JP3018888B2 - Continuous casting method for stainless steel pipe material - Google Patents

Continuous casting method for stainless steel pipe material

Info

Publication number
JP3018888B2
JP3018888B2 JP6015936A JP1593694A JP3018888B2 JP 3018888 B2 JP3018888 B2 JP 3018888B2 JP 6015936 A JP6015936 A JP 6015936A JP 1593694 A JP1593694 A JP 1593694A JP 3018888 B2 JP3018888 B2 JP 3018888B2
Authority
JP
Japan
Prior art keywords
less
slab
center
stainless steel
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6015936A
Other languages
Japanese (ja)
Other versions
JPH07204813A (en
Inventor
耕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6015936A priority Critical patent/JP3018888B2/en
Publication of JPH07204813A publication Critical patent/JPH07204813A/en
Application granted granted Critical
Publication of JP3018888B2 publication Critical patent/JP3018888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、製管時のパイプ内面
欠陥の原因となるセンタポロシティ、鋳片中心偏析のな
いステンレス鋼鋼管用素材の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of continuously casting a stainless steel pipe material having no center porosity and no slab center segregation, which causes defects in the inner surface of the pipe during pipe production.

【0002】[0002]

【従来の技術】ステンレス鋼鋼管用素材の連続鋳造にお
いては、製管時のパイプ内面欠陥による歩留低下が問題
となる。この製管時のパイプ内面欠陥は、ステンレス鋼
の連続鋳造鋳片に発生する中心偏析部に存在するフェラ
イトによる熱間加工性の劣化、鋳片センタポロシティ欠
陥が主原因であることが知られている。中心偏析、セン
タポロシティ、内部割れ、介在物等の内部欠陥を軽減す
るには、低温鋳造のほかに電磁撹拌が有効であることが
知られている。また、センタポロシティは、鋳片中心部
凝固末期においてロール圧下を行うことが有効であるこ
とが知られている。しかしながら、中心偏析、センタポ
ロシティの軽減には、電磁撹拌による効果は十分でな
く、また、ロール圧下に際してもステンレス鋼の場合圧
下条件が大きく作用する。
2. Description of the Related Art In continuous casting of a material for a stainless steel pipe, a reduction in yield due to a defect in the inner surface of the pipe at the time of pipe production becomes a problem. It is known that the defects at the inner surface of the pipe during pipe production are mainly caused by deterioration of hot workability due to ferrite present at the center segregation part generated in the continuous cast slab of stainless steel, center porosity defect of the slab. I have. It is known that electromagnetic stirring is effective in addition to low-temperature casting in order to reduce internal defects such as center segregation, center porosity, internal cracks and inclusions. It is known that the center porosity is effective to reduce the roll in the final stage of solidification at the center of the slab. However, the effect of electromagnetic stirring is not sufficient to reduce center segregation and center porosity, and the rolling condition of stainless steel greatly affects the roll reduction.

