JP3744254B2 - Martensitic stainless steel seamless steel pipe with excellent surface quality - Google Patents

Martensitic stainless steel seamless steel pipe with excellent surface quality Download PDF

Info

Publication number
JP3744254B2
JP3744254B2 JP11975199A JP11975199A JP3744254B2 JP 3744254 B2 JP3744254 B2 JP 3744254B2 JP 11975199 A JP11975199 A JP 11975199A JP 11975199 A JP11975199 A JP 11975199A JP 3744254 B2 JP3744254 B2 JP 3744254B2
Authority
JP
Japan
Prior art keywords
steel
rolling
pipe
martensitic stainless
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11975199A
Other languages
Japanese (ja)
Other versions
JP2000313942A (en
Inventor
正春 岡
俊治 坂本
修治 山本
幸一 能勢
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11975199A priority Critical patent/JP3744254B2/en
Publication of JP2000313942A publication Critical patent/JP2000313942A/en
Application granted granted Critical
Publication of JP3744254B2 publication Critical patent/JP3744254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱間加工時に圧延疵を生じない、表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管に関するものである。
【0002】
【従来の技術】
マルテンサイト系ステンレス鋼は、AISI420鋼に代表されるように、強度、耐CO2腐食性に優れ比較的安価であることから、1980年頃より油井管として適用されてきたが、近年では、高温かつ多量のCO2やそれに加えてH2Sを含む油井環境にも適応しうるために、AISI420鋼より優れた耐食性を有する鋼が開発されてきている。例えば特公昭59−15978号公報や特公平3−2227号公報などに見られるような低C−Ni−Mo添加鋼、あるいは特開平2−217444号公報などに見られるような低C−Cu−Ni−Mo添加鋼といった鋼種(いわゆるModified13Cr鋼と称される鋼種)が提案されている。さらに、溶接性を改善してラインパイプとしても適用されてきている。
【0003】
一般に、合金量が多くなると、耐食性は向上する反面、加工性が悪化する。上記鋼の油井管やラインパイプは、マンネスマン方式の圧延法によって継目無管に製管されるのが通例である。従来マンネスマン圧延は熱間加工方法の中でも最も苛酷な加工方法として知られており、これらの鋼は、Cr,Ni,Mo,Cuといった合金元素を多量に含むため、マンネスマン方式の圧延法によって製管する際、圧延疵が発生することがあった。
【0004】
このような圧延疵の問題に対して、特開平8−120345号公報などに見られるように、熱間加工温度域での組織をオーステナイト単相に制御するためにCr,Ni,Mo,Cu,C,N等の主要合金元素添加量バランスを調整する方法や、特公平3−60904号公報などに見られるように、PやSに代表される熱間加工性に有害な不純物の含有量を特に低く制限する技術が提案されている。また、特開平7−62499号公報や特開平9−125141号公報などに見られるように、Bを添加する方法が提案されている。しかしながら、これらの策をとってもなお、熱間加工に伴う疵の問題は解決できていないのが現状である。特に、耐食性を向上させるためにCuを0.5質量%を超えて添加した鋼は、表層酸化層直下に濃縮したCuの粒界偏析により粒界強度が低下し,表層部の熱間加工性が低下するため、圧延疵を防止することが困難であった。
【0005】
上記鋼をマンネスマン方式の圧延法によって継目無管に製管する場合、製管の前工程として、インゴット鋳造または連続鋳造で製造された大断面のスラブまたはブルーム形状の鋳片を、小断面の製管用素材(矩形断面ブルームまたは丸断面ビレット、以下骨材と称す)に分塊圧延するのが通例であった。しかし、生産性向上の観点からは、分塊圧延工程を省略して小断面の鋳片を直接マンネスマン方式の圧延法によって継目無管に製管することが望ましい。近年、このような分塊圧延を省略した継目無管の製造プロセスが指向されてきているが、上述のような難加工材の鋳片に直接マンネスマン方式の圧延法を適用すると、圧延疵がより深刻な問題となる。
【0006】
分塊圧延工程を経た管材を製管する場合に比べて、鋳片を直接製管する場合に圧延疵がより深刻な問題となるのは、被圧延材の組織の違いによるものである。すなわち、分塊圧延工程を経た管材は、圧延再結晶組織を呈しており、加えて加熱時に不純物の拡散が起きているため、熱間加工性が高い。一方、鋳片はミクロ偏析を伴う上、粒度も粗く熱間加工性が低い。このために、鋳片を製管する場合には、分塊圧延工程を経た管材を製管する場合に比べて遥かに圧延疵が発生しやすい。これによって、上記鋼の継目無管製造全体の高能率生産を阻害しているのが実状である。
【0007】
このように、従来提案されてきた技術では、Modified13Cr鋼の分塊圧延工程を経た管材または鋳片を、直接マンネスマン方式の圧延法によって継目無管に製管する時に発生する圧延疵の問題を解決することが困難であった。
【0008】
【発明が解決しようとする課題】
本発明は上記したような問題点を解決しようとするものであって、Modified13Cr鋼の分塊圧延工程を経た管材または鋳片をマンネスマン方式の圧延法によって継目無管に製管する場合に表層部の圧延疵を防止するだけでなく、鋳片を直接マンネスマン方式の圧延法によって継目無管に製管する場合においても表層部の圧延疵を防止し、表面品質に優れたマルテンサイト系ステンレス鋼を提供することを目的とする。
【0009】
【発明の効果】
【課題を解決するための手段】
本発明者らは、成分の異なる種々の素材に対して熱間加工性について研究を重ねた結果、本鋼種においては、S:0.002%以下に制限し、B:0.0005〜0.02質量%とCa:0.001〜0.01質量%を複合添加すれば、表層部の熱間加工性が著しく改善され、分塊圧延工程を経た管材をマンネスマン方式の圧延法によって継目無管に製管する場合の表層部の圧延疵を防止できるのみならず、鋳片を直接マンネスマン方式の圧延法によって継目無管に製管する場合においても表層部の圧延疵を防止できることを知見した。
【0010】
本発明はこのような知見に基づいて構成したものであり、その要旨とするところは以下の通りである。
(1)質量%で、 C :0.001〜0.05%、 Si:0.5以下%、 Mn:0.1〜1.5%、 P :0.03以下%、 S :0.002%以下、 Cr:10〜14%、 Ni:2〜8%、 Mo:0.5〜3%、 Al:0.2%以下、 N :0.001〜0.05%、 B :0.0005〜0.02%、Ca:0.001〜0.01%、 O :0.005%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管。
(2)前記(1)に記載の成分の鋼に、さらに質量%で、Mg:0.0005〜0.01%、REM:0.001〜0.05%、Zr:0.01〜0.05%、 Ti:0.005〜0.05%の1種又は2種以上を含有することを特徴とする表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管。
(3)前記(1)又は(2)に記載の成分の鋼に、さらに、質量%で、 Nb:0.05〜0.5%、 V:0.05〜0.5%、 W :0.5〜3%の1種または2種以上を含有することを特徴とする表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管。
【0011】
【発明の実施の形態】
以下に本発明を詳細に説明する。本発明者らは、Modified13Cr鋼の製管時の圧延疵を詳細に調査し、表層部の圧延疵の主原因はS及びCu(Cu無添加鋼ではSのみ)の粒界偏析による粒界脆化であり、表層部の圧延疵は粒界に沿って進展することを突き止めた。従って、表層部の圧延疵を防止するためには粒界強度を高めて粒界割れを防ぎ、熱間加工性を改善する必要がある。そこで、成分の異なる種々の素材に対して熱間加工性について研究を重ねた結果、本鋼種においては、Bの添加により粒界強度が向上し、熱間加工性が改善することを知見した。
【0012】
Modified13Cr鋼鋳片(0.02C−0.02N−12.2Cr−5.8Ni−2.0Mo−0.0018S)の熱間加工性に及ぼすBの影響を図1に示す。図1の縦軸と横軸はそれぞれ絞り値と変形温度T1 を示している。図1に示す結果は図2に示した条件で熱間引張試験を行い得られたものである。すなわち、1250℃に加熱し1分保定後、変形温度(T1 ℃)まで10℃/secで冷却し、その温度で1分間保定後、3/secの歪み速度で引張試験を行った。試験後の破断部の断面積を試験前の断面積で割った値を絞り値と定義する。絞り値が高いほど熱間加工性は良好である。これまでの知見から、絞り値が75%以上あればその温度で良好な熱間加工性を示すことがわかっている。図1より、Modified13Cr鋼の熱間加工性はB添加により大幅に改善することがわかる。
【0013】
さらに、高温引張試験後の試験片の破断部断面を詳細に調査したところ、B無添加材では非常に多くの粒界割れが存在するが、B添加材では粒界粒界割れの数が顕著に少なくなっていることがわかった。しかしながら、依然として粒界割れが存在するため、Bを単独で添加しただけでは製管時の圧延疵を防止することはできなかった。そこで、粒界強度に及ぼす成分の影響についてさらに研究を重ねた結果、BとCaを複合添加すれば粒界強度が著しく向上し、粒界割れを防止できることを知見した。すなわち、上述の高温引張試験を行ったとき、B−Ca複合添加材では破断部断面に粒界割れは存在せず、粒内ボイドのみ観察され、その数も非常に少ないことがわかった。
【0014】
さらに、べ一ス成分がほぼ同じ(0.02C−0.02N−12.2Cr−5.8Ni−2.0Mo−0.002S)でB及びCa含有量のみ異なる組成の217mm×217mm断面の連続鋳造鋳片を、直接マンネスマン方式の熱間圧延法によって外径178mm、肉厚11.5mmの継目無管に造管し、圧延終了後、パイプの表面疵の発生状況を観察し、B及びCa含有量と表面疵発生状況の関係を詳細に調査した。その結果を図3に示す。図3より、Sを0.002%以下に制限した本鋼種においては、0.0005%以上のBと0.001%以上のCaを複合添加すれば、表層部の熱間加工性が著しく改善され、鋳片を直接マンネスマン方式の圧延法によって継目無管に製管する場合においても表層部の圧延疵を防止できることがわかった。
【0015】
次に、本発明におけるマルテンサイト系ステンレス鋼の成分を限定した理由は以下の通りである。成分の含有量は質量%である。
C:CはCr炭化物などを形成し耐食性を劣化させる元素である。一方、強力なオーステナイト形成元素でもあり、高温加熱時にδフェライト相の生成を抑制する効果がある。しかし、0.001%未満ではその効果は発現されず、0.05%を超えて含有されると粒界にCr炭化物が多量に析出し、Cr欠乏層が形成されるために耐CO2 腐食特性が低下し、又、粒界強度が低下するために耐硫化物応力割れ性が劣化する。さらに溶接性も劣化する。従って、C含有量は0.001〜0.05%とした。
【0016】
Si:Siは製鋼工程において脱酸剤として添加され残存するものである。0.5%を超えて含有されると、靭性及び耐硫化物応力割れ性が劣化することから、上限を0.5%とした。
【0017】
Mn:Mnはオーステナイト安定化元素であり、高温加熱時にδフェライト相の生成を抑制する効果がある。またMnSを形成してSの有害性を低減する効果もある。しかし、0.1%未満ではそれらの効果は発現されず、1.5%を超えて含有されると粒界強度が低下するために耐硫化物応力割れ性及び靭性が劣化する。従って、Mn含有量は0.1〜1.5%とした。
【0018】
P:Pは粒界に偏析して粒界強度を低下させ、耐硫化物応力割れ性及び靭性を劣化させる不純物元素であり、可及的低レベルが望ましいが、現状精錬技術の到達可能レベルとコストを考慮して、上限を0.03%とした。
【0019】
S:Sは熱間加工性を劣化させる不純物元素であり、0.002%を超えて含有されるとBとCaの複合添加による熱間加工性改善効果が十分には得られず、製管時に表面疵が発生するため、上限を0.002%とした。
【0020】
Cr:Crは耐食性を向上させる元素であり、ステンレス鋼として十分な耐食性を得るには10%以上含有させることが必要である。一方、フェライト安定化元素でもあり、14%を超えて含有させると高温加熱時にδフェライト相が生成して熱間加工性が劣化する。従って、Cr含有量は10〜14%とした。
【0021】
Ni:NiはCr含有鋼において耐食性を向上させる元素である。また、強力なオーステナイト形成元素であり、高温加熱時にδフェライト相の生成を抑制する効果がある。しかし、2%未満ではそれらの効果が発現されず、8%を超えて含有させるとAc1 変態点が大幅に低下し強度調質が困難になる。従って、Ni含有量は2〜8%とした。
【0022】
Mo:Moは耐食性を向上させるのに有効な元素である。しかし、0.5%未満ではその効果が発現されないため、下限を0.5%とした。一方、Moは強力なフェライト安定化元素でもあり、3%を超えて含有されると、高温加熱時にδフェライト相が生成して熱間加工性が劣化する。従って、Mo含有量は0.5〜3%とした。
【0023】
Al:AlはSiと同様に製鋼工程において脱酸剤として添加され残存するものである。0.2%を超えて含有されると、AlNが多量に形成されて熱間加工性及び靱性が低下する。従って、上限を0.2%とした。
【0024】
N:は強力なオーステナイト形成元素であり、高温加熱時にδフェライト相の生成を抑制する効果がある。又、微細な窒化物は高温加熱時の結晶粒成長を抑制し熱間加工性を向上させる効果がある。しかし、0.001%未満ではそれらの効果は発現されず、0.05%を超えて含有させると粗大な窒化物が析出して熱間加工性及び靭性が劣化する。さらに溶接性も劣化する。従って、N含有量は0.001〜0.05%とした。
【0025】
B:Bは自ら粒界に偏析することにより粒界結合力を向上させると共に、Sの粒界偏析を抑制し、粒界強度を高め、熱間加工性及び耐硫化物応力割れ性を向上させるのに有効な元素である。しかし、0.0005%未満ではその効果は発現されず、0.02%を超えて含有すると溶融脆化温度が大幅に低下し、熱間加工温度域が著しく制限されるとともに、靭性及び溶接性が劣化する。従って、B含有量は0.0005〜0.02%とした。
【0026】
Ca:CaはBと複合して添加することにより、Sによる粒界偏析を抑制し、粒界強度を高め、熱間加工性を向上させるのに有効な元素である。しかし、0.001%未満ではその効果は発現されず、0.01%を超えて含有すると。粗大なCa系介在物を形成して耐硫化物応力割れ性や靭性を劣化させるので、Ca含有量は0・001〜0.01%とした。
【0027】
O:製鋼工程での脱酸後に残存するOは、非金属介在物として鋼中に残留して清浄度を害し、熱間加工性、耐食性及び靭性を劣化させる不純物元素であり、可及的低レベルにするのが望ましいが、現状精錬技術の到達可能レベルとコストを考慮して、上限を0.005%とした。
【0028】
Mg、REM、Zr、Ti:これらの元素はSによる熱間加工性劣化を抑制するものであり、必要に応じて1種又は2種以上添加するが、含有量が少なすぎるとその効果は発現せず、多すぎると粗大な酸化物や窒化物を形成して耐硫化物応力割れ性や靭性を劣化させるので、Mgは0.0005〜0.01%、REMは0.001〜0.05%、Zrは0.01〜0.05%、Tiは0.005〜0.05%とした。
【0029】
Nb、V、W:これらの元素は耐食性を向上させる元素であり、必要に応じて1種又は2種以上添加するが、含有量が少なすぎるとその効果が発現せず、多すぎると靭性を劣化させるので、Nbは0.05〜0.5%、Vは0.05〜0.5%、Wは0.5〜3%添加する。
【0030】
本発明鋼は、主にマンネスマン方式の熱間圧延法によって継目無管に造管される。ここでいうマンネスマン方式の圧延法とは、通常の継目無鋼管製造のための熱間圧延法で、矩形断面若しくは丸断面の製管用素材(以下、管材と称す)を用い、プレスロール穿孔法或いはマンネスマン穿孔法により穿孔した後、必要に応じて傾斜圧延機(エロンゲータ)により延伸し、さらにプラグミル或いはマンドレルミルで肉厚を調整し、最終仕上圧延機(サイザーミルあるいはストレッチレデューサー)で所定の外径に成形することにより造管していく一連のプロセスである。
【0031】
【実施例】
表1に示す組成の217mm×217mm断面の連続鋳造鋳片をマンネスマン方式の熱間圧延法によって継目無管に造管した。圧延終了後、パイプの表面疵発生状況を調査した。結果を表1に併せて示す。本発明例(No.1〜13)では、製管時の表面疵は発生していない。一方、B,Ca,S含有量のうち1つ以上が本発明の成分限定範囲を超えている比較例(No.14〜20)では、製管時に表面疵が発生している。
【0032】
以上より、B,Ca,S含有量が本発明の成分限定範囲内であれば、マンネスマン方式の熱間圧延法によって継目無管に製管するときに表層部の圧延疵を防止できることが明らかである。
【0033】
【表1】

Figure 0003744254
【0034】
【発明の効果】
以上のように本発明によれば、分塊圧延工程を経た管材または鋳片をマンネスマン方式の圧延法によって継目無管に造管する場合に表層部の圧延疵を防止するだけでなく、鋳片を直接マンネスマン方式の圧延法によって継目無管に製管する場合においても表層部の圧延疵が発生しない表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管が得られる。
【図面の簡単な説明】
【図1】Modified13Cr鋼(0.02%C一0.02%N-12.2%Cr-5.8%Ni-2.0%Mo-0.0018%S)の熱間加工性に及ぼすBの影響を示す図表である。
【図2】熱間引張試験の条件を示す図表である。
【図3】B及びCa含有量と表面疵発生状況の関係を示す図表である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a martensitic stainless steel seamless steel pipe excellent in surface quality that does not cause rolling defects during hot working.
[0002]
[Prior art]
Martensitic stainless steel has been applied as an oil well pipe since around 1980 because it is excellent in strength and CO 2 corrosion resistance and relatively inexpensive, as represented by AISI 420 steel. Steels having better corrosion resistance than AISI 420 steel have been developed because they can be adapted to oil well environments containing large amounts of CO 2 and additionally H 2 S. For example, a low C—Ni—Mo-added steel such as that disclosed in Japanese Patent Publication Nos. 59-15978 and 3-2227, or a low C—Cu— such as that disclosed in JP-A-2-217444. Steel types such as Ni-Mo added steel (so-called Modified 13Cr steel) are proposed. Furthermore, it has been applied as a line pipe with improved weldability.
[0003]
In general, as the amount of alloy increases, the corrosion resistance improves, but the workability deteriorates. The steel oil well pipes and line pipes are usually produced seamlessly by the Mannesmann rolling method. Conventionally, Mannesmann rolling is known as the most severe processing method among hot working methods, and these steels contain a large amount of alloying elements such as Cr, Ni, Mo, and Cu. When rolling, rolling wrinkles may occur.
[0004]
In order to control the structure in the hot working temperature range to an austenite single phase, as seen in Japanese Patent Application Laid-Open No. 8-120345, etc., for such a problem of rolled iron, Cr, Ni, Mo, Cu, The content of impurities harmful to hot workability typified by P and S, as seen in the method of adjusting the amount of addition of main alloy elements such as C and N, and Japanese Patent Publication No. 3-60904 In particular, a technique for restricting to a low level has been proposed. Further, as seen in JP-A-7-62499 and JP-A-9-125141, a method of adding B has been proposed. However, even if these measures are taken, the problem of wrinkles associated with hot working has not been solved. In particular, steel added with more than 0.5% by mass of Cu in order to improve corrosion resistance has reduced grain boundary strength due to segregation of grain boundary of Cu concentrated just under the surface oxide layer, and hot workability of the surface layer part. Therefore, it was difficult to prevent rolling wrinkles.
[0005]
When the steel is produced into seamless pipes by the Mannesmann rolling method, a large-section slab or bloom-shaped slab produced by ingot casting or continuous casting is produced as a small-section production as a pre-process for pipe production. It has been customary to roll a tube material (rectangular section bloom or round section billet, hereinafter referred to as aggregate). However, from the viewpoint of improving productivity, it is desirable to produce a slab having a small cross-section into a seamless pipe directly by a Mannesmann rolling method, omitting the ingot rolling step. In recent years, manufacturing processes for seamless pipes have been directed to omit such ingot rolling, but when the Mannesmann rolling method is applied directly to the slabs of difficult-to-process materials as described above, the rolling mill is more It becomes a serious problem.
[0006]
Compared with the case of producing a pipe material that has undergone the block rolling process, the fact that the rolling iron becomes a more serious problem when the slab is directly produced is due to the difference in the structure of the material to be rolled. That is, the tube material that has undergone the block rolling process exhibits a rolled recrystallized structure, and in addition, diffusion of impurities during heating causes high hot workability. On the other hand, the slab is accompanied by microsegregation, coarse grain size and low hot workability. For this reason, when casting a slab, compared with the case where the pipe material which passed through the block rolling process is piped, a rolling flaw is easy to generate | occur | produce. As a result, the high-efficiency production of the entire seamless pipe production of the steel is hindered.
[0007]
In this way, the conventionally proposed technology solves the problem of rolling wrinkles that occur when pipes or slabs that have been subjected to the lump rolling process of Modified 13Cr steel are directly piped into seamless pipes by the Mannesmann rolling method. It was difficult to do.
[0008]
[Problems to be solved by the invention]
The present invention is intended to solve the above-described problems, and a surface layer portion is formed when a pipe or slab that has been subjected to a modified rolling process of Modified 13Cr steel is seamlessly piped by a Mannesmann rolling method. In addition to preventing rolling flaws, it is possible to prevent martensitic stainless steel with excellent surface quality by preventing rolling flaws in the surface layer even when casting slabs into seamless pipes by the Mannesmann rolling method. The purpose is to provide.
[0009]
【The invention's effect】
[Means for Solving the Problems]
As a result of repeated research on hot workability on various materials having different components, the present inventors limited S: 0.002% or less and B: 0.0005-0. When 02 mass% and Ca: 0.001 to 0.01 mass% are added in combination, the hot workability of the surface layer portion is remarkably improved, and the tube material that has undergone the split rolling process is seamlessly piped by the Mannesmann method rolling method. It has been found that not only can the rolling flaws in the surface layer part be formed in the case of pipe making, but also the flaws in the surface layer part can be prevented even when the slab is directly piped into a seamless pipe by the Mannesmann rolling method.
[0010]
The present invention is configured based on such knowledge, and the gist thereof is as follows.
(1) By mass%, C: 0.001 to 0.05%, Si: 0.5 or less, Mn: 0.1 to 1.5%, P: 0.03 or less, S: 0.002 %: Cr: 10-14%, Ni: 2-8%, Mo: 0.5-3%, Al: 0.2% or less, N: 0.001-0.05%, B: 0.0005 Martensite system excellent in surface quality, characterized by containing ~ 0.02%, Ca: 0.001-0.01%, O 2: 0.005% or less, the balance being Fe and inevitable impurities Stainless steel seamless steel pipe.
(2) In addition to the steel of the component described in (1), Mg: 0.0005-0.01%, REM: 0.001-0.05%, Zr: 0.01-0. A martensitic stainless steel seamless steel pipe excellent in surface quality, characterized by containing one or more of 05%, Ti: 0.005 to 0.05%.
(3) In addition to the steel of the component described in (1) or (2) above, in mass%, Nb: 0.05 to 0.5%, V: 0.05 to 0.5%, W: 0 A martensitic stainless steel seamless steel pipe excellent in surface quality, characterized by containing one or more of 5 to 3%.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. The inventors of the present invention investigated in detail the rolled wrinkles at the time of pipe making of Modified 13Cr steel, and the main cause of the rolled wrinkles in the surface layer portion is grain boundary brittleness due to grain boundary segregation of S and Cu (only S in Cu-free steel). It has been found that the rolling troughs in the surface layer part develop along the grain boundaries. Therefore, in order to prevent rolling wrinkles in the surface layer portion, it is necessary to increase the grain boundary strength to prevent grain boundary cracking and to improve hot workability. Therefore, as a result of repeated research on hot workability for various materials having different components, it was found that the addition of B improves the grain boundary strength and improves the hot workability in this steel type.
[0012]
FIG. 1 shows the effect of B on the hot workability of Modified 13Cr steel slab (0.02C-0.02N-12.2Cr-5.8Ni-2.0Mo-0.0018S). The vertical axis and horizontal axis in FIG. 1 indicate the aperture value and the deformation temperature T1, respectively. The results shown in FIG. 1 are obtained by performing a hot tensile test under the conditions shown in FIG. That is, after heating to 1250 ° C. and holding for 1 minute, cooling to the deformation temperature (T 1 ° C.) at 10 ° C./sec, holding at that temperature for 1 minute, and conducting a tensile test at a strain rate of 3 / sec. A value obtained by dividing the cross-sectional area of the fractured portion after the test by the cross-sectional area before the test is defined as the aperture value. The higher the drawing value, the better the hot workability. From the knowledge so far, it is known that if the drawing value is 75% or more, good hot workability is exhibited at that temperature. FIG. 1 shows that the hot workability of Modified 13Cr steel is greatly improved by addition of B.
[0013]
Further, when the cross-section of the fractured portion of the test piece after the high temperature tensile test was examined in detail, a very large number of grain boundary cracks exist in the B-free material, but the number of grain boundary grain boundary cracks is remarkable in the B-added material. It turned out to be less. However, since grain boundary cracks still exist, it was not possible to prevent rolling wrinkles during pipe making simply by adding B alone. Therefore, as a result of further research on the influence of the component on the grain boundary strength, it has been found that if B and Ca are added together, the grain boundary strength is remarkably improved and the grain boundary cracking can be prevented. That is, when the above-described high temperature tensile test was performed, it was found that in the B-Ca composite additive, no intergranular cracks exist in the cross section of the fracture portion, only intragranular voids are observed, and the number thereof is very small.
[0014]
Furthermore, the base component is almost the same (0.02C-0.02N-12.2Cr-5.8Ni-2.0Mo-0.002S), and the 217 mm x 217 mm cross-section is continuous with compositions differing only in B and Ca contents. The cast slab is formed into a seamless pipe having an outer diameter of 178 mm and a wall thickness of 11.5 mm by a direct Mannesmann hot rolling method. After the rolling is finished, the occurrence of surface flaws on the pipe is observed, and B and Ca The relationship between content and surface flaw occurrence was investigated in detail. The result is shown in FIG. According to FIG. 3, in the present steel grade in which S is limited to 0.002% or less, the hot workability of the surface layer portion is remarkably improved by adding 0.0005% or more of B and 0.001% or more of Ca in combination. As a result, it has been found that even when the slab is directly piped into a seamless pipe by the Mannesmann rolling method , rolling defects in the surface layer portion can be prevented.
[0015]
Next, the reasons for limiting the components of the martensitic stainless steel in the present invention are as follows. The content of the component is mass%.
C: C is an element that forms Cr carbide and the like to deteriorate the corrosion resistance. On the other hand, it is also a strong austenite-forming element and has the effect of suppressing the formation of δ ferrite phase when heated at high temperatures. However, if the content is less than 0.001%, the effect is not manifested. If the content exceeds 0.05%, a large amount of Cr carbide precipitates at the grain boundary and a Cr-deficient layer is formed. Further, since the grain boundary strength is reduced, the resistance to sulfide stress cracking is deteriorated. Furthermore, the weldability also deteriorates. Therefore, the C content is set to 0.001 to 0.05%.
[0016]
Si: Si is added and remains as a deoxidizer in the steelmaking process. If the content exceeds 0.5%, the toughness and sulfide stress cracking resistance deteriorate, so the upper limit was made 0.5%.
[0017]
Mn: Mn is an austenite stabilizing element and has an effect of suppressing the formation of a δ ferrite phase when heated at a high temperature. It also has the effect of reducing the toxicity of S by forming MnS. However, if the content is less than 0.1%, those effects are not manifested. If the content exceeds 1.5%, the grain boundary strength is lowered, so that the sulfide stress cracking resistance and toughness deteriorate. Therefore, the Mn content is set to 0.1 to 1.5%.
[0018]
P: P is an impurity element that segregates at the grain boundaries and lowers the grain boundary strength and degrades the resistance to sulfide stress cracking and toughness, and is preferably as low as possible. Taking the cost into consideration, the upper limit was made 0.03%.
[0019]
S: S is an impurity element that degrades hot workability, and if it exceeds 0.002%, the effect of improving hot workability due to the combined addition of B and Ca cannot be sufficiently obtained, and pipe making Since surface flaws sometimes occur, the upper limit was made 0.002%.
[0020]
Cr: Cr is an element that improves the corrosion resistance. To obtain sufficient corrosion resistance as stainless steel, it is necessary to contain 10% or more. On the other hand, it is also a ferrite stabilizing element, and if it exceeds 14%, a δ ferrite phase is generated during high-temperature heating and the hot workability deteriorates. Therefore, the Cr content is set to 10 to 14%.
[0021]
Ni: Ni is an element that improves the corrosion resistance of Cr-containing steel. Further, it is a strong austenite forming element and has an effect of suppressing the formation of δ ferrite phase when heated at a high temperature. However, if the content is less than 2%, those effects are not exhibited. If the content exceeds 8%, the Ac1 transformation point is greatly lowered, and the strength refining becomes difficult. Therefore, the Ni content is 2 to 8%.
[0022]
Mo: Mo is an element effective for improving the corrosion resistance. However, since the effect is not manifested at less than 0.5%, the lower limit was made 0.5%. On the other hand, Mo is also a strong ferrite stabilizing element, and if it is contained in an amount exceeding 3%, a δ ferrite phase is generated during high-temperature heating and hot workability deteriorates. Therefore, the Mo content is set to 0.5 to 3%.
[0023]
Al: Al is added and remains as a deoxidizing agent in the steelmaking process in the same manner as Si. If the content exceeds 0.2%, a large amount of AlN is formed, and hot workability and toughness deteriorate. Therefore, the upper limit was made 0.2%.
[0024]
N: is a strong austenite forming element and has an effect of suppressing the formation of the δ ferrite phase when heated at a high temperature. In addition, fine nitride has an effect of suppressing crystal grain growth during high-temperature heating and improving hot workability. However, if the content is less than 0.001%, those effects are not exhibited. If the content exceeds 0.05%, coarse nitrides precipitate and the hot workability and toughness deteriorate. Furthermore, the weldability also deteriorates. Therefore, the N content is set to 0.001 to 0.05%.
[0025]
B: B segregates on the grain boundary to improve grain boundary binding force, suppresses grain boundary segregation of S, increases grain boundary strength, and improves hot workability and resistance to sulfide stress cracking. It is an effective element. However, if the content is less than 0.0005%, the effect is not expressed. If the content exceeds 0.02%, the melt embrittlement temperature is greatly reduced, the hot working temperature range is remarkably limited, and toughness and weldability are also achieved. Deteriorates. Therefore, the B content is set to 0.0005 to 0.02%.
[0026]
Ca: Ca is an element that is effective for suppressing grain boundary segregation due to S, increasing grain boundary strength, and improving hot workability when added in combination with B. However, if it is less than 0.001%, the effect is not manifested, and if it contains more than 0.01%. Since coarse Ca-based inclusions are formed to deteriorate sulfide stress cracking resistance and toughness, the Ca content is set to 0.001 to 0.01%.
[0027]
O: O remaining after deoxidation in the steelmaking process is an impurity element that remains in the steel as non-metallic inclusions, impairs cleanliness, and degrades hot workability, corrosion resistance, and toughness. Although the level is desirable, the upper limit is set to 0.005% in consideration of the reachable level and cost of the current refining technology.
[0028]
Mg, REM, Zr, Ti: These elements suppress the hot workability deterioration due to S, and one or more elements are added as necessary, but the effect is manifested when the content is too small. If the amount is too large, coarse oxides and nitrides are formed and sulfide stress cracking resistance and toughness are deteriorated. Therefore, Mg is 0.0005 to 0.01% and REM is 0.001 to 0.05. %, Zr was 0.01 to 0.05%, and Ti was 0.005 to 0.05%.
[0029]
Nb, V, W: These elements are elements that improve the corrosion resistance. If necessary, one or more elements are added. However, if the content is too small, the effect is not manifested. Since it deteriorates, Nb is added to 0.05 to 0.5%, V is added to 0.05 to 0.5%, and W is added to 0.5 to 3%.
[0030]
The steel of the present invention is formed into a seamless pipe mainly by the Mannesmann hot rolling method. The Mannesmann rolling method here is a normal hot rolling method for producing seamless steel pipes, using a tube-forming material having a rectangular or round cross section (hereinafter referred to as a pipe material), a press roll drilling method or After drilling by Mannesmann drilling method, if necessary, it is stretched by an inclined rolling mill (elongator), and the wall thickness is adjusted by a plug mill or a mandrel mill, and the final finish rolling mill (sizer mill or stretch reducer) is used to obtain a predetermined outer diameter. It is a series of processes that make pipes by molding.
[0031]
【Example】
A continuous cast slab of 217 mm × 217 mm cross section having the composition shown in Table 1 was formed into a seamless pipe by the Mannesmann hot rolling method. After rolling, the state of surface flaws on the pipe was investigated. The results are also shown in Table 1. In the present invention examples (Nos. 1 to 13), surface flaws are not generated during pipe production. On the other hand, in the comparative examples (Nos. 14 to 20) in which one or more of the B, Ca and S contents exceed the component-limited range of the present invention, surface flaws are generated during pipe production.
[0032]
From the above, it is clear that when the B, Ca, S content is within the component-limited range of the present invention , rolling flaws in the surface layer portion can be prevented when pipes are produced seamlessly by the Mannesmann hot rolling method. is there.
[0033]
[Table 1]
Figure 0003744254
[0034]
【The invention's effect】
As described above, according to the present invention, in the case where a pipe material or slab that has undergone the block rolling process is formed into a seamless pipe by the Mannesmann rolling method , not only the rolling flaw in the surface layer portion is prevented, but also the slab Even in the case where pipes are made into seamless pipes directly by the Mannesmann rolling method, martensitic stainless steel seamless steel pipes having excellent surface quality that do not generate rolling flaws in the surface layer portion can be obtained.
[Brief description of the drawings]
FIG. 1 is a chart showing the effect of B on the hot workability of Modified 13Cr steel (0.02% C / 0.02% N-12.2% Cr-5.8% Ni-2.0% Mo-0.0018% S).
FIG. 2 is a chart showing conditions for a hot tensile test.
FIG. 3 is a chart showing the relationship between B and Ca content and the state of surface flaw occurrence.

Claims (3)

質量%で、C :0.001〜0.05%、Si:0.5以下%、Mn:0.1〜1.5%、P :0.03以下%、S :0.002%以下、Cr:10〜14%、Ni:2〜8%、Mo:0.5〜3%、Al:0.2%以下、N :0.001〜0.05%、B :0.0005〜0.02%、Ca:0.001〜0.01%、O :0.005%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管。In mass%, C: 0.001 to 0.05%, Si: 0.5 or less, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0.002% or less, Cr: 10-14%, Ni: 2-8%, Mo: 0.5-3%, Al: 0.2% or less, N: 0.001-0.05%, B: 0.0005-0. Martensitic stainless steel seam excellent in surface quality, characterized by containing 02%, Ca: 0.001 to 0.01%, O 2: 0.005% or less, the balance being Fe and inevitable impurities Steel-free pipe. 請求項1に記載の成分の鋼に、さらに質量%で、Mg:0.0005〜0.01%、REM:0.001〜0.05%、Zr:0.01〜0.05%、Ti:0.005〜0.05%の1種又は2種以上を含有することを特徴とする表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管。The steel of the component according to claim 1, further in terms of mass%, Mg: 0.0005 to 0.01%, REM: 0.001 to 0.05%, Zr: 0.01 to 0.05%, Ti : A martensitic stainless steel seamless steel pipe excellent in surface quality, characterized by containing one or more of 0.005 to 0.05%. 請求項1又は2に記載の成分の鋼に、さらに質量%で、Nb:0.05〜0.5%、V :0.05〜0.5%、W :0.5〜3%の1種または2種以上を含有することを特徴とする表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管。The steel of the component according to claim 1 or 2, further in mass%, Nb: 0.05-0.5%, V: 0.05-0.5%, W: 0.5-3% 1 A martensitic stainless steel seamless steel pipe excellent in surface quality, characterized by containing seeds or two or more kinds.
JP11975199A 1999-04-27 1999-04-27 Martensitic stainless steel seamless steel pipe with excellent surface quality Expired - Fee Related JP3744254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11975199A JP3744254B2 (en) 1999-04-27 1999-04-27 Martensitic stainless steel seamless steel pipe with excellent surface quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11975199A JP3744254B2 (en) 1999-04-27 1999-04-27 Martensitic stainless steel seamless steel pipe with excellent surface quality

Publications (2)

Publication Number Publication Date
JP2000313942A JP2000313942A (en) 2000-11-14
JP3744254B2 true JP3744254B2 (en) 2006-02-08

Family

ID=14769261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11975199A Expired - Fee Related JP3744254B2 (en) 1999-04-27 1999-04-27 Martensitic stainless steel seamless steel pipe with excellent surface quality

Country Status (1)

Country Link
JP (1) JP3744254B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145793B2 (en) * 2007-06-29 2013-02-20 Jfeスチール株式会社 Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762499A (en) * 1993-08-26 1995-03-07 Kawasaki Steel Corp Martensitic stainless steel for oil well pipe
JP2953303B2 (en) * 1994-05-13 1999-09-27 住友金属工業株式会社 Martensite stainless steel
WO1996003532A1 (en) * 1994-07-21 1996-02-08 Nippon Steel Corporation Martensitic stainless steel having excellent hot workability and sulfide stress cracking resistance
JPH0860238A (en) * 1994-08-23 1996-03-05 Nippon Steel Corp Production of martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance
JP4123528B2 (en) * 1995-10-11 2008-07-23 住友金属工業株式会社 Manufacturing method of martensitic stainless steel oil well pipe
JP3254146B2 (en) * 1996-10-29 2002-02-04 川崎製鉄株式会社 High strength martensitic stainless steel for oil country tubular goods with excellent stress corrosion cracking resistance and high temperature tensile properties.
JPH1161346A (en) * 1997-08-11 1999-03-05 Nkk Corp Stainless steel superior in hot workability

Also Published As

Publication number Publication date
JP2000313942A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
KR101615842B1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
CN105838992A (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
WO2006109664A1 (en) Ferritic heat-resistant steel
JP4462452B1 (en) Manufacturing method of high alloy pipe
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
JP3959667B2 (en) Manufacturing method of high strength steel pipe
JP4277405B2 (en) Manufacturing method of hot-rolled steel sheet for high-strength ERW steel pipe excellent in low temperature toughness and weldability
JP4016786B2 (en) Seamless steel pipe and manufacturing method thereof
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP4622171B2 (en) Ferritic stainless steel sheet excellent in room temperature workability and mechanical properties at high temperature and method for producing the same
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
WO2021206080A1 (en) Martensitic stainless seamless steel pipe
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP4035919B2 (en) Martensitic stainless steel seamless steel pipe with excellent surface quality
JP3711959B2 (en) Heat resistant low alloy steel pipe and method for producing the same
JP3744254B2 (en) Martensitic stainless steel seamless steel pipe with excellent surface quality
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
KR102612324B1 (en) Manufacturing method of high manganese steel cast steel and manufacturing method of high manganese steel steel strip or steel plate
JP3491148B2 (en) High strength and high toughness seamless steel pipe for line pipe
JP3417219B2 (en) Martensitic stainless steel with excellent hot workability
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP4123528B2 (en) Manufacturing method of martensitic stainless steel oil well pipe
JP3417275B2 (en) Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance
JP3456468B2 (en) Martensitic stainless steel seamless steel pipe with excellent machinability and hot workability

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Ref document number: 3744254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees