成される偏析は鋳片1の断面
形状によって異なり、たとえば図3(a)に示すように
鋳片10が正方形断面の場合には中心偏析点11が形成
され、図3(b)に示すように長方形断面の場合には中
心偏析バンド12が形成されることが知られている。こ
のような鋳片の断面形状が異なる点を鑑みて特開平1−
293909号公報に開示されているように鋳型扁平比
(=長辺長さL1 /短辺長さL2 )と鋳片10の中
心ザク発生指数と圧下時のシワ疵発生指数とを図4に示
す関係から、鋳型扁平比の適正領域を 1.6〜3.0
 と比較的大きくとって鋳片中心部の偏析度合いの軽減
と中心ザクの発生防止を図ることが提案されている。そ
して鋳片を丸ビレットに圧延するときに長時間の偏析拡
散加熱を行ったり、あるいは加熱−圧延−冷却のサイク
ルを2度繰り返す2ヒート圧延を行う方法が採用されて
いる。
Segregation formed in a continuously cast slab varies depending on the cross-sectional shape of the slab 1. For example, as shown in FIG. 3(a), when the slab 10 has a square cross section, a central segregation point 11 is formed. It is known that a center segregation band 12 is formed in the case of a rectangular cross section as shown in FIG. 3(b). In view of the fact that the cross-sectional shapes of slabs are different, Japanese Patent Application Laid-Open No. 1996-
As disclosed in Japanese Patent Application No. 293909, the mold aspect ratio (=long side length L1/short side length L2), the center roughness occurrence index of the slab 10, and the wrinkling flaw occurrence index during rolling are shown in FIG. From the relationship, the appropriate range of mold aspect ratio is 1.6 to 3.0.
It has been proposed to make the diameter relatively large in order to reduce the degree of segregation in the center of the slab and to prevent the occurrence of center dents. When rolling the slab into a round billet, a method is adopted in which long-term segregation diffusion heating is performed, or two-heat rolling is performed in which the heating-rolling-cooling cycle is repeated twice.

【0004】0004

【発明が解決しようとする課題】前記従来の技術によれ
ば製造工程が複雑になり多くのコストがかかっていた。 また偏析を軽減するために扁平比の大きい鋳片を使用す
るとビレット圧延時の先後端のフィッシュテールが大き
くなりクロップロスが増加する結果、歩留りが低下する
という問題もあった。
SUMMARY OF THE INVENTION According to the above-mentioned conventional technology, the manufacturing process is complicated and costs are high. In addition, when slabs with a large aspect ratio are used to reduce segregation, the fishtail at the leading and trailing ends becomes large during billet rolling, increasing crop loss, resulting in a lower yield.

【0005】ところで、高クロム合金鋼では加熱温度が
1250〜1260℃以上になるとδフェライトが晶出
してマンドレルミルで穿孔を行う際に、疵発生の原因と
なるため最高加熱温度がこの領域に入ることのないよう
に制限しているが、C含有量が 0.2%の場合、12
50℃未満の温度では状態図の上ではδフェライトの晶
出はない。しかし現実の鋳片の中心部には含有される成
分元素の濃厚偏析域があり、特にPなどフェライトの晶
出を助長する元素が濃化されていることから前述の加熱
温度の管理を非常に厳しく行い、かつ扁平比の大きい鋳
片を使用してもδフェライトの生成を完全に防止するこ
とはできなかった。鋳片の中心偏析を少しでも軽減させ
るために前記の管理に加えて偏析拡散焼鈍を行ったり、
鋳片から丸ビレットに圧延する過程で加熱→圧延→冷却
→加熱→圧延→冷却を行ういわゆる2ヒート圧延を行っ
て偏析を拡散し、δフェライトの生成を防止してきたの
は前述の通りである。
By the way, in high chromium alloy steel, if the heating temperature exceeds 1250 to 1260°C, δ ferrite crystallizes and causes flaws when drilling with a mandrel mill, so the maximum heating temperature falls within this range. However, if the C content is 0.2%, 12
At temperatures below 50°C, there is no crystallization of δ ferrite on the phase diagram. However, in the center of actual slabs, there is a region where the constituent elements contained are concentrated and segregated, and elements such as P that promote crystallization of ferrite are particularly concentrated, so it is very difficult to control the heating temperature mentioned above. Even if the process was carried out strictly and slabs with a large aspect ratio were used, it was not possible to completely prevent the formation of δ ferrite. In order to reduce the center segregation of slabs, in addition to the above management, we perform segregation diffusion annealing,
As mentioned above, in the process of rolling a slab into a round billet, so-called two-heat rolling, in which heating → rolling → cooling → heating → rolling → cooling, has been performed to diffuse segregation and prevent the formation of δ ferrite. .

【0006】一方鋳造に際しては図5に示すように中心
偏析率を軽減すると共に非金属介在物を減少させるため
にはタンディッシュ内溶鋼過熱度を低くして低温鋳造を
行う必要があった。しかし非金属介在物量は低温鋳造を
行うことにより増加する傾向にある。このことから従来
は中心偏析、非金属介在物共に許容範囲を満足できる温
度域として溶鋼過熱度は15〜30℃に設定され連続鋳
造されてきた。
On the other hand, during casting, as shown in FIG. 5, in order to reduce the center segregation rate and reduce non-metallic inclusions, it was necessary to lower the degree of superheating of the molten steel in the tundish and perform low-temperature casting. However, the amount of nonmetallic inclusions tends to increase by performing low-temperature casting. For this reason, conventionally, continuous casting has been carried out with the degree of superheating of molten steel set at 15 to 30° C., which is a temperature range that satisfies the tolerance range for both center segregation and nonmetallic inclusions.

【0007】本発明は鋳造温度を高くして鋼の清浄性を
保証し、圧延歩留りのよい扁平比 1.0以上の比較的
扁平比の小さい鋳片を使用し、かつ通常の1ヒート圧延
を行ってパイプ内面疵の少ない継目無鋼管用ステンレス
鋼用ビレットの製造方法を提供することを目的とするも
のである。
[0007] The present invention guarantees the cleanliness of the steel by raising the casting temperature, uses a slab with a relatively small aspect ratio of 1.0 or more, which has a good rolling yield, and does not require conventional one-heat rolling. It is an object of the present invention to provide a method for producing a billet for stainless steel for seamless steel pipes that causes fewer defects on the inner surface of the pipe.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
の本発明は、 Cr 8〜18%、Ni 2.5%以下
を含有する高クロムステンレス鋼またはマルテンサイト
ステンレス鋼の継目無鋼管用素材となる鋳片を連続鋳造
し、得られた鋳片を熱間圧延してビレットを製造するに
際し、前記鋳片の連続鋳造における鋳片内部の凝固が完
了する前の段階であって鋳片中心部の固相率が 0.5
〜0.9 を示す位置で未凝固厚さの50〜100 %
を圧下して鋳片中心部を負偏析となし、この鋳片を加熱
炉で加熱した後、熱間圧延してビレットに圧延し、得ら
れたビレットの穿孔による造管時にδフェライトの生成
を抑制してパイプの内面疵発生を防止することができる
ようにしたことを特徴とする継目無鋼管用ステンレス鋼
用ビレットの製造方法である。
[Means for Solving the Problems] To achieve the above object, the present invention provides a seamless steel pipe material of high chromium stainless steel or martensitic stainless steel containing 8 to 18% Cr and 2.5% or less Ni. When producing a billet by continuously casting a slab and hot rolling the obtained slab, it is a stage before the solidification of the inside of the slab in the continuous casting of the slab is completed, and the center of the slab is The solid phase ratio is 0.5
50-100% of the unsolidified thickness at a position showing ~0.9
The center of the slab is rolled down to have negative segregation, and this slab is heated in a heating furnace, then hot rolled into a billet, and the resulting billet is perforated to prevent the formation of δ ferrite. This is a method for producing a billet for stainless steel for seamless steel pipes, which is characterized in that it is possible to suppress and prevent the occurrence of internal flaws in pipes.

【0009】本発明では、前記鋳片の長辺と短辺との長
さ比(扁平比)を 1.0〜3.0 範囲とすると共に
、連続鋳造時におけるタンディッシュ内の溶鋼過熱温度
を20〜50℃範囲とするのが好ましく、さらには、ビ
レット圧延に際して、加熱炉内で鋳片表面が 900℃
以上の高温に保持する時間を6時間以下とするのが一層
好ましい。
In the present invention, the length ratio (aspect ratio) between the long side and the short side of the slab is in the range of 1.0 to 3.0, and the superheating temperature of the molten steel in the tundish during continuous casting is set to be within the range of 1.0 to 3.0. Preferably, the temperature is in the range of 20 to 50°C, and furthermore, during billet rolling, the surface of the slab is heated to 900°C in the heating furnace.
It is more preferable to hold the temperature at the higher temperature for 6 hours or less.

【0010】0010

【作  用】前記条件に設定した理由について説明する
。 (1)鋳片の未凝固域圧下の位置と圧下条件鋳片の固相
率が 0.9を超えると実質的にすべて固まってしまっ
たのと同じとなり、偏析軽減の効果が得られないので 
0.9以下とする。また固相率があまり小さくなり液相
率が高いと、操業の不安定を生じさせない範囲の圧下で
は液相が多く残ることになり、圧下後にもまた溶鋼の濃
化が起こり偏析軽減効果が少なくなるので下限を 0.
5とする。また未凝固厚さの50%以上を圧下するのは
これよりも圧下が少ないと圧下後にも液相が残り、成分
元素の濃化が進行するためである。逆に 100%を超
えて圧下すると凝固したばかりの柱状晶間に内部割れが
生じるために圧下の上限は 100%とする。
[Operation] The reason for setting the above conditions will be explained. (1) Position and reduction conditions of the unsolidified area of the slab When the solid fraction of the slab exceeds 0.9, it is essentially the same as if it had all solidified, and the effect of reducing segregation cannot be obtained.
It shall be 0.9 or less. In addition, if the solid phase ratio is too small and the liquid phase ratio is high, a large amount of liquid phase will remain under the reduction that does not cause operational instability, and the molten steel will thicken even after reduction, reducing the segregation reduction effect. Therefore, set the lower limit to 0.
5. Further, the reason why 50% or more of the unsolidified thickness is reduced is because if the reduction is less than this, a liquid phase will remain even after reduction, and the concentration of the component elements will proceed. On the other hand, if the reduction exceeds 100%, internal cracks will occur between the newly solidified columnar crystals, so the upper limit of the reduction is set at 100%.

【0011】ここで上記した鋳片の中心部の固相率とは
、具体的に鋳片の中心部の温度が鋼種によって決まる液
相線温度と固相線温度の間のどの位置にあるかを表す指
標であり、例えば固相率 1.0は該温度が固相線温度
であることを、 0.5は液相線温度と固相線温度の中
間であることを示す。なお、固相率 100%とは、こ
の位置においては液相はなく全て固相となっている。通
常凝固界面は固相から液相へとステップ的に変化するも
のではなく、固相液相の共存領域が存在し、通常固相線
温度の位置では固相 100%であり、液相線温度の位
置では液相 100%となる。
[0011] Here, the above-mentioned solid phase ratio at the center of the slab specifically refers to the position at which the temperature at the center of the slab lies between the liquidus temperature and the solidus temperature determined by the steel type. For example, a solid fraction of 1.0 indicates that the temperature is the solidus temperature, and 0.5 indicates that the temperature is between the liquidus temperature and the solidus temperature. Note that a solid phase ratio of 100% means that there is no liquid phase at this position and the entire solid phase is present. Normally, the solidification interface does not change in a stepwise manner from the solid phase to the liquid phase, but there is a coexistence region of solid and liquid phases, and the solid phase is usually 100% at the solidus temperature, and the liquidus temperature is 100%. At the position, the liquid phase becomes 100%.

【0012】また鋳片の圧下は例えば本出願人が提案し
、特開昭62−127148号公報に開示された間欠鍛
圧装置を用いることができる。すなわち図1に示すよう
に油圧シリンダー4を用いて圧下レバー3を支点9を中
心にして動かし、このレバーに付設する金型5を用いて
鋳片10を圧下する。鋳片圧下中、この鍛圧装置を鋳片
と同じ速度で下方に移動し、面圧下後戻し用油圧シリン
ダー8を用いて元の位置に復帰させられる。鍛造金型に
より間欠的に鋳片を挟圧下するので凝固殻2が圧しつぶ
されて未凝固溶鋼1のプールを遮断する。従って、この
プールの収縮による中心偏析が生じない。7はピンチロ
ールを示す。
[0012] Further, for rolling down the slab, it is possible to use, for example, an intermittent forging device proposed by the present applicant and disclosed in Japanese Patent Application Laid-Open No. 127148/1983. That is, as shown in FIG. 1, the reduction lever 3 is moved around the fulcrum 9 using the hydraulic cylinder 4, and the slab 10 is reduced using the mold 5 attached to this lever. During slab reduction, this forging device is moved downward at the same speed as the slab, and is returned to its original position using the hydraulic cylinder 8 for return after surface pressure. Since the slab is intermittently compressed by the forging die, the solidified shell 2 is crushed and the pool of unsolidified molten steel 1 is blocked. Therefore, center segregation due to shrinkage of this pool does not occur. 7 indicates a pinch roll.

【0013】(2)鋳片の扁平比条件 扁平比が 1.0未満は実質的にタテ、ヨコが逆転する
だけであるので下限を 1.0とする。上限はあまり長
辺の比率が大きくなると丸棒に圧延する時に長辺面にシ
ワ疵が出やすくなり丸棒表面に多数のシワ疵または折れ
込み疵を生ずるために 3.0とする。この扁平比はで
きるだけ 1.0に近くしておいた方が鋳片の外周面か
らの樹脂状晶が断面内で対称形に成長するため後の加工
性や材質で均一性が保たれる。
(2) Conditions for the aspect ratio of the slab If the aspect ratio is less than 1.0, the vertical and horizontal directions are essentially reversed, so the lower limit is set at 1.0. The upper limit is set at 3.0 because if the ratio of the long sides becomes too large, wrinkles are likely to appear on the long sides when rolled into a round bar, resulting in a large number of wrinkles or folding scratches on the surface of the round bar. It is better to keep this aspect ratio as close to 1.0 as possible so that the resinous crystals from the outer peripheral surface of the slab grow symmetrically within the cross section, thereby maintaining uniformity in later workability and material quality.

【0014】(3)タンディッシュ内の溶鋼過熱度条件
20℃未満になるとタンディッシュ内溶鋼中で介在物が
浮上分離しにくくなり、鋼材の清浄性が保てなくなるの
で20℃以上とする。上限はあまり高温になると鋳型内
で凝固シェルが正常に形成されず、ブレークアウトなど
操業トラブルの発生が増加するので50℃とする。
(3) Molten steel superheating condition in the tundish If the temperature is less than 20°C, inclusions will be difficult to float and separate in the molten steel in the tundish, making it impossible to maintain the cleanliness of the steel material, so the superheating temperature should be 20°C or higher. The upper limit is set at 50°C because if the temperature is too high, a solidified shell will not be formed properly in the mold, increasing the occurrence of operational troubles such as breakouts.

【0015】(4)ビレット加熱条件 加熱時に高温域で材料が長く保持されると炉内雰囲気中
に含まれる酸素により材料表面で脱炭や脱Crが生じる
。 この反応は低温域ではあまり起こらず 900℃以上の
高温域で活発になる。またこの高温域での保持時間が5
時間を超えてくると表面の脱炭深さ、脱Cr相深さが大
きくなり、6時間を超えると通常のパイプ製品としては
許容できない範囲にまで至ることがあるので、高温保持
時間の上限を6時間とする。なお、加熱燃料原単位をで
きるだけ低くしコストを下げるために1ヒート圧延とす
るのが好ましい。
(4) Billet Heating Conditions If the material is kept in a high temperature range for a long time during heating, decarburization and dechromium will occur on the surface of the material due to oxygen contained in the atmosphere in the furnace. This reaction does not occur much at low temperatures, but becomes active at high temperatures above 900°C. In addition, the holding time at this high temperature range is 5
If the time is exceeded, the depth of surface decarburization and the depth of the de-Cr phase will increase, and if it exceeds 6 hours, it may reach a range that is unacceptable for normal pipe products, so the upper limit of the high temperature holding time should be set. It will be 6 hours. In addition, in order to reduce heating fuel consumption as much as possible and reduce costs, it is preferable to use one-heat rolling.

【0016】[0016]

【実施例】不活性ガスを底吹きする上底吹き転炉で吹錬
した溶鋼をRH脱ガス装置により真空脱ガス処理した後
の溶鋼の取鍋代表化学成分例を表1に示す。
[Example] Table 1 shows representative chemical compositions of molten steel in a ladle after vacuum degassing treatment of molten steel blown in a top-bottom blowing converter in which inert gas is blown from the bottom using an RH degassing device.

【0017】[0017]

【表1】[Table 1]

【0018】表1に示す化学成分を有する溶鋼をブルー
ム連鋳機により鋳片サイズ 400×560 mm(扁
平比1.47)を前述の図1に示す間欠鍛圧装置を用い
て間欠鍛圧を繰り返した。この場合の鋳片の鍛圧位置は
鋳片中心部の固相率がほぼ 0.7を示す位置とし、未
凝固厚さの約80%を圧下して鋳片中心部を負偏析とし
た。得られた中心偏析率0.75の鋳片を連続加熱炉で
1ヒート加熱した後、 175mmφのビレットに熱間
圧延した。このときの連続加熱炉での 900℃以上の
高温域に保持されたのは90〜130 分で炉内からの
搬出時における鋳片温度は1180〜1200℃であっ
た。このように加熱してビレット圧延した場合の圧延歩
留りは従来の扁平比2.8の鋳片からビレット圧延する
場合よりも 0.7%向上した。
[0018] Molten steel having the chemical composition shown in Table 1 was repeatedly subjected to intermittent forging using a continuous bloom caster to form a slab with a size of 400 x 560 mm (aspect ratio 1.47) using the above-mentioned intermittent forging device shown in Fig. 1. . In this case, the pressing position of the slab was set at a position where the solid phase ratio at the center of the slab was approximately 0.7, and about 80% of the unsolidified thickness was pressed down to make the center of the slab negative segregation. The obtained slab with a center segregation rate of 0.75 was heated for one heat in a continuous heating furnace, and then hot rolled into a billet of 175 mmφ. At this time, the continuous heating furnace maintained the slab at a high temperature of 900°C or higher for 90 to 130 minutes, and the slab temperature at the time of removal from the furnace was 1180 to 1200°C. The rolling yield when billet rolling was performed under heating in this manner was 0.7% higher than when billet rolling was performed from a conventional slab with an aspect ratio of 2.8.

【0019】このビレットをマンドレルミルのマンドレ
ルで穿孔して造管したときの本発明のパイプ内面疵発生
指数を、従来のビレット1ヒート圧延およびビレット2
ヒート圧延した従来例と比較して図2に示す。図2に示
すように、本発明によれば従来例、特に2ヒート法より
もパイプ内面疵発生指数を1/4に、また1ヒート法か
らは実に1/22に低くすることができた。
When this billet was made into a pipe by perforating it with the mandrel of a mandrel mill, the pipe inner surface flaw occurrence index of the present invention was compared with the conventional billet 1 heat rolling and billet 2 heat rolling.
Fig. 2 shows a comparison with a conventional heat-rolled example. As shown in FIG. 2, according to the present invention, it was possible to reduce the pipe inner surface flaw occurrence index to 1/4 compared to the conventional example, especially the 2-heat method, and to 1/22 compared to the 1-heat method.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
歩留りのよい鋳片形状とすると共に中心偏析を無くし、
かつ必要最少限の加熱を行ってビレット圧延を行うこと
ができる。このためビレット圧延の歩留りを向上させて
圧延費用を低減できると共に、中心部に熱間加工性の悪
いδフェライトが生じないので、マンドレルミルやマン
ネスマンプラグミルで穿孔を行う際の内面疵発生を大幅
に減少することができる。
[Effects of the Invention] As explained above, according to the present invention,
Creates a slab shape with good yield and eliminates center segregation,
In addition, billet rolling can be performed with the minimum amount of heating required. This improves the yield of billet rolling and reduces rolling costs, and since δ ferrite, which has poor hot workability, does not form in the center, the occurrence of internal defects when drilling with a mandrel mill or Mannesmann plug mill is greatly reduced. can be reduced to

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例で使用した間欠鍛圧装置を示す
側面図である。
FIG. 1 is a side view showing an intermittent forging device used in an example of the present invention.

【図2】本発明法と従来の1ヒート圧延、2ヒート圧延
によるパイプ内面疵発生指数を比較して示す棒グラフで
ある。
FIG. 2 is a bar graph showing a comparison of the pipe inner surface flaw occurrence index between the method of the present invention and conventional one-heat rolling and two-heat rolling.

【図3】従来例に係る正方形断面の鋳片と長方形断面の
鋳片に形成される中心偏析状況を示す説明図である。
FIG. 3 is an explanatory diagram showing the state of center segregation formed in a slab with a square cross section and a slab with a rectangular cross section according to a conventional example.

【図4】従来例に係る鋳片扁平比と中心ザク発生指数と
シワ疵発生指数の関係を示す線グラフである。
FIG. 4 is a line graph showing the relationship between the flatness ratio of a slab, a central roughness occurrence index, and a wrinkling occurrence index according to a conventional example.

【図5】従来例に係るタンディッシュ内溶鋼過熱度と非
金属介在物指数と中心部偏析指数との関係を示す線グラ
フである。
FIG. 5 is a line graph showing the relationship between the degree of superheating of molten steel in a tundish, a nonmetallic inclusion index, and a center segregation index according to a conventional example.

【符号の説明】[Explanation of symbols]

1  未凝固溶鋼 2  凝固殻 3  圧下レバー 4  油圧シリンダー 5  金型 6  本体ガイドロール 7  ピンチロール 8  面圧下後戻し用油圧シリンダー 9  支点 10  鋳片 11  中心偏析点 12  中心偏析帯 1 Unsolidified molten steel 2 Solidified shell 3 Press down lever 4 Hydraulic cylinder 5 Mold 6 Main body guide roll 7 Pinch roll 8 Hydraulic cylinder for return under surface pressure 9 Fulcrum 10 Slab 11 Central segregation point 12 Central segregation zone

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】   Cr 8〜18%、Ni 2.5%
以下を含有する高クロムステンレス鋼またはマルテンサ
イトステンレス鋼の継目無鋼管用素材となる鋳片を連続
鋳造し、得られた鋳片を熱間圧延してビレットを製造す
るに際し、前記鋳片の連続鋳造における鋳片内部の凝固
が完了する前の段階であって鋳片中心部の固相率が 0
.5〜0.9 を示す位置で未凝固厚さの50〜100
 %を圧下して鋳片中心部を負偏析となし、この鋳片を
加熱炉で加熱した後、熱間圧延してビレットに圧延し、
得られたビレットの穿孔による造管時にδフェライトの
生成を抑制してパイプの内面疵発生を防止することがで
きるようにしたことを特徴とする継目無鋼管用ステンレ
ス鋼用ビレットの製造方法。
[Claim 1] Cr 8-18%, Ni 2.5%
When continuous casting of high chromium stainless steel or martensitic stainless steel steel slabs containing the following is performed, and hot rolling of the obtained slabs to produce billets, continuous casting of the slabs is performed. This is the stage in casting before the solidification inside the slab is completed, and the solid phase ratio at the center of the slab is 0.
.. 50 to 100 of the unsolidified thickness at the position showing 5 to 0.9
% to make the center of the slab negative segregation, and after heating this slab in a heating furnace, hot rolling it into a billet,
A method for producing a stainless steel billet for seamless steel pipes, characterized in that generation of δ ferrite is suppressed during pipe forming by perforating the obtained billet, thereby preventing the occurrence of internal flaws in the pipe.
【請求項2】  鋳片の長辺と短辺との長さ比(扁平比
)を 1.0〜3.0 範囲とすると共に、連続鋳造時
におけるタンディッシュ内の溶鋼過熱温度を20〜50
℃範囲とする請求項1記載の継目無鋼管用ステンレス鋼
用ビレットの製造方法。
[Claim 2] The length ratio (aspect ratio) between the long side and the short side of the slab is set in the range of 1.0 to 3.0, and the superheating temperature of the molten steel in the tundish during continuous casting is set in the range of 20 to 50.
2. The method for producing a stainless steel billet for seamless steel pipes according to claim 1, wherein the temperature is within the range of .degree.
【請求項3】  ビレット圧延に際して、加熱炉内で鋳
片表面が 900℃以上の高温に保持する時間を6時間
以下とする請求項1記載の継目無鋼管用ステンレス鋼用
ビレットの製造方法。
3. The method for producing a stainless steel billet for seamless steel pipes according to claim 1, wherein during billet rolling, the time period during which the surface of the slab is maintained at a high temperature of 900° C. or higher in a heating furnace is 6 hours or less.
JP6653091A 1991-03-29 1991-03-29 Manufacture of billet of stainless steel for seamless steel tube Pending JPH04305350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6653091A JPH04305350A (en) 1991-03-29 1991-03-29 Manufacture of billet of stainless steel for seamless steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6653091A JPH04305350A (en) 1991-03-29 1991-03-29 Manufacture of billet of stainless steel for seamless steel tube

Publications (1)

Publication Number Publication Date
JPH04305350A true JPH04305350A (en) 1992-10-28

Family

ID=13318532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6653091A Pending JPH04305350A (en) 1991-03-29 1991-03-29 Manufacture of billet of stainless steel for seamless steel tube

Country Status (1)

Country Link
JP (1) JPH04305350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152804A (en) * 2011-01-27 2012-08-16 Sumitomo Metal Ind Ltd Method for manufacturing seamless steel pipe in high alloy or stainless steel
JP5657159B1 (en) * 2014-05-22 2015-01-21 新日鉄住金エンジニアリング株式会社 Roll reduction device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162551A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for continuously casting round shape billet
JPH02155550A (en) * 1988-12-07 1990-06-14 Kawasaki Steel Corp Method for continuously casting steel
JPH02160151A (en) * 1988-12-13 1990-06-20 Nippon Steel Corp Method for forming shape of cast billet in continuous casting machine
JPH02182825A (en) * 1989-01-10 1990-07-17 Kawasaki Steel Corp Manufacture of round billet for manufacturing seamless martensitic stainless steel pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162551A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for continuously casting round shape billet
JPH02155550A (en) * 1988-12-07 1990-06-14 Kawasaki Steel Corp Method for continuously casting steel
JPH02160151A (en) * 1988-12-13 1990-06-20 Nippon Steel Corp Method for forming shape of cast billet in continuous casting machine
JPH02182825A (en) * 1989-01-10 1990-07-17 Kawasaki Steel Corp Manufacture of round billet for manufacturing seamless martensitic stainless steel pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152804A (en) * 2011-01-27 2012-08-16 Sumitomo Metal Ind Ltd Method for manufacturing seamless steel pipe in high alloy or stainless steel
JP5657159B1 (en) * 2014-05-22 2015-01-21 新日鉄住金エンジニアリング株式会社 Roll reduction device

Similar Documents

Publication Publication Date Title
WO2020030040A1 (en) Production of twin-roll cast and hot rolled steel strip
JP4582916B2 (en) Method for twin-roll continuous casting of ferritic stainless steel without microcracks
CN105665662B (en) Flux-cored wire based on ESP lines steel making method
JPH04305350A (en) Manufacture of billet of stainless steel for seamless steel tube
JPH08238550A (en) Method for continuously casting steel
CN115007814A (en) Continuous casting production method of bloom hot work die steel H13 and bloom hot work die steel H13 casting blank
CN1083307C (en) Beam formed from as-continuously cast beam blank
JPS6372457A (en) Continuous casting method for steel
JP3671868B2 (en) Method for casting high Cr steel
JP3104627B2 (en) Unsolidified rolling production method of round billet
JP3161293B2 (en) Continuous casting method
JPH11179509A (en) Continuous casting method of billet cast slab
JPH01258801A (en) Method for forging round shaped continuous cast billet
JP4470842B2 (en) Continuous casting method of high Cr steel
JPH0390263A (en) Continuous casting method
JPH11179489A (en) Production of steel wire rod
CN115401175A (en) Method for producing large-size high-carbon chromium bearing steel bar with small compression ratio
JP3018888B2 (en) Continuous casting method for stainless steel pipe material
JPH11254002A (en) Production of round steel from large cross sectional stainless steel cast bloom as blank
JPH03104819A (en) Production of high chromium steel
USRE26441E (en) Method of producing rimmed steel
JP2000237855A (en) Method for continuously casting billet
JPH0515404Y2 (en)
CN113843400A (en) Slab cooling and reduction method for improving quality of casting blank
JP2000288704A (en) Production of round cast billet with continuous casting