【0003】上記連続鋳造における中心偏析、センタポ
ロシティの防止方法としては、鋳片が凝固完了した後
に、鋳片の厚み中央部の温度が1000〜1400℃に
なっている間に、圧下ロールにより前記鋳片を1対ロー
ル当たり0.3〜1.0mm、全圧下量で0.2〜6.
0%圧下する方法(特開昭53−57131号公報)、
モールドから下流側に行くにつれ、漸時鋳片厚さが小さ
くなるよう該鋳片を積極的に圧下する方法(特開昭53
−102225号公報)、圧下量/未凝固厚みの比を
0.5〜1.0とし、圧下時の鋳片中心部の固相率を
0.5〜0.8とし、かつ圧下時の歪を0.2%以下と
する方法(特開昭63−108955号公報)等が提案
されている。
[0003] As a method of preventing center segregation and center porosity in the above continuous casting, as described above, after the slab is completely solidified, while the temperature at the center of the slab thickness is 1000 to 1400 ° C, the above-mentioned roll is pressed by a rolling roll. The slab is 0.3 to 1.0 mm per pair of rolls and 0.2 to 6.
A method of reducing the pressure by 0% (JP-A-53-57131);
A method of positively reducing the slab so as to gradually reduce the thickness of the slab as it goes downstream from the mold (Japanese Patent Application Laid-Open No.
JP-A-102225), the ratio of the amount of reduction / unsolidified thickness is set to 0.5 to 1.0, the solid phase ratio at the center of the slab at the time of reduction is set to 0.5 to 0.8, and the strain at the time of reduction is set. (Japanese Patent Laid-Open Publication No. 63-10855) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】上記特開昭53−57
131号公報に開示の方法は、凝固完了後の圧下はセン
タポロシティを圧着するのに大きな圧下力を必要とし、
通常の圧下力ではセンタポロシティを圧着するのは困難
である。また、センタポロシティを圧着するのに必要な
大きな圧下力は必然的に内部割れを誘発し易い。また、
特開昭53−102225号公報に開示の方法は、セン
タポロシティを圧着するための圧下位置、圧下量がどの
範囲が適切であるかについては記載されていない。さら
に、特開昭63−108955号公報に開示の方法は、
圧下量、圧下時期を規定しているが、ステンレス鋼の連
続鋳造の場合は、圧下量、圧下時期のみでは不十分で、
連続鋳造における中心偏析、センタポロシティの軽減が
十分でない。
Problems to be Solved by the Invention
The method disclosed in Japanese Patent Publication No. 131 requires a large reduction force to compress the center porosity after completion of solidification,
It is difficult to crimp the center porosity with normal rolling force. In addition, the large rolling force required to press the center porosity inevitably tends to induce internal cracks. Also,
In the method disclosed in Japanese Patent Application Laid-Open No. 53-102225, there is no description as to which range is appropriate for a reduction position and a reduction amount for pressing the center porosity. Further, the method disclosed in Japanese Patent Application Laid-Open No.
Although the amount of rolling and the timing of rolling are specified, in the case of continuous casting of stainless steel, the amount of rolling and the time of rolling are not enough.
Reduction of center segregation and center porosity in continuous casting is not sufficient.

【0005】この発明の目的は、内面品質に優れたステ
ンレス鋼継目無鋼管の製造に供する中心偏析、センタポ
ロシティを軽減できるステンレス鋼鋼片の連続鋳造方法
を提供することにある。
An object of the present invention is to provide a method for continuously casting stainless steel slabs capable of reducing center segregation and center porosity for manufacturing a stainless steel seamless steel pipe having excellent inner surface quality.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意試験研究を重ねた。その結果、ステン
レス鋼の連続鋳造においては、鋼の化学成分により圧下
条件を規定することによって、鋼片の中心偏析、センタ
ポロシティを軽減でき、内面品質に優れたステンレス鋼
継目無鋼管を製造できることを究明し、この発明に到達
した。
Means for Solving the Problems The present inventors have intensively studied and studied to achieve the above object. As a result, in continuous casting of stainless steel, by defining the rolling conditions according to the chemical composition of the steel, the center segregation and center porosity of the slab can be reduced, and a seamless stainless steel pipe with excellent inner surface quality can be manufactured. Investigated and arrived at this invention.

【0007】すなわちこの発明は、C:0.10%以下、Si:1.
00%以下、Mn:2.00%以下、P:0.05%以下、S:0.010%以下、
Cr:15.0〜20.0%、Ni:6.0〜13.0%、Mo:3.00%以下、Al:0.
001〜0.100%、N:0.001〜0.15%を含みさらにCa:0.05%
以下、B:0.005%以下、Ti:0.500%以下、Nb:1.00%以下の
うちの少なくとも1種以上を含有する溶鋼を連続鋳造す
るに際し、下記式で算出したNi当量が1.5〜2.0の場合
は、連続鋳造時の圧下位置における圧下直前の鋳片中心
凝固厚みに対する鋳片圧下量の比を0.5以下、Ni当量
が1.0〜1.5の場合は1.0以下、Ni当量が1.0未満の場合は
0.5以上1.0以下とすることを特徴とするステンレス鋼管
用素材の連続鋳造方法である。Ni当量=30×(C+N)+0.5×Mn+Ni+8.2-1.1×(1.5×Si+Cr+M
o+0.5×Nb) ただし、式中のC、N、Mn、Ni、Si、Cr、Mo、Nbは、各元
素の含有率(%)を示し、Ti≧0.05%あるいはNb≧0.100%の
場合Nの項は省略する。
That is, according to the present invention, C: 0.10% or less, Si: 1.10% or less.
00% or less, Mn: 2.00% or less, P: 0.05% or less, S: 0.010% or less,
Cr: 15.0-20.0%, Ni: 6.0-13.0%, Mo: 3.00% or less, Al: 0.
From 001 to 0.100% N: comprises from 0.001 to 0.15%, further Ca: 0.05%
Hereinafter, B: 0.005% or less, Ti: 0.500% or less, Nb: upon continuous casting molten steel containing at least one or more of 1.00% or less, when the Ni equivalent which issued calculated by the following equation is 1.5 to 2.0 Is the center of the slab just before the reduction at the reduction position during continuous casting
0.5 the ratio of the slab rolling reduction against unsolidified thickness or less, 1.0 in the case of Ni equivalent is 1.0 to 1.5, if the Ni equivalent is less than 1.0
A continuous casting method for a material for a stainless steel pipe, wherein the material is set to 0.5 or more and 1.0 or less. Ni equivalent = 30 × (C + N) + 0.5 × Mn + Ni + 8.2-1.1 × (1.5 × Si + Cr + M
o + 0.5 × Nb) where C, N, Mn, Ni, Si, Cr, Mo and Nb are each
Element content (%), Ti ≧ 0.05% or Nb ≧ 0.100%
In this case, the item of N is omitted.

【0008】[0008]

【作用】先ず、この発明においてステンレス鋼の化学成
分を限定した理由を詳述する。Cは鋼に強度を付与する
ために必要な元素であるが、0.10%を超えると耐酸
耐食性が悪化するため、0.10%以下とした。Siは
鋼の脱酸に有効な元素であるが、1.00%を超える
と、フェライト増加による熱間加工性が悪化するため、
1.00%以下とした。Mnはγ形成元素でNi代替と
して添加するが、2.00%を超えると歩留低下等の製
鋼上の問題点が発生するので、2.00%以下とした。
P、Sは共に耐食性、熱間加工性を悪化させるため、上
限をそれぞれ0.050%、0.010%とした。Cr
は耐食性を向上させるために添加するが、15.0%未
満ではその効果が十分でなく、20.0%を超えるとσ
相析出による割れが懸念されるため、15.0〜20.
0%とした。Niは耐食性を向上させるために添加する
が、6.0%未満ではその効果が十分でなく、13.0
%を超えると加工時の変形抵抗が増加し過ぎるため、
6.0〜13.0%とした。
First, the reasons for limiting the chemical components of stainless steel in the present invention will be described in detail. C is an element necessary for imparting strength to steel, but if it exceeds 0.10%, the acid and corrosion resistance deteriorates. Therefore, C is set to 0.10% or less. Si is an element effective for deoxidizing steel, but if it exceeds 1.00%, hot workability is deteriorated due to an increase in ferrite.
1.00% or less. Mn is a γ-forming element and is added as a substitute for Ni. However, if it exceeds 2.00%, steelmaking problems such as a decrease in yield occur, so Mn is set to 2.00% or less.
Since both P and S deteriorate corrosion resistance and hot workability, the upper limits are set to 0.050% and 0.010%, respectively. Cr
Is added in order to improve the corrosion resistance. However, if it is less than 15.0%, its effect is not sufficient, and if it exceeds 20.0%, σ
Since cracks due to phase precipitation are concerned, 15.0 to 20.
0%. Ni is added to improve the corrosion resistance, but if it is less than 6.0%, the effect is not sufficient, and 13.0% is used.
%, The deformation resistance during processing will increase too much.
It was set to 6.0 to 13.0%.

【0009】Alは精錬工程での鋼の脱酸のために0.
001%以上必要であるが、0.100%を超えるとA
lN生成により耐食性、熱間加工性に悪影響を及ぼすた
め、0.001〜0.100%とした。Nはγ形成元素
として熱間加工性を改善するが、0.001%未満では
その効果が十分でなく、0.150%を超えると変形抵
抗増加による熱間加工性の圧下を招くため、0.001
〜0.150%とした。Nb、Ti、Moは耐熱性を保
持させるため添加する場合もあるが、製造コスト制約か
ら上限をそれぞれ1.00%、0.500%、3.00
%とした。Caは硫化物形態制御に効果があるが、0.
01%を超えると酸化物系介在物が粗大化するため、
0.01%以下とした。Bは熱間加工性の改善に有効な
元素であるが、0.005%を超えると耐食性が悪化す
るため、0.005%以下とした。
[0009] Al is used for deoxidation of steel in the refining process.
001% or more is necessary, but if it exceeds 0.100%, A
Since the formation of 1N adversely affects the corrosion resistance and hot workability, the content is set to 0.001 to 0.100%. N improves the hot workability as a γ-forming element. However, if it is less than 0.001%, its effect is not sufficient, and if it exceeds 0.150%, the hot workability is reduced due to an increase in deformation resistance. .001
-0.150%. Nb, Ti, and Mo may be added to maintain heat resistance, but the upper limits are 1.00%, 0.500%, and 3.00, respectively, due to manufacturing cost restrictions.
%. Ca is effective in controlling the sulfide morphology,
If the content exceeds 01%, the oxide-based inclusions become coarse.
It was set to 0.01% or less. B is an element effective for improving hot workability, but if it exceeds 0.005%, the corrosion resistance deteriorates.

【0010】この発明においては、 Ni当量=30×(C+N)+0.5×Mn+Ni+8.2-1.1×(1.5×Si+Cr+M
o+0.5×Nb) ただし、式中のC、N、Mn、Ni、Si、Cr、Mo、Nbは、各元
素の含有率(%)を示し、Ti≧0.05%あるいはNb≧0.100%の
場合Nの項は省略するで算出したNi当量が1.5〜2.0の
場合は、連続鋳造時の圧下位置における圧下直前の鋳片
中心凝固厚みに対する鋳片圧下量の比を0.5以下、Ni
当量が1.0〜1.5の場合は1.0以下、Ni当量が1.0未満の場
合は0.5以上1.0以下とすることによって、高Ni量域に
おける鋳片中心割れの発生を防止できると共に、低Ni
量域におけるフェライトの中心偏析が抑制され、熱間加
工性の劣化が抑制される。この結果、連続鋳造したステ
ンレス鋼鋳片は、継目無鋼管用素材として用いた場合に
おける内面欠陥の発生が防止され、製品歩留の低下を防
止することができる。
In the present invention, Ni equivalent = 30 × (C + N) + 0.5 × Mn + Ni + 8.2-1.1 × (1.5 × Si + Cr + M
o + 0.5 × Nb) where C, N, Mn, Ni, Si, Cr, Mo, and Nb are
Element content (%). When Ti ≧ 0.05% or Nb ≧ 0.100%, the item of N is omitted . In case the calculated Ni equivalent is 1.5 to 2.0, the 0.5 ratio of the slab rolling reduction against pressure just before the slab center unsolidified thickness at pressing position during continuous casting or less, Ni
By setting the equivalent to 1.0 to 1.5 and 1.0 or less, and when the Ni equivalent is less than 1.0 to 0.5 or more and 1.0 or less, it is possible to prevent the occurrence of slab center cracking in the high Ni equivalent range and to reduce the low Ni equivalent. The segregation of the center of ferrite in the amount range is suppressed, and the deterioration of hot workability is suppressed. As a result, when the continuously cast stainless steel slab is used as a material for a seamless steel pipe, the occurrence of inner surface defects is prevented, and a reduction in product yield can be prevented.

【0011】[0011]

【実施例】実施例1 表1に示す化学成分の鋼No.1〜14のステンレス鋼を転炉
にて溶製し、410mm×530mmの鋳型を用い鋳造速度0.5m/s
ecで未凝固末端近傍を圧下しながら連続鋳造して鋳片と
したのち、直径225mmに分塊圧延して継目無鋼管製造用
の丸鋳片となし、該丸鋳片を回転加熱炉で1230℃に加熱
したのち、マンネスマンマンドレルミルを用いて穿孔、
延伸圧延、縮径加工を行って外径273mmのステンレス鋼
継目無鋼管を製造した。得られた各継目無鋼管は、内面
品質についての検査を実施した。その結果を図1に示
す。また、前記連続鋳造段階でロール圧下量を増加させ
た以外は、前記と同一条件でステンレス鋼継目無鋼管を
製造した。得られた各継目無鋼管は、内面品質について
の検査を実施した。その結果を図2に示す。また、Ni
量と連続鋳造時の圧下位置における圧下直前の鋳片中心
凝固厚みに対する鋳片圧下量の比と継目無鋼管の内面
疵のない範囲との関係を図3に示す。なお、連続鋳造時
のロール圧下は、特開昭63-108955号公報に開示のとお
り、鋳片中心部の固相率と圧下量を調整して実施した。
また、図1、図2中のR/Lは、圧下位置における圧下直前
鋳片未凝固厚みLに対する圧下量Rの比を示す。
EXAMPLES Example 1 Stainless steels of steel Nos. 1 to 14 having the chemical components shown in Table 1 were melted in a converter, and the casting speed was 0.5 m / s using a 410 mm × 530 mm mold.
After continuous casting while reducing the area near the unsolidified end with ec to make a slab, it was slab-rolled to a diameter of 225 mm to form a round slab for producing a seamless steel pipe, and the round slab was subjected to 1230 in a rotary heating furnace. After heating to ℃, perforation using a Mannes mandrel mill,
Elongation rolling and diameter reduction were performed to produce a stainless steel seamless steel pipe having an outer diameter of 273 mm. Each seamless steel pipe obtained was inspected for inner surface quality. The result is shown in FIG. Also, a stainless steel seamless steel pipe was manufactured under the same conditions as above except that the roll reduction was increased in the continuous casting step. Each seamless steel pipe obtained was inspected for inner surface quality. The result is shown in FIG. Also, the Ni equivalent weight and the center of the slab just before the reduction at the reduction position during continuous casting
The relationship between the range without inner surface flaws ratio and seamless steel pipes of the slab rolling reduction against unsolidified thickness shown in FIG. The roll reduction during continuous casting was carried out by adjusting the solid phase ratio and the reduction amount at the center of the slab as disclosed in Japanese Patent Application Laid-Open No. 63-108955.
Further, R / L in FIG. 1, FIG. 2, pressure in the pressing position immediately before
2 shows the ratio of the reduction amount R to the unsolidified thickness L of the slab.

【0012】[0012]

【表1】 [Table 1]

【0013】図1に示すとおり、Ni量が低い場合は、
フェライト生成により熱間加工性が悪化し、穿孔圧延時
に素管内面に疵が発生する。また、Ni量が高い場合に
は鋳造段階で中心部内部割れが発生し、ステンレス鋼継
目無鋼管の内面欠陥が発生する。これは固相線温度前後
での固液共存域での熱間加工性が劣化するためである。
ところが、これに連続鋳造時、ロール圧下量を増加させ
ると、図2に示すとおり内面品質が好転する。この結
果、Ni量の低い領域においては、ロール圧下により中
心偏析が改善され、パイプ内面品質の向上が見られた。
しかしながら、Ni量が高い領域においては、図2に示
すとおり、逆にパイプ内面品質が悪化する傾向が見られ
た。このことは、ロール圧下により、鋳片中心部の割れ
を助長したためと考えられる。また、図3に示すとお
り、Ni当量が1.5〜2.0の場合は、連続鋳造時の圧下位置
における圧下直前の鋳片中心凝固厚みに対する鋳片圧
下量の比を0.5以下、Ni当量が1.0〜1.5の場合は、鋳片
中心凝固厚みに対する鋳片圧下量の比を1.0以下、Ni
当量が1.0未満の場合は、鋳片中心凝固厚みに対する
鋳片圧下量の比を0.5以上1.0以下とすることによって、
ステンレス鋼継目無鋼管の内面欠陥の発生を大幅に抑制
することができる。
As shown in FIG. 1, when the Ni equivalent is low,
Hot workability deteriorates due to ferrite generation, and flaws occur on the inner surface of the raw tube during piercing and rolling. When the Ni equivalent is high, internal cracks occur in the center at the casting stage, and inner surface defects of the stainless steel seamless steel pipe occur. This is because the hot workability in the solid-liquid coexistence region around the solidus temperature is deteriorated.
However, when the roll reduction is increased during continuous casting, the inner surface quality is improved as shown in FIG. As a result, in the region where the Ni equivalent was low, the center segregation was improved by the roll reduction and the inner surface quality of the pipe was improved.
However, in the region where the Ni equivalent is high, as shown in FIG. 2, the quality of the inner surface of the pipe tends to deteriorate. This is presumably because the roll reduction reduced the cracks in the center of the slab. Also, as shown in FIG. 3, when the Ni equivalent is 1.5 to 2.0, the rolling position during continuous casting is reduced.
0.5 or less the ratio of the slab rolling reduction against pressure just before the slab center unsolidified thickness in the case Ni equivalent is 1.0 to 1.5, 1.0 to the ratio of the slab rolling reduction against slab center unsolidified thickness or less, Ni
If equivalent is less than 1.0, by 0.5 to 1.0 the slab rolling reduction ratio billet center unsolidified thickness,
It is possible to greatly suppress the occurrence of inner surface defects of the stainless steel seamless steel pipe.

【0014】[0014]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、ステンレス鋼継目無鋼管の製造用素材の連続鋳造時
における内面欠陥の要因となる中心偏析、センタポロシ
ティの発生を大幅に低減でき、ステンレス鋼継目無鋼管
の内面疵の発生率を著しく減少できる。
As described above, according to the method of the present invention, the occurrence of center segregation and center porosity which cause internal surface defects during continuous casting of a material for manufacturing a stainless steel seamless steel pipe can be greatly reduced. The occurrence rate of inner surface flaws of a stainless steel seamless steel pipe can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例におけるロール圧下量の小さい場合のNi
量と鋼管の内面疵の発生率との関係を示すグラフであ
る。
FIG. 1 shows an example in which Ni is reduced when the roll reduction amount is small.
Is a graph showing the relationship between the incidence of inner surface flaws of equivalents and steel pipes.

【図2】実施例におけるロール圧下量の大きい場合のNi
量と鋼管の内面疵の発生率との関係を示すグラフであ
る。
FIG. 2 shows a case where a roll reduction amount in an embodiment is large.
Is a graph showing the relationship between the incidence of inner surface flaws of equivalents and steel pipes.

【図3】実施例におけるロール圧下した場合のNi量と
連続鋳造時の圧下位置における圧下直前の鋳片中心
固厚みに対する鋳片圧下量の比と継目無鋼管の内面疵の
ない範囲との関係を示すグラフである。
[3] the inner surface of the ratio and seamless steel pipes of the slab rolling reduction against pressure just before the slab center Not coagulated <br/> solid thickness at Ni pressing position of equivalents and during continuous casting in the case of roll pressure in the embodiment It is a graph which shows the relationship with the range without a flaw.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/58 C22C 38/58 ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 7 Identification code FI C22C 38/58 C22C 38/58

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.10%以下、Si:1.00%以下、Mn:2.00%
以下、P:0.05%以下、S:0.010%以下、Cr:15.0〜20.0%、N
i:6.0〜13.0%、Mo:3.00%以下、Al:0.001〜0.100%、N:0.
001〜0.15%を含みさらにCa:0.05%以下、B:0.005%以
下、Ti:0.500%以下、Nb:1.00%以下のうちの少なくとも1
種以上を含有する溶鋼を連続鋳造するに際し、下記式で
出したNi当量が1.5〜2.0の場合は、連続鋳造時の圧下
位置における圧下直前の鋳片中心凝固厚みに対する鋳
片圧下量の比を0.5以下、Ni当量が1.0〜1.5の場合は1.0
以下、Ni当量が1.0未満の場合は0.5以上1.0以下とする
ことを特徴とするステンレス鋼管用素材の連続鋳造方
法。Ni当量=30×(C+N)+0.5×Mn+Ni+8.2-1.1×(1.5×Si+Cr+M
o+0.5×Nb) ただし、式中のC、N、Mn、Ni、Si、Cr、Mo、Nbは、各元
素の含有率(%)を示し、Ti≧0.05%あるいはNb≧0.100%の
場合Nの項は省略する
[Claim 1] C: 0.10% or less, Si: 1.00% or less, Mn: 2.00%
Below, P: 0.05% or less, S: 0.010% or less, Cr: 15.0 to 20.0%, N
i: 6.0-13.0%, Mo: 3.00% or less, Al: 0.001-0.100%, N: 0.
It comprises 001 to 0.15%, further Ca: 0.05% or less, B: 0.005% or less, Ti: 0.500% or less, Nb: 1.00% at least 1 of the following
When continuously casting molten steel containing more than one kind ,
If Ni equivalent issued Sun of 1.5 to 2.0, reduction of the time of continuous casting
0.5 the ratio of the slab rolling reduction against pressure just before the slab center unsolidified thickness at position below, if Ni equivalent is 1.0 to 1.5 1.0
Hereinafter, a method for continuously casting a material for a stainless steel pipe, wherein the Ni equivalent is less than 1.0 and 0.5 or more and 1.0 or less. Ni equivalent = 30 × (C + N) + 0.5 × Mn + Ni + 8.2-1.1 × (1.5 × Si + Cr + M
o + 0.5 × Nb) where C, N, Mn, Ni, Si, Cr, Mo and Nb are each
Element content (%), Ti ≧ 0.05% or Nb ≧ 0.100%
In case N, omit
JP6015936A 1994-01-13 1994-01-13 Continuous casting method for stainless steel pipe material Expired - Fee Related JP3018888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6015936A JP3018888B2 (en) 1994-01-13 1994-01-13 Continuous casting method for stainless steel pipe material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6015936A JP3018888B2 (en) 1994-01-13 1994-01-13 Continuous casting method for stainless steel pipe material

Publications (2)

Publication Number Publication Date
JPH07204813A JPH07204813A (en) 1995-08-08
JP3018888B2 true JP3018888B2 (en) 2000-03-13

Family

ID=11902656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6015936A Expired - Fee Related JP3018888B2 (en) 1994-01-13 1994-01-13 Continuous casting method for stainless steel pipe material

Country Status (1)

Country Link
JP (1) JP3018888B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669992B (en) * 2019-10-09 2021-10-29 舞阳钢铁有限责任公司 Continuous casting billet for seawater corrosion resistant structural steel and production method thereof

Also Published As

Publication number Publication date
JPH07204813A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
JP4296985B2 (en) Ultra-thick steel plate with excellent internal quality and its manufacturing method
JP2005103604A (en) Continuous casting method, continuous casting cast slab, and steel plate
JP2707839B2 (en) Martensitic seamless steel pipe and its manufacturing method
JP3018888B2 (en) Continuous casting method for stainless steel pipe material
JP2002194431A (en) Method for producing continuous casting-made extra- thick steel plate
JP2843665B2 (en) Hot work crack prevention method for continuous cast slab.
JP3671868B2 (en) Method for casting high Cr steel
JP3320547B2 (en) Manufacturing method of high carbon content stainless steel sheet
JP3487234B2 (en) Manufacturing method of high carbon steel slab for seamless steel pipe
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3289132B2 (en) Method of manufacturing billet for bar steel
CN116770198B (en) Steel plate for low-compression-ratio hydropower and preparation method thereof
JPH03199307A (en) Production of steel products having excellent friction pressure weldability
JP2004307931A (en) Continuously cast piece, and casting method therefor
JP3298519B2 (en) Steel sheet free of hydrogen defects and method for producing the same
JP3113995B2 (en) Continuous cast slab for hot rolling
JPH0815640B2 (en) Method for manufacturing austenitic stainless steel strip
JP3111345B2 (en) Continuous casting method of Mo-W added heat resistant steel pipe material
JP3744254B2 (en) Martensitic stainless steel seamless steel pipe with excellent surface quality
JP3460608B2 (en) Method of manufacturing iron-based high Cr seamless steel pipe
JP3775178B2 (en) Thin steel plate and manufacturing method thereof
JPH0751809A (en) Production of corrosion resistant and heat resistant super alloy thin sheet
JP2840103B2 (en) Method for producing high chromium-containing material steel for rolling
JPS58205665A (en) Continuous casting method for decreasing microsegregation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees