JPH11179509A - Continuous casting method of billet cast slab - Google Patents

Continuous casting method of billet cast slab

Info

Publication number
JPH11179509A
JPH11179509A JP35561197A JP35561197A JPH11179509A JP H11179509 A JPH11179509 A JP H11179509A JP 35561197 A JP35561197 A JP 35561197A JP 35561197 A JP35561197 A JP 35561197A JP H11179509 A JPH11179509 A JP H11179509A
Authority
JP
Japan
Prior art keywords
reduction
cast slab
slab
billet
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35561197A
Other languages
Japanese (ja)
Other versions
JP3271574B2 (en
Inventor
Akihiro Yamanaka
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35561197A priority Critical patent/JP3271574B2/en
Publication of JPH11179509A publication Critical patent/JPH11179509A/en
Application granted granted Critical
Publication of JP3271574B2 publication Critical patent/JP3271574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a billet cast slab from internal crack and to reduce porosity as well as center segregation by holding a reduction face at a temp. lower than that of a non-reduction face when a center solid phase rate of a cast slab is in a specified range and reduction of a specified range quantity of a cast slab diameter is imparted to a cast slab at least a pair of rolls. SOLUTION: When a center solid phase rate of a cast slab is 0.4-0.9, the reduction of 10-40% of a cast slab diameter is conducted. A cast slab diameter is a cast slab diameter for a round billet, a cast slab thickness for a rectangular billet, a side length for a square. A partially solidified reduction device uses at least a pair of horizontal rolls 9, an increase in numbers of pairs of rolls is not always effective but is preferably 3 or less. A cooling method, not limiting, is preferably water spray or mist spray. By cooling upper.lower reduction faces, a non-reduction face is relatively made a high temp., as necessary, a non-reduction face may heated. A temp. difference is preferably 100-300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭素鋼、ステンレス
鋼および高合金鋼等の鋳片に発生する中心偏析やポロシ
ティを改善するビレット鋳片の連続鋳造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting billet slabs for improving center segregation and porosity generated in slabs of carbon steel, stainless steel, high alloy steel and the like.

【0002】[0002]

【従来の技術】連続鋳造法によりビレット鋳片を製造す
る際に、中心偏析やポロシティが発生するが、鋳造時に
電磁攪拌および未凝固軽圧下を適用し、分塊および圧延
加工工程で大きい圧下率をかけることにより中心偏析や
ポロシティ等が問題の無いレベルに至ることは周知のこ
とである。
2. Description of the Related Art When a billet slab is manufactured by a continuous casting method, center segregation and porosity are generated. However, electromagnetic stirring and unsolidified light reduction are applied at the time of casting, and a large rolling reduction is performed in a lump and rolling process. It is well-known that the application of the heat treatment results in a level at which center segregation, porosity and the like can be brought about without any problem.

【0003】例えば、特開昭64−4863号公報に
は、電磁攪拌と未凝固軽圧下の併用により中心偏析を低
減する技術が開示されている。
For example, Japanese Patent Application Laid-Open No. 64-4863 discloses a technique for reducing center segregation by using both electromagnetic stirring and unsolidified light pressure.

【0004】[0004]

【発明が解決しようとする課題】しかし、そのような従
来技術にあっても分塊工程を省略できるまでの改善に至
っていないのが実状であり、鋳片の段階で中心偏析やポ
ロシティをさらに低減する必要がある。
However, even in such prior art, the improvement has not yet been achieved until the sizing process can be omitted, and the center segregation and porosity are further reduced at the slab stage. There is a need to.

【0005】ビレット鋳片の段階で、大きな圧下率の未
凝固圧下を行うことが有効と考えられるが、圧下率の大
きい未凝固圧下を行うと内部割れが発生するためこの対
策が望まれている。
[0005] It is considered effective to perform unsolidification reduction with a large rolling reduction at the stage of billet cast slabs. However, performing unsolidification reduction with a large rolling reduction causes internal cracks, and thus this measure is desired. .

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の課題
を解決するため種々の実験、調査、検討を行い下記
(A)〜(C)の知見を得た。
The present inventor has conducted various experiments, investigations, and studies in order to solve the above-mentioned problems, and has obtained the following findings (A) to (C).

【0007】(A)中心偏析やポロシティは、中心固相
率0.4〜0.9の範囲では、固相と液相が共存する半
凝固状態であり、大きな圧縮力により濃化残溶鋼を鋳片
の上流側に排出でき、しかもポロシティを潰すことがで
きる。
(A) The center segregation and porosity are in a semi-solid state in which a solid phase and a liquid phase coexist when the central solid phase ratio is in the range of 0.4 to 0.9. The slab can be discharged to the upstream side and the porosity can be reduced.

【0008】鋳片の中心固相率が0.9を超えると、中
心部の濃化残溶鋼は中心偏析したままほとんど凝固して
しまい、鋳片の上流側に排出できない。また、ポロシテ
ィも、同様に凝固しており、ポロシティを潰すことは困
難である。
If the center solid fraction of the slab exceeds 0.9, the concentrated residual molten steel in the center is almost solidified with the center segregated, and cannot be discharged to the upstream side of the slab. Also, the porosity is solidified similarly, and it is difficult to crush the porosity.

【0009】(B)ビレット鋳片を未凝固圧下すると、
鋳片は、厚さが小さくなる方向と幅が拡がる方向および
引抜方向に延びる方向にそれぞれ変形することになる
が、鋳片の表面温度が高い場合、表層部が延び易くまた
は、幅拡がり方向に変形し易くなり、その分、厚さ方向
の変形が小さくなる。即ち、鋳片の未凝固圧下の際に、
鋳片の表面温度が高い場合、鋳片の延び方向の変形の割
合が大きく、厚さ方向の変形が小さくなり、厚さ方向の
内部浸透性が低下する。
(B) When the billet slab is unsolidified and reduced,
The slab is deformed in the direction in which the thickness decreases, in the direction in which the width expands, and in the direction in which the slab extends.However, when the surface temperature of the slab is high, the surface layer portion is easy to extend, or in the width expansion direction. Deformation becomes easy, and accordingly, deformation in the thickness direction becomes small. In other words, when the slab is unsolidified,
When the surface temperature of the slab is high, the rate of deformation of the slab in the extending direction is large, the deformation in the thickness direction is small, and the internal permeability in the thickness direction is reduced.

【0010】(C)ビレット鋳片の圧下面を低温にする
ことで、延び方向と幅方向の変形が抑制され、かつ非圧
下面を高温にすることで、圧下方向すなわち厚さ方向の
変形が促進されて良好な内部浸透性が得られる。 鋳片
の圧下直前の望ましい温度は、圧下面で800℃〜90
0℃、非圧下面では、900℃〜1100℃である。
(C) By lowering the pressing surface of the billet slab to a low temperature, deformation in the extending direction and the width direction is suppressed, and by raising the non-pressing surface to a high temperature, deformation in the pressing direction, that is, the thickness direction is suppressed. Accelerated to give good internal permeability. The desired temperature immediately before the reduction of the slab is 800 ° C. to 90 ° C.
0 ° C. and 900 ° C. to 1100 ° C. on the non-pressed lower surface.

【0011】なお、圧下面とは、圧下ロールが接する鋳
片面であり、非圧下面とは、圧下時に圧下ロールが接し
ていない鋳片面である。例えば、ビレットを天地方向に
圧下する時、鋳片の天地面が圧下面であり、鋳片の側面
が非圧下面である。
The pressing lower surface is a slab surface with which the pressing roll contacts, and the non-pressing lower surface is a slab surface with which the pressing roll does not contact at the time of pressing. For example, when rolling down the billet in the vertical direction, the top surface of the slab is the pressed surface, and the side surface of the slab is the non-pressed surface.

【0012】本発明は、以上の知見に基づいてなされた
もので、その要旨は、鋳片の中心固相率が0.4〜0.
9のときに、鋳片径の10%〜40%の量の圧下を少な
くとも1対のロールで鋳片に与える際に、圧下面を非圧
下面側より低温に保持することを特徴とするビレット鋳
片の連続鋳造方法である。
The present invention has been made on the basis of the above findings, and the gist of the present invention is that the center solid phase ratio of a slab is 0.4 to 0.1%.
9. The billet according to claim 9, wherein the pressing surface is kept at a lower temperature than the non-pressing surface side when a reduction of 10% to 40% of the slab diameter is applied to the slab by at least one pair of rolls. This is a continuous casting method for slabs.

【0013】[0013]

【発明の実施の形態】本発明は、鋳片の中心固相率が
0.4〜0.9のときに、鋳片径の10%〜40%の量
の圧下を少なくとも1対のロールで鋳片に与える方法で
あり、圧下の直前から鋳片表面の圧下面側を冷却し、圧
下面を非圧下面側より低温に保持するビレット鋳片の連
続鋳造方法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for producing a slab having a center solid phase ratio of 0.4 to 0.9, wherein a reduction of 10 to 40% of the slab diameter is performed by at least one pair of rolls. This is a method of continuously casting billet slabs in which the pressing surface side of the slab surface is cooled immediately before the reduction and the pressing surface is maintained at a lower temperature than the non-pressing surface side.

【0014】なお、鋳片径は、丸ビレットの場合は鋳片
径であり、角ビレットの場合は鋳片厚さ、断面が正方形
の場合は辺長さを意味する。これらを総称して以下の説
明では、鋳片径という。
The slab diameter is a slab diameter for a round billet, a slab thickness for a square billet, and a side length for a square cross section. These are collectively referred to as a slab diameter in the following description.

【0015】鋳片径の10%以上の圧下量を必要とする
理由は、凝固収縮量を補い、かつ残溶鋼の排出が可能と
なる臨界の圧下量が10%であるからである。40%以
下とする理由は、これ以上では、効果がほぼ飽和するか
らである。好ましくは15〜30%である。
The reason why the reduction amount of 10% or more of the slab diameter is required is that the critical reduction amount which compensates for the solidification shrinkage and enables the discharge of the residual molten steel is 10%. The reason for setting it to be 40% or less is that above this, the effect is almost saturated. Preferably it is 15 to 30%.

【0016】鋳片の中心固相率を0.4以上とした理由
は、0.4未満で圧下すると内部割れが発生するからで
ある。中心固相率が0.4以上であると、圧下により凝
固シェルに一旦内部割れが発生するが、圧下の進行とと
もに圧縮力が働き、一旦発生した内部割れを閉じる効果
が生じる。
The reason for setting the center solid fraction of the slab to 0.4 or more is that when the rolling reduction is less than 0.4, internal cracks occur. When the central solid phase ratio is 0.4 or more, internal cracks are once generated in the solidified shell by the reduction, but a compressive force acts as the reduction progresses, and an effect of closing the once generated internal cracks is produced.

【0017】上限を0.9としたのは、前記のように、
鋳片の中心固相率が0.9を超えると、中心部の濃化残
溶鋼は中心に偏析したままほとんど凝固してしまい、鋳
片の上流側に排出できないからである。またポロシティ
が存在する所も凝固しており、ポロシティを潰すことが
困難である。
The upper limit is set to 0.9, as described above.
If the center solid phase ratio of the slab exceeds 0.9, the concentrated residual molten steel in the center is almost solidified while segregating at the center, and cannot be discharged to the upstream side of the slab. The place where porosity exists is also solidified, and it is difficult to crush porosity.

【0018】未凝固圧下装置で、少なくとも一対のロー
ルを使用するが、ロール対数を多くしても必ずしも効果
的でなく、設備コストと効果との対比から3対以下とす
るのが好ましく、上述の未凝固圧下率が確保できるなら
一対のロールでも十分である。
Although at least one pair of rolls is used in the unsolidification rolling device, it is not always effective to increase the number of roll pairs, and it is preferable to reduce the number of rolls to 3 or less in view of the equipment cost and the effect. A pair of rolls is sufficient if the unsolidification draft can be ensured.

【0019】未凝固圧下直前に鋳片の上下の圧下面を冷
却し、非圧下面の温度より低温にする理由は、圧下方向
すなわち厚さ方向の変形が促進されて良好な内部浸透性
が得られ、鋳片中心部の欠陥が低減できるからである。
冷却方法は、特に限定されないが、水スプレーまたはミ
ストスプレーが好ましい。上下の圧下面を冷却すること
で相対的に非圧下面を高温にすることであり、必要によ
り非圧下面を加熱してもよい。温度差は、特に制限され
ないが、100〜300℃が好ましい。
The reason why the upper and lower pressing surfaces of the slab are cooled just before the unsolidification rolling and the temperature is made lower than the temperature of the non-pressing surface is that deformation in the rolling direction, that is, the thickness direction is promoted and good internal permeability is obtained. This is because defects at the center of the slab can be reduced.
The cooling method is not particularly limited, but water spray or mist spray is preferred. By cooling the upper and lower pressing surfaces, the non-pressing surface is relatively heated to a high temperature. If necessary, the non-pressing surface may be heated. The temperature difference is not particularly limited, but is preferably 100 to 300 ° C.

【0020】本発明においては、鋳片径の10%〜40
%の未凝固圧下をかけるために、鋳片の本来の形状を大
きく損ねるおそれがあり、温度が高く変形が容易な未凝
固圧下直後に、未凝固圧下方向と垂直な方向で圧下する
成形ロール、例えば、未凝固圧下が水平ロールであれ
ば、成形ロールは垂直型ロールとする成形装置を直後に
設置することが好ましい。
In the present invention, 10% to 40% of the slab diameter is used.
%, Which may greatly impair the original shape of the slab, and immediately after the unsolidification reduction where the temperature is high and the deformation is easy, the forming roll is pressed in the direction perpendicular to the unsolidification reduction direction, For example, if the unsolidification reduction is a horizontal roll, it is preferable to install a forming device having a vertical roll as the forming roll immediately after.

【0021】[0021]

【実施例】図1に示す湾曲型の連続鋳造設備を用いて本
発明を実施した。ビレットの形状は正方形角ビレット
(0.8%炭素鋼、200mm×200mmの断面積)であ
り、鋳造速度は1.8〜2.2m/min に制御した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention was carried out by using a curved continuous casting facility shown in FIG. The shape of the billet was a square square billet (0.8% carbon steel, 200 mm × 200 mm cross section), and the casting speed was controlled to 1.8 to 2.2 m / min.

【0022】鋳片のバルジング防止用に鋳型直下の二次
冷却帯5を2m の長さで設置し、未凝固圧下直前の二次
冷却帯8までは、冷却帯を設置していない。鋳型直下の
二次冷却の比水量は0.2l/kg-steelである。
To prevent bulging of the slab, a secondary cooling zone 5 immediately below the mold is provided with a length of 2 m, and no cooling zone is provided up to the secondary cooling zone 8 immediately before the unsolidification pressure. The specific water volume of the secondary cooling immediately below the mold is 0.2 l / kg-steel.

【0023】未凝固圧下は、上下から鋳片1を圧下する
一対の水平ロール9を使用して行い、鋳型溶湯面より2
2m の位置に水平ロール9がくるように配置した。未凝
固圧下直前の二次冷却帯8では、長さ2m で鋳片1の上
下面のみ水スプレーで冷却し、冷却の比水量は、0〜
0.3l/kg-steelで実施した。
The unsolidification reduction is performed by using a pair of horizontal rolls 9 for rolling down the slab 1 from above and below, and the unsolidification reduction is performed by 2 mm from the mold melt surface.
The horizontal roll 9 was arranged at a position of 2 m. In the secondary cooling zone 8 immediately before the unsolidification pressure reduction, only the upper and lower surfaces of the slab 1 having a length of 2 m are cooled by water spray.
The test was performed at 0.3 l / kg-steel.

【0024】水平ロール9に入る直前の鋳片1の上面温
度と側面温度を放射温度計により測定した。水平ロール
9は、ロール径が400mmのフラットロールであり、油
圧により圧下でき、圧下力は最大で70ton である。
The upper surface temperature and the side surface temperature of the slab 1 immediately before entering the horizontal roll 9 were measured with a radiation thermometer. The horizontal roll 9 is a flat roll having a roll diameter of 400 mm, and can be rolled down by hydraulic pressure. The rolling force is 70 ton at maximum.

【0025】未凝固圧下後の鋳片1の成形ロールは、垂
直型成形ロール10を使用し、水平ロール9の1.5m
下流に配置して鋳片1の両側面を圧下し成形した。ロー
ル径は、400mmのフラットロールであり、圧下力は最
大100ton である。
As a forming roll of the slab 1 after the unsolidification reduction, a vertical forming roll 10 is used.
The slab 1 was placed downstream and formed by pressing down both side surfaces of the slab 1. The roll diameter is a flat roll of 400 mm, and the rolling force is 100 tons at maximum.

【0026】本例において鋳片の中心固相率は、鋳造条
件毎に、鋳片の径方向一次元の非定常伝熱計算により推
定した。この推定結果から、所定の中心固相率になるよ
うに鋳造速度を調整した。なお、伝熱計算の精度は、鋳
片表面温度の計算値と実測結果との比較、および鋲打ち
による凝固シェル厚の比較により確認した。
In this example, the center solid fraction of the slab was estimated by one-dimensional radial heat transfer calculation of the slab for each casting condition. From this estimation result, the casting speed was adjusted so as to obtain a predetermined center solid phase ratio. In addition, the accuracy of the heat transfer calculation was confirmed by comparing the calculated value of the slab surface temperature with the actual measurement result and the comparison of the thickness of the solidified shell by tacking.

【0027】表1に、実施例の操作条件と評価結果を示
す。比較例6は、未凝固圧下をしないで鋳造のみを行っ
た例である。比較例7では、中心固相率が0.1〜0.
90の間を連続軽圧下を行い、圧下率を5% (圧下量1
0mm) 実施した。なお、この場合に限り、図1の水平ロ
ール9を取り外し、軽圧下用の圧下ロールセグメント
(ロール対数が5対、ロール径が210mm、セグメント
長さが5m )を配置した。圧下前の二次冷却は圧下面、
非圧下面とも実施しなかった。
Table 1 shows operating conditions and evaluation results of the examples. Comparative Example 6 is an example in which only casting was performed without performing unsolidification reduction. In Comparative Example 7, the central solid phase ratio was 0.1 to 0.1.
Continuous light rolling is performed between 90 and the rolling reduction rate is 5% (rolling amount 1
0 mm). Only in this case, the horizontal roll 9 shown in FIG. 1 was removed, and a reduction roll segment for light reduction (5 pairs of rolls, a roll diameter of 210 mm, and a segment length of 5 m) was arranged. Secondary cooling before reduction is performed on the lower surface,
Neither was performed on the non-pressed surface.

【0028】実施例の評価は、鋳造後、鋳造定常部に相
当する2m の鋳片サンプルを採取し、200mmピッチ
で、11枚の横断面サンプルを切り出し、中心偏析、ポ
ロシティおよび内部割れについて行った。
The evaluation of the examples was conducted by taking 2 m cast slab samples corresponding to the stationary part of the cast after casting, cutting out 11 cross-sectional samples at a pitch of 200 mm, and performing center segregation, porosity and internal cracking. .

【0029】中心偏析は、横断面中心を通る直径直線上
の中心から径方向に5mmピッチで、2mm径の化学分析サ
ンプルを鋳片の中心50mmφの範囲で採取した。化学分
析により炭素濃度を求め、 最大濃度となる値を求めた。
この最大濃度C(重量%)を平均濃度C0 (重量%)で
除したもの、すなわちC/C0 (−)を中心偏析比とし
た。中心偏析比の良好な範囲は、1.03以下とした。
The center segregation was performed by sampling a chemical analysis sample having a diameter of 2 mm in a range of 50 mmφ from the center of the slab at a pitch of 5 mm in the radial direction from the center on a diameter straight line passing through the center of the cross section. The carbon concentration was determined by chemical analysis, and the maximum concentration was determined.
The value obtained by dividing the maximum concentration C (% by weight) by the average concentration C 0 (% by weight), that is, C / C 0 (−) was defined as the center segregation ratio. A good range of the center segregation ratio was set to 1.03 or less.

【0030】ポロシティは、横断面に存在するポロシテ
ィの面積をサンプル毎に求め、サンプルの平均値を鋳片
断面積で除したものをポロシティ面積率(%)として評
価した。ポロシティの良好な範囲は、0.02%以下と
した。
The porosity was determined by determining the area of porosity present in the cross section for each sample, and dividing the average value of the sample by the slab cross-sectional area as a porosity area ratio (%). A good range of the porosity is set to 0.02% or less.

【0031】内部割れについては、各断面サンプルをサ
ルファプリントし、目視により有無を判定した。表1に
その結果を示すように、本発明例1〜6における鋳片の
内部品質(中心偏析、ポロシティ、内部割れ)は良好で
あった。
Regarding internal cracks, each cross-sectional sample was subjected to sulfur printing, and the presence or absence was visually determined. As shown in Table 1, the internal quality (center segregation, porosity, internal cracks) of the cast pieces in Examples 1 to 6 of the present invention was good.

【0032】比較例1は、圧下時の中心固相率が0.4
より低いため、内部割れが発生した。比較例2は、中心
固相率が0.9より高いため、ポロシティおよび中心偏
析の改善ができなかった。比較例3では圧下率が5%と
低いため、ポロシティおよび中心偏析を改善ができなか
った。比較例4は、圧下面および非圧下面とも二次冷却
を実施した場合であり、比較例5は、いずれも実施しな
かった場合であるが、比較例4および比較例5とも中心
偏析およびポロシティとも良好な範囲に入らなかった。
比較例6は、未凝固圧下を実施せずに単に連続鋳造した
ものであり、比較例7は、軽圧下をしたものであるが、
比較例6および比較例7とも本発明例1〜6に比べてポ
ロシティおよび中心偏析とも良好な範囲に入らなかっ
た。
In Comparative Example 1, the center solid phase ratio at the time of reduction was 0.4%.
Because of the lower, internal cracks occurred. In Comparative Example 2, the porosity and the center segregation could not be improved because the center solid fraction was higher than 0.9. In Comparative Example 3, since the rolling reduction was as low as 5%, porosity and center segregation could not be improved. Comparative Example 4 is a case where the secondary cooling was performed on both the pressure lower surface and the non-pressure lower surface, and Comparative Example 5 was a case where neither was performed. However, both the comparative examples 4 and 5 had the center segregation and the porosity. Did not fall within the good range.
Comparative Example 6 was obtained by simply continuous casting without performing unsolidification reduction, and Comparative Example 7 was obtained by light reduction.
Neither the porosity nor the center segregation of Comparative Examples 6 and 7 were in good ranges as compared with Examples 1 to 6 of the present invention.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明により、ビレット鋳片に内部割れ
を発生させることなく、ポロシティや中心偏析を低減で
きる。
According to the present invention, porosity and center segregation can be reduced without causing internal cracks in billet slabs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を示す概念図である。FIG. 1 is a conceptual diagram illustrating a method of the present invention.

【符号の説明】[Explanation of symbols]

1:鋳片、 2:浸漬ノズル、 3:溶鋼面、 4:鋳型、 5:鋳型直下の二次冷却帯、 6:溶鋼、 7:凝固シェル、 8:未凝固圧下直前の二次冷却帯、 9:水平ロール、 10:垂直型成形ロール、 11:ピンチロール 1: cast slab, 2: submerged nozzle, 3: molten steel surface, 4: mold, 5: secondary cooling zone immediately below the mold, 6: molten steel, 7: solidified shell, 8: secondary cooling zone immediately before unsolidified pressure, 9: horizontal roll, 10: vertical forming roll, 11: pinch roll

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋳片の中心固相率が0.4〜0.9のと
きに、鋳片径の10%〜40%の量の圧下を少なくとも
1対のロールで鋳片に与える際に、圧下面を非圧下面側
より低温に保持することを特徴とするビレット鋳片の連
続鋳造方法。
When a reduction of an amount of 10% to 40% of a slab diameter is applied to a slab by at least one pair of rolls when the center solid phase ratio of the slab is 0.4 to 0.9. A continuous casting method for billet slabs, wherein the pressing surface is maintained at a lower temperature than the non-pressing surface side.
JP35561197A 1997-12-24 1997-12-24 Continuous casting method of billet slab Expired - Fee Related JP3271574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35561197A JP3271574B2 (en) 1997-12-24 1997-12-24 Continuous casting method of billet slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35561197A JP3271574B2 (en) 1997-12-24 1997-12-24 Continuous casting method of billet slab

Publications (2)

Publication Number Publication Date
JPH11179509A true JPH11179509A (en) 1999-07-06
JP3271574B2 JP3271574B2 (en) 2002-04-02

Family

ID=18444876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35561197A Expired - Fee Related JP3271574B2 (en) 1997-12-24 1997-12-24 Continuous casting method of billet slab

Country Status (1)

Country Link
JP (1) JP3271574B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000190050A (en) * 1998-12-24 2000-07-11 Sumitomo Metal Ind Ltd Manufacture of round billet casting piece by continuous casting
JP2001205407A (en) * 2000-01-25 2001-07-31 Nippon Steel Corp Method for continuous casting of billet
JP2010000522A (en) * 2008-06-20 2010-01-07 Sumitomo Metal Ind Ltd Continuous casting method for cast slab
JP2011005524A (en) * 2009-06-26 2011-01-13 Jfe Steel Corp Method for continuously casting high carbon steel
JP2020006426A (en) * 2018-07-11 2020-01-16 日本製鉄株式会社 Continuous casting method for steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000190050A (en) * 1998-12-24 2000-07-11 Sumitomo Metal Ind Ltd Manufacture of round billet casting piece by continuous casting
JP2001205407A (en) * 2000-01-25 2001-07-31 Nippon Steel Corp Method for continuous casting of billet
JP2010000522A (en) * 2008-06-20 2010-01-07 Sumitomo Metal Ind Ltd Continuous casting method for cast slab
JP2011005524A (en) * 2009-06-26 2011-01-13 Jfe Steel Corp Method for continuously casting high carbon steel
JP2020006426A (en) * 2018-07-11 2020-01-16 日本製鉄株式会社 Continuous casting method for steel

Also Published As

Publication number Publication date
JP3271574B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
EP1284167B1 (en) Method for manufacturing seamless steel pipe
JP3271574B2 (en) Continuous casting method of billet slab
JP2006341297A (en) Continuous casting method, and continuously cast slab
JP3104635B2 (en) Manufacturing method of round billet slab by continuous casting
JPH0957410A (en) Continuous casting method
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP3319379B2 (en) Continuous casting method of steel billet
EP0663250A1 (en) Continuous casting method for steels
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3092543B2 (en) Manufacturing method of round billet slab by continuous casting
JP3104627B2 (en) Unsolidified rolling production method of round billet
JPH09206903A (en) Continuous casting method
JPH07276020A (en) Continuous casting method
JP3114671B2 (en) Steel continuous casting method
JP2000288705A (en) Continuous casting method
JP3275828B2 (en) Continuous casting method
JP2944476B2 (en) Continuous forging method that prevents surface cracks in slabs
JPH11254115A (en) Method for on-line judging surface quality of cast slab and steel slab in continuous casting and blooming and judging instrument
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
JPH0999349A (en) Method for continuously casting round cast billet for bar steel
JP2000218350A (en) Continuous casting method
JP3147803B2 (en) Continuous casting method
JP3225894B2 (en) Continuous casting method
JP3297802B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

LAPS Cancellation because of no payment of annual fees