JP3114671B2 - Steel continuous casting method - Google Patents

Steel continuous casting method

Info

Publication number
JP3114671B2
JP3114671B2 JP09288642A JP28864297A JP3114671B2 JP 3114671 B2 JP3114671 B2 JP 3114671B2 JP 09288642 A JP09288642 A JP 09288642A JP 28864297 A JP28864297 A JP 28864297A JP 3114671 B2 JP3114671 B2 JP 3114671B2
Authority
JP
Japan
Prior art keywords
slab
reduction
steel
unsolidified
bulging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09288642A
Other languages
Japanese (ja)
Other versions
JPH11123513A (en
Inventor
恭司 土居
好徳 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP09288642A priority Critical patent/JP3114671B2/en
Publication of JPH11123513A publication Critical patent/JPH11123513A/en
Application granted granted Critical
Publication of JP3114671B2 publication Critical patent/JP3114671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造鋳片
の中心部に発生する偏析を軽減するとともに、鋳片の内
部割れを防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing segregation occurring at the center of a continuously cast slab of steel and for preventing internal cracks in the slab.

【0002】[0002]

【従来の技術】連続鋳造による鋳片の製造では、中心偏
析と呼ばれる内部欠陥が発生し問題となる。この中心偏
析は、鋳片の最終凝固部である厚さ方向中心部にC、
S、PおよびMnなどの溶鋼成分が濃化し、正偏析する
現象であり、鋼材の靱性の低下や水素誘起割れの原因と
なるため、特に、厚板製品で深刻な問題となることがあ
る。
2. Description of the Related Art In the production of cast slabs by continuous casting, an internal defect called center segregation occurs, which is a problem. This center segregation is caused by C and C at the center in the thickness direction, which is the final solidification part of the slab.
This is a phenomenon in which molten steel components such as S, P, and Mn are concentrated and segregated in the positive direction, which causes a decrease in toughness of a steel material and causes hydrogen-induced cracking.

【0003】中心偏析の発生原因には、以下の2点が考
えられている。 (1) 鋳片の凝固末期において、凝固組織の一つである樹
枝状晶間にC、S、PおよびMnなどの溶鋼成分が濃化
した残溶鋼が、凝固収縮およびバルジング、等の原因に
より、最終凝固部の凝固完了点に向かってマクロ的に移
動すること。 (2) 鋳片の厚さ方向中心部に溶鋼成分が濃化し、そのま
ま凝固すること。
The following two points are considered as causes of the center segregation. (1) In the final stage of solidification of a slab, residual molten steel in which molten steel components such as C, S, P and Mn are concentrated between dendrites, which is one of the solidified structures, is caused by solidification shrinkage and bulging. Moving macroscopically toward the solidification completion point of the final solidification part. (2) The molten steel component is concentrated in the center of the slab in the thickness direction and solidifies as it is.

【0004】したがって、中心偏析防止には、樹枝状晶
間に残った溶鋼の移動を防止することと、濃化溶鋼の局
所的な集積を防ぐことが有効であると考えられ、防止方
法として次のような技術が開示されている。
[0004] Therefore, in order to prevent center segregation, it is considered effective to prevent the movement of molten steel remaining between dendrites and to prevent local accumulation of concentrated molten steel. Such a technique is disclosed.

【0005】例えば、特開昭63−252655号公報
には、二次冷却水量を増量させて、最終凝固部近傍の鋳
片表面温度を700〜800℃の範囲まで強冷却して、
凝固シェル厚さを厚くすることでロール間で発生するバ
ルジングを抑制し、さらに鋳片を軽圧下ロールで毎分
0.2〜0.4%の歪み速度で圧下を加えて、濃化溶鋼
の流動を阻止する方法が開示されている。
For example, Japanese Patent Application Laid-Open No. 63-252655 discloses that the slab surface temperature in the vicinity of the final solidified portion is strongly cooled to a range of 700 to 800 ° C. by increasing the amount of secondary cooling water.
The bulging generated between the rolls is suppressed by increasing the thickness of the solidified shell, and the slab is further rolled down with a light rolling roll at a strain rate of 0.2 to 0.4% per minute to form a concentrated molten steel. A method for inhibiting flow is disclosed.

【0006】しかし、上記の圧下ロールによる凝固収縮
量を若干上回る程度の軽圧下では、鋳片の長手方向に対
して点状にしか圧下できないので、凝固収縮やバルジン
グを充分に防止することができない。また、各圧下が集
中荷重として働くので凝固界面に内部割れが発生し易
く、圧下量を大きくとれないという欠点がある。
However, under a light pressure slightly exceeding the amount of solidification shrinkage caused by the above-mentioned reduction rolls, the solidification shrinkage and bulging cannot be sufficiently prevented because only a point-wise reduction in the longitudinal direction of the slab is possible. . Further, since each reduction acts as a concentrated load, internal cracks are easily generated at the solidification interface, and there is a disadvantage that the amount of reduction cannot be increased.

【0007】また、鋳片中心部の凝固完了点近傍を平面
状の金型で連続的に鍛圧加工する方法が提案されている
が、この方法では加工設備が大型化し設備コストが高く
なるという欠点がある。
Further, a method has been proposed in which forging is continuously performed near the solidification completion point in the center of the slab using a flat mold, but this method has the disadvantage that the processing equipment becomes large and the equipment cost increases. There is.

【0008】上記の欠点を解消するために、特開昭61
−42460号公報には、鋳片の凝固完了点近傍の上流
側に設置した電磁攪拌装置あるいは超音波印加装置によ
る溶鋼流動で樹枝状晶を切断し、凝固完了点近傍に等軸
晶域を形成させた上で、鋳片の凝固完了点直前に配置し
た圧下ロールにより凝固収縮量より大きい3mm以上の
大圧下を与えて、未凝固溶鋼を上部の溶融部に排出して
強制的に凝固を促進させ凝固完了点を形成し、内部割れ
を発生させることなく、中心偏析を解消する方法が開示
されている。
In order to solve the above-mentioned disadvantage, Japanese Patent Application Laid-Open No.
Japanese Patent No. 42460 discloses that dendrites are cut by molten steel flow using an electromagnetic stirrer or an ultrasonic application device installed on the upstream side near the solidification completion point of a slab to form an equiaxed crystal region near the solidification completion point. Then, a large reduction of 3 mm or more, which is larger than the solidification shrinkage, is given by a reduction roll arranged immediately before the solidification completion point of the slab, and the unsolidified molten steel is discharged to the upper molten portion to forcibly promote solidification. A method of forming a solidification completion point and eliminating center segregation without causing internal cracks is disclosed.

【0009】しかし、この方法では、変形抵抗の大きい
鋳片両端部の凝固部を圧下し塑性変形させるため、変形
抵抗の大きな鋼種や、鋳片両端部が低温になり変形抵抗
が大きくなった場合等には、圧下ロールの曲がりおよび
フレームの撓み等により、充分な圧下効果が得られない
という問題がある。
However, in this method, since the solidified portions at both ends of the slab having large deformation resistance are pressed down and plastically deformed, a steel type having large deformation resistance or a case where both ends of the slab have a low temperature and the deformation resistance is increased. However, there is a problem that a sufficient rolling effect cannot be obtained due to bending of the rolling roll and bending of the frame.

【0010】上記の問題に対して、特開昭61−132
247号公報では、鋳片の幅方向中央の未凝固部を、キ
ャメル・クラウン・ロールと呼ばれる、大径ロールの中
央部に突出部を設けた段付きロールで局部的に圧下する
方法が開示されている。しかし、この方法では、段付き
ロールで局部的に圧下するため鋳片表面に凹部が形成さ
れ、その後の圧延工程で寸法不良、平坦度不良の原因と
なる。
In order to solve the above problem, Japanese Patent Laid-Open Publication No.
No. 247 discloses a method in which an unsolidified portion at the center in the width direction of a slab is locally reduced by a stepped roll called a camel crown roll provided with a protruding portion at the center of a large-diameter roll. ing. However, in this method, a concave portion is formed on the surface of the slab due to the local roll-down by the stepped roll, which causes dimensional defects and flatness defects in the subsequent rolling process.

【0011】さらに、鋳片内未凝固部の溶鋼の流動や二
次冷却のバラつきにより、鋳片の凝固完了点の手前近傍
で未凝固部は必ずしも幅方向の中央部にはなく、未凝固
部の位置とキャメルロール突出部の位置とが一致しない
ため、圧下位置を適正に保てないという欠点がある。
Further, due to the flow of the molten steel in the unsolidified portion in the slab and the variation of the secondary cooling, the unsolidified portion is not necessarily located at the central portion in the width direction near the point before the solidification end point of the slab. Does not coincide with the position of the camel roll protrusion, so that there is a drawback that the rolling down position cannot be properly maintained.

【0012】この問題に対して、本発明者は、特開平9
−57410号公報で、未凝固部を含む鋳片を一旦バル
ジングさせ、凝固完了点直前にて前記バルジング量相当
分を圧下する方法を提案している。
In order to solve this problem, the present inventor disclosed in Japanese Patent Application Laid-Open
Japanese Patent Application Publication No. -57410 proposes a method in which a slab including an unsolidified portion is once bulged, and the bulging amount is reduced immediately before the solidification completion point.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、特開平
9−57410号公報に記載の方法でも、鋳片の冷却が
不充分で表面温度が高い鋳片を圧下すると、凝固界面に
内部割れが発生したり、中心偏析の改善が得られない、
等の問題があることが判った。本発明は、特開平9−5
7410号公報に記載の方法をさらに改良したものであ
る。
However, even with the method described in Japanese Patent Application Laid-Open No. 9-57410, when a slab having insufficient surface cooling and high surface temperature is rolled down, internal cracks occur at the solidification interface. Or the improvement of center segregation cannot be obtained.
It turned out that there was a problem such as. The present invention relates to a method disclosed in JP-A-9-5.
No. 7410, which is a further improved method.

【0014】本発明の目的は、未凝固部を含む鋳片を一
旦バルジングさせ、凝固完了点直前にて前記バルジング
量相当分を圧下する場合に生じていた従来の問題を解消
し、健全な鋳片を製造するのに有利な連続鋳造方法を提
供することにある。
An object of the present invention is to solve the conventional problem that has arisen when a slab including an unsolidified portion is once bulged and the bulging amount corresponding to the bulging amount is reduced immediately before the solidification completion point. It is an object of the present invention to provide an advantageous continuous casting method for producing pieces.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記の問
題を解決するための研究を重ね、以下の知見を得た。
Means for Solving the Problems The present inventors have conducted studies for solving the above-mentioned problems and obtained the following findings.

【0016】(a) 鋳片を一旦バルジングさせ、凝固完了
直前にてバルジング相当分を圧下する方法において、鋳
片表面温度が特定温度未満で圧下をおこなうと、内部割
れが発生せず、中心偏析が改善する。 (b) 上記の方法は、圧下後の未凝固厚さが特定厚さ以下
になる引き抜き方向の位置で圧下をおこなうことが必要
である。
(A) In a method of once bulging a slab and reducing the bulging equivalent immediately before the completion of solidification, when the slab surface temperature is reduced below a specific temperature, no internal cracks occur and center segregation occurs. Improves. (b) In the above method, it is necessary to perform the reduction at a position in the drawing direction where the unsolidified thickness after the reduction is equal to or less than a specific thickness.

【0017】(c) 鋳片二次冷却の比水量を特定範囲に制
御して上記の方法をおこなうことにより、鋳造速度の適
正化が可能である。 (d) 未凝固部が等軸晶組織の鋳片を上記の方法で圧下す
ると、中心偏析の改善がより効果的になる。
(C) By controlling the specific water amount of the secondary cooling of the slab to a specific range and performing the above method, it is possible to optimize the casting speed. (d) When the slab having an unsolidified portion having an equiaxed crystal structure is reduced by the above method, the center segregation is more effectively improved.

【0018】本発明は、上記の知見に基づくもので、そ
の要旨は、以下の(1) から(3) のとおりである。
The present invention is based on the above findings, and the gist is as follows (1) to (3).

【0019】(1) 未凝固部を含む鋳片を一旦バルジング
させ、バルジング形成後、前記バルジング相当分を圧下
するにあたり、圧下後の未凝固厚さが鋳型短辺長さの1
0.0%以下となる鋳片引き抜き方向の位置で、圧下前
の鋳片表面温度を1000℃未満に制御して圧下するこ
とを特徴とする鋼の連続鋳造方法。
(1) The slab including the unsolidified portion is once bulged, and after the bulging is formed, the unsolidified thickness after the reduction is equal to 1 m of the short side length of the mold.
A continuous casting method for steel, characterized in that the slab surface temperature before reduction is controlled to be less than 1000 ° C. and reduced at a position in the slab withdrawal direction of 0.0% or less.

【0020】(2) 鋳型直下から前記圧下直前までの鋳片
二次冷却の比水量を、1.0l/kg・鋼以上3.0l
/kg・鋼以下に制御することを特徴とする上記(1) 項
に記載の鋼の連続鋳造方法。
(2) The specific water volume in the secondary cooling of the slab from immediately below the mold to immediately before the above-mentioned reduction is 1.0 l / kg · steel or more and 3.0 l
/ Kg · steel or less, the method for continuous casting of steel according to the above item (1), wherein

【0021】(3) バルジング相当分の圧下をおこなう前
に、鋳片未凝固部に等軸晶を発生させる処理をおこなう
ことを特徴とする上記(1) および(2) 項に記載の鋼の連
続鋳造方法。
(3) The steel according to the above (1) and (2), wherein a treatment for generating an equiaxed crystal is performed in an unsolidified portion of the slab before performing a reduction equivalent to bulging. Continuous casting method.

【0022】[0022]

【発明の実施の形態】図1は、本発明方法を実施するた
めの連続鋳造機の装置構成の例を示す縦断面の模式図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram of a longitudinal section showing an example of a device configuration of a continuous casting machine for carrying out the method of the present invention.

【0023】図1に示すように、浸漬ノズル10を経て
鋳型1に注入された溶鋼8は、鋳型1およびその下方の
ノズル(図示していない)から噴射されるスプレー水に
より冷却されて、凝固シェル2aが形成されて鋳片2と
なり、さらに、鋳片2は、内部に未凝固部2bを保持し
たまま、ガイドロール3および圧下ロール5を経てピン
チロール7により引き抜かれる。図1には、垂直型連続
鋳造機の例を示したが、湾曲型連続鋳造機にも本発明は
適用できる。電磁攪拌装置4は、後述するように未凝固
部2bに攪拌を与えて、未凝固部組織を等軸晶化させる
ための装置である。
As shown in FIG. 1, the molten steel 8 injected into the mold 1 through the immersion nozzle 10 is cooled by spray water injected from the mold 1 and a nozzle (not shown) below the mold 1 and solidified. The shell 2a is formed into the slab 2, and the slab 2 is pulled out by the pinch roll 7 via the guide roll 3 and the pressing roll 5 while holding the unsolidified portion 2b inside. FIG. 1 shows an example of a vertical continuous casting machine, but the present invention can also be applied to a curved continuous casting machine. The electromagnetic stirring device 4 is a device for imparting stirring to the unsolidified portion 2b to make the structure of the unsolidified portion equiaxed as described later.

【0024】本発明方法では、上記のような装置構成の
連続鋳造機において、図1に示すバルジングゾーンに設
けたガイドロール3は、その鋳片厚さ方向の間隔が引き
抜き方向に段階的に増加するように配置されており、バ
ルジングゾーン末端で鋳片2は、20mm〜100mm
程度バルジングし、その後、圧下ゾーンの圧下ロール5
により前記バルジング量相当分だけ圧下される。なお、
以下、本明細の説明にさいし、鋳片短辺のみを考える。
According to the method of the present invention, in the continuous casting machine having the above-described apparatus configuration, the guide roll 3 provided in the bulging zone shown in FIG. The slab 2 at the end of the bulging zone has a length of 20 mm to 100 mm.
Bulging to a degree, then roll 5 in roll-down zone
As a result, the pressure is reduced by the amount corresponding to the bulging amount. In addition,
Hereinafter, in the description of the present specification, only the short side of the slab is considered.

【0025】ここで、本発明によれば、バルジング形成
後、前記バルジング相当量を圧下するにあたり、圧下後
の未凝固厚さが鋳型短辺長さの10.0%以下となる引
き抜き方向の位置で、圧下前の鋳片の表面温度を100
0℃未満に制御して圧下する。
According to the present invention, after the bulging is formed, when the bulging equivalent amount is reduced, the unsolidified thickness after the reduction is 10.0% or less of the length of the short side of the mold in the drawing direction. And the surface temperature of the slab before rolling is 100
Control the temperature to less than 0 ° C and reduce the pressure.

【0026】次に、圧下前の鋳片の表面温度を1000
℃未満とした理由を説明する。
Next, the surface temperature of the slab before rolling is set to 1000
The reason why the temperature is lower than ° C will be described.

【0027】図2は、鋳片の内部割れ発生状況を模式的
に示す圧下ゾーンの断面拡大図で、同図(a)は鋳片の
表面温度が1000℃未満の場合、同図(b)は100
0℃以上の場合である。なお、同図において、便宜上水
平方向に連続鋳造する態様を例にとって説明するが、圧
下後の未凝固厚さをαで、圧下による未凝固部の溶鋼流
動(以下、単に「溶鋼流動」という)をVで表してい
る。
FIG. 2 is an enlarged cross-sectional view of a reduction zone schematically showing the state of occurrence of internal cracks in the slab. FIG. 2A is a view when the surface temperature of the slab is less than 1000 ° C. Is 100
This is the case when the temperature is 0 ° C. or higher. In this figure, for the sake of convenience, an example of continuous casting in the horizontal direction will be described as an example. Is represented by V.

【0028】同図に示すように、未凝固部2bを有する
鋳片を圧下すると、長辺の凝固シェル2aの凝固界面側
に引張り応力が作用し、固液界面近傍の樹枝状晶が破断
して樹枝状晶間に周囲の濃化溶鋼が吸引される。
As shown in the figure, when the slab having the unsolidified portion 2b is reduced, a tensile stress acts on the solidification interface side of the solidified shell 2a on the long side, and the dendrites near the solid-liquid interface break. The surrounding concentrated molten steel is sucked between the dendrites.

【0029】圧下前の鋳片の表面温度が1000℃未満
の場合には、鋳片厚さ方向の温度勾配が大きくなるの
で、圧下が鋳片厚さ方向の中心部まで浸透し、溶鋼流動
Vが促進される。したがって、図2(a)に示すよう
に、一旦、樹枝状晶間に吸引された濃化溶鋼が凝固前面
に排出され内部割れにはならない。
If the surface temperature of the slab before rolling is less than 1000 ° C., the temperature gradient in the slab thickness direction becomes large, so that the rolling penetrates to the center in the slab thickness direction and the molten steel flow V Is promoted. Accordingly, as shown in FIG. 2A, the concentrated molten steel once sucked between the dendrites is discharged to the solidification front surface and does not become an internal crack.

【0030】これに対し、鋳片の表面温度が1000℃
以上の場合には、圧下が鋳片厚さ方向の中心部まで浸透
し難い。したがって、溶鋼流動Vが少なく、図2(b)
に示すように、濃化溶鋼が排出されないまま凝固し、濃
化溶鋼残存部が内部割れとなる。
On the other hand, the surface temperature of the slab is 1000 ° C.
In the above case, it is difficult for the reduction to penetrate to the center in the slab thickness direction. Therefore, the molten steel flow V is small, and FIG.
As shown in (1), the concentrated molten steel solidifies without being discharged, and the remaining portion of the concentrated molten steel becomes an internal crack.

【0031】好ましくは、鋳片の表面温度の下限は、6
00℃である。これより表面温度が低いと、圧下力が著
しく増大し、鋳片の引き抜きが不可となったり、圧下ロ
ールが折損するなどのトラブルを招きやすい。
Preferably, the lower limit of the surface temperature of the slab is 6
00 ° C. If the surface temperature is lower than this, the rolling force increases remarkably, and troubles such as inability to pull out the slab and breakage of the rolling roll are likely to occur.

【0032】次に、圧下後の未凝固厚さが鋳型短辺長さ
の10.0%以下となる鋳片引き抜き方向の位置で圧下
するとした理由を説明する。前述のような表面温度で圧
下を与える場合でも、圧下後の未凝固部厚さαにより中
心偏析の改善効果に差がでることが、実験により判明し
た。
Next, the reason why the reduction is performed at the position in the slab drawing direction where the unsolidified thickness after the reduction is 10.0% or less of the length of the short side of the mold will be described. Experiments have shown that even when the rolling is performed at the above-described surface temperature, the effect of improving the center segregation varies depending on the thickness α of the unsolidified portion after the rolling.

【0033】すなわち、圧下後の未凝固厚さαが鋳型短
辺長さの10.0%より大きくなる位置で圧下すると、
圧下による濃化溶鋼の排出が不充分となり、圧下後に凝
固する部分で従来と同様に中心偏析が生じ、圧下の効果
を充分に享受できない。ここで、圧下後の未凝固厚さα
は、固相率fs=0.8の固液界面の厚さであり、鋳片
厚さ方向の一次元非定常伝熱解析により計算される鋳片
厚さ方向の温度(T)の分布より求めることができる。
That is, when the unsolidified thickness α after the rolling is reduced at a position where it is larger than 10.0% of the length of the short side of the mold,
The discharge of the concentrated molten steel due to the reduction becomes insufficient, and center segregation occurs in a portion solidified after the reduction as in the conventional case, and the effect of the reduction cannot be sufficiently enjoyed. Here, the unsolidified thickness α after reduction
Is the thickness of the solid-liquid interface with a solid fraction of fs = 0.8, and is based on the temperature (T) distribution in the slab thickness direction calculated by one-dimensional unsteady heat transfer analysis in the slab thickness direction. You can ask.

【0034】圧下後の未凝固厚さαの下限値は、0であ
るが、凝固完了点を強制的に形成させるような圧下をお
こなうと、大きな圧下力を必要とする。特にサイズの大
きな鋳片においては、そのための圧下装置も工業的に実
用化不可能なほど大きなものが必要となる。したがっ
て、圧下ロールの小径化や圧下装置の小型化を目的とし
て、むしろ凝固完了点を強制的に形成させない程度に圧
下するのが望ましい。好ましくは、圧下後の未凝固厚さ
は、鋳型短辺長さの2.0%以上、10.0%以下であ
る。
The lower limit of the unsolidified thickness α after the reduction is 0, but a large reduction force is required if the reduction is performed so that the solidification completion point is forcibly formed. In particular, in the case of a large slab, a reduction device for the slab is required to be large enough that it cannot be industrially practically used. Therefore, for the purpose of reducing the diameter of the reduction roll and the size of the reduction device, it is preferable to perform the reduction to such an extent that the solidification completion point is not forcibly formed. Preferably, the unsolidified thickness after the reduction is 2.0% or more and 10.0% or less of the length of the short side of the mold.

【0035】鋳片を適正位置および適正な表面温度で圧
下するには、未凝固厚さと鋳片温度のコントロールが重
要である。この両者のコントロールは、圧下直前の凝固
シェル厚さおよび鋳片表面温度を測定あるいは算出し、
鋳造速度や二次冷却水量を調整することによりおこなわ
れる。
In order to reduce the slab at an appropriate position and at an appropriate surface temperature, it is important to control the unsolidified thickness and the slab temperature. These two controls are to measure or calculate the solidified shell thickness and the slab surface temperature immediately before the reduction,
This is performed by adjusting the casting speed and the amount of secondary cooling water.

【0036】次に、本発明の好適態様として、鋳型直下
から圧下直前までの鋳片二次冷却の比水量を、1.0l
/kg・鋼以上3.0l/kg・鋼以下に制御するとし
た理由を説明する。ここで、比水量は鋳片1kgあたり
の冷却水量で定義される。
Next, as a preferred embodiment of the present invention, the specific water volume of the secondary cooling of the slab from immediately below the mold to immediately before the reduction is 1.0 liter.
The reason for controlling the pressure to be not less than / l / kg · steel and not more than 3.0 l / kg · steel will be described. Here, the specific water amount is defined as a cooling water amount per 1 kg of a slab.

【0037】上述したように、未凝固厚さと鋳片表面温
度のコントロールは、鋳造速度や二次冷却水量を調整す
ることによりおこなわれる。鋳片二次冷却の比水量が
1.0l/kg・鋼未満では、適正な未凝固厚さおよび
鋳片表面温度を確保するために鋳造速度の大幅な低下が
必要となり生産性が著しく低下する。また、上記の比水
量が3.0l/kg・鋼より大になると鋳造速度が過大
になりブレークアウトが発生しやすい。
As described above, the control of the unsolidified thickness and the slab surface temperature is performed by adjusting the casting speed and the amount of secondary cooling water. When the specific water volume of the slab secondary cooling is less than 1.0 l / kg · steel, a significant reduction in casting speed is required to secure an appropriate unsolidified thickness and slab surface temperature, and productivity is significantly reduced. . On the other hand, when the above specific water volume is larger than 3.0 l / kg · steel, the casting speed becomes excessive and breakout tends to occur.

【0038】次に、本発明の好適態様として、圧下前に
鋳片未凝固部に等軸晶を発生させる処理をおこなうとし
た理由を説明する。鋳片中心部の凝固組織は通常、柱状
晶組織となるが、柱状晶組織の場合、鋳片の幅方向にブ
リッジングが生じ、偏析の改善効果が小さくなり易い。
これに対し、等軸晶組織の場合では、圧下により溶鋼流
動が起こりやすく局所的な濃化溶鋼の集積が防止される
ため偏析の改善効果が大きい。
Next, as a preferred embodiment of the present invention, the reason why a process for generating an equiaxed crystal in an unsolidified portion of a slab before rolling is described. The solidified structure at the center of the slab usually has a columnar crystal structure. In the case of the columnar crystal structure, bridging occurs in the width direction of the slab, and the effect of improving segregation tends to be small.
On the other hand, in the case of the equiaxed crystal structure, the molten steel flows easily due to the reduction and the local accumulation of the concentrated molten steel is prevented, so that the effect of improving the segregation is large.

【0039】したがって、図1に示すように、圧下ゾー
ンより上流に設けた電磁攪拌装置4により、未凝固部2
bに攪拌を与えて、バルジングゾーン内の鋳片中心部の
未凝固部2bに等軸晶を発生させ、その後、上記の圧下
をおこなう。
Therefore, as shown in FIG. 1, the unsolidified portion 2 is formed by the electromagnetic stirrer 4 provided upstream of the reduction zone.
b is agitated to generate an equiaxed crystal in the unsolidified portion 2b at the center of the slab in the bulging zone, and thereafter, the above-described reduction is performed.

【0040】電磁攪拌装置4は、周波数が1.0〜3.
0Hz で、印加電流が600〜900A程度のものを用
い、圧下ゾーンと重ならないように、バルジングゾーン
に設置するのが望ましい。
The electromagnetic stirring device 4 has a frequency of 1.0 to 3.
It is desirable to use a device having a frequency of 0 Hz and an applied current of about 600 to 900 A, and to set it in a bulging zone so as not to overlap with the rolling-down zone.

【0041】なお、等軸晶を発生させる方法としては、
必ずしも電磁攪拌によらなくてもよい。例えば、ガイド
ロール3または圧下ロール5を介して鋳片2に超音波を
印加する方式でもよい。そのほか、操業面からの簡便性
や効果を配慮した低温鋳造や鋳型内への鋼線添加なども
等軸晶を生成させる方法として採用できる。
As a method for generating an equiaxed crystal,
It is not always necessary to use electromagnetic stirring. For example, a method of applying ultrasonic waves to the slab 2 via the guide roll 3 or the pressing roll 5 may be used. In addition, low-temperature casting and addition of a steel wire into a mold in consideration of simplicity and effects from the operation side can also be adopted as methods for generating equiaxed crystals.

【0042】[0042]

【実施例】図1に示す装置構成のスラブ連続鋳造装置を
用いて、表1に示すA、B、C、D、EおよびFの6種
類の鋳造条件で厚板用40キロ級の鋼を製造した。圧下
前のバルジング量は20mmで、直径350mmの圧下
ロール1段でバルジング相当分の圧下をおこなった。本
発明例A、B、CおよびDは、比水量を1.0〜2.1
l/kg・鋼の範囲で設定し、圧下後の未凝固厚さおよ
び鋳片表面温度を適正値に制御した。比較例EおよびF
は、前記の未凝固厚さおよび鋳片表面温度の制御をおこ
なわなかった。電磁攪拌装置はバルジングゾーン内に設
置し、これを稼働させることにより鋳片厚さ方向の中心
部に等軸晶を形成させた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Using a continuous slab casting apparatus having the apparatus configuration shown in FIG. 1, a steel sheet of 40 kg class for a thick plate was produced under the six types of casting conditions A, B, C, D, E and F shown in Table 1. Manufactured. The bulging amount before the reduction was 20 mm, and the reduction was equivalent to the bulging with one reduction roll having a diameter of 350 mm. Inventive Examples A, B, C and D have a specific water content of 1.0 to 2.1.
1 / kg · steel, and the unsolidified thickness after reduction and the slab surface temperature were controlled to appropriate values. Comparative Examples E and F
Did not control the unsolidified thickness and the slab surface temperature. The electromagnetic stirrer was installed in a bulging zone, and by operating this, an equiaxed crystal was formed at the center in the slab thickness direction.

【0043】[0043]

【表1】 [Table 1]

【0044】鋳造した鋳片の中心偏析および内部割れの
発生状況を調査した。中心偏析は、〔P〕の最大偏析度
およびセミマクロの偏析粒数で評価した。
The state of occurrence of center segregation and internal cracking of the cast slab was examined. The center segregation was evaluated by the maximum segregation degree of [P] and the number of semi-macro segregated grains.

【0045】〔P〕の最大偏析度は、得られた鋳片を鋳
込方向に直角な断面で切断し、厚さ方向中心部から試験
片を採取し、このサンプルの表面を200μmの間隔で
メッシュに分け、おのおののメッシュの中での〔P〕の
平均濃度を調査し、この〔P〕と母溶鋼のP濃度〔P0
〕との比P/P0 で表した。
The maximum degree of segregation of [P] was determined by cutting the obtained slab at a cross section perpendicular to the casting direction, collecting a test piece from the center in the thickness direction, and cutting the surface of this sample at intervals of 200 μm. The mesh was divided into meshes, and the average concentration of [P] in each mesh was investigated. This [P] and the P concentration of the base molten steel [P0
] P / P0.

【0046】偏析粒数は、上記と同様に鋳片厚さ方向の
中心部から試験片を採取し、50mm×1000mmの
範囲の粒状偏析の個数を50倍で顕鏡し、P/P0 が3
以上のものについて調査した。さらに、鋳片横断面のサ
ルファプリントをおこない、内部割れの発生状況を調査
した。表2に、〔P〕の最大偏析度と内部割れ発生の有
無を示す。
As for the number of segregated grains, a test piece was sampled from the center in the thickness direction of the slab in the same manner as described above, and the number of granular segregations in the range of 50 mm × 1000 mm was observed under a microscope of 50 times, and P / P 0 was 3
The above was investigated. Furthermore, the cross section of the slab was sulfur-printed to investigate the occurrence of internal cracks. Table 2 shows the maximum segregation degree of [P] and the occurrence of internal cracks.

【0047】[0047]

【表2】 [Table 2]

【0048】表2から明らかなように、本発明例A〜D
は、比較例に比べ、最大偏析度が減少し、内部割れの発
生もなかった。図3は、偏析粒数とセミマクロ偏析粒径
との関係を示すグラフである。
As is clear from Table 2, Examples A to D of the present invention
In Comparative Example, the maximum degree of segregation was reduced, and no internal cracks occurred, as compared with Comparative Example. FIG. 3 is a graph showing the relationship between the number of segregated grains and the semi-macro segregated grain size.

【0049】同図に示すように、本発明例は偏析粒数も
減少しており、セミマクロ偏析も大幅に改善することが
判った。また、表1、表2および図3に示すように、電
磁攪拌を併用することにより、中心偏析改善の相乗効果
があることが判った。
As shown in the figure, the number of segregated grains in the example of the present invention was also reduced, and it was found that semi-macro segregation was significantly improved. Further, as shown in Tables 1, 2 and FIG. 3, it was found that there was a synergistic effect of improving center segregation by using electromagnetic stirring in combination.

【0050】[0050]

【発明の効果】本発明方法によれば、内部割れを発生さ
せることなく、セミマクロ偏析をも含め中心偏析を改善
させることができる。
According to the method of the present invention, center segregation including semi-macro segregation can be improved without causing internal cracks.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するための連続鋳造機の装置
構成例を示す縦断面の模式図である。
FIG. 1 is a schematic view of a longitudinal section showing an example of an apparatus configuration of a continuous casting machine for carrying out a method of the present invention.

【図2】鋳片の内部割れ発生状況を模式的に示す圧下ゾ
ーンの断面拡大図で、同図(a)は鋳片の表面温度が1
000℃未満の場合、同図(b)は1000℃以上の場
合である。
FIG. 2 is an enlarged cross-sectional view of a rolling zone schematically showing the state of occurrence of internal cracks in a slab. FIG.
In the case where the temperature is lower than 000 ° C., FIG.

【図3】偏析粒数とセミマクロ偏析粒径との関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the number of segregated grains and the semi-macro segregated grain size.

【符号の説明】[Explanation of symbols]

1 鋳型 2 鋳片 2a 凝固シェル 2b 未凝固部 3 ガイドロール 4 電磁攪拌装置 5 圧下ロール 6 圧下装置 7 ピンチロール 8 溶鋼 9 クレータエンド 10 浸漬ノズル 11 鋳込み方向 12 内部割れ α 圧下後の未凝固厚さ V 未凝固部の溶鋼流動 DESCRIPTION OF SYMBOLS 1 Mold 2 Cast piece 2a Solidified shell 2b Unsolidified part 3 Guide roll 4 Electromagnetic stirrer 5 Roller 6 Roller 7 Pinch roll 8 Molten steel 9 Crater end 10 Immersion nozzle 11 Casting direction 12 Internal crack α Unsolidified thickness after reduction V Flow of molten steel in unsolidified part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−206903(JP,A) 特開 平8−224650(JP,A) 特開 平8−132203(JP,A) 特開 昭60−21150(JP,A) 特開 昭60−6254(JP,A) 特開 昭61−42460(JP,A) 特開 昭61−132247(JP,A) 特開 昭63−252655(JP,A) 特開 平9−57410(JP,A) 特開 平11−33690(JP,A) 特開 平9−314298(JP,A) 特開 平2−235558(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/128 350 B22D 11/115 B22D 11/124 B22D 11/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-206903 (JP, A) JP-A-8-224650 (JP, A) JP-A 8-132203 (JP, A) JP-A-60-1985 21150 (JP, A) JP-A-60-6254 (JP, A) JP-A-61-42460 (JP, A) JP-A-61-132247 (JP, A) JP-A-63-252655 (JP, A) JP-A-9-57410 (JP, A) JP-A-11-33690 (JP, A) JP-A-9-314298 (JP, A) JP-A-2-235558 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11/128 350 B22D 11/115 B22D 11/124 B22D 11/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 未凝固部を含む鋳片を一旦バルジングさ
せ、バルジング形成後、前記バルジング相当分を圧下す
るにあたり、圧下後の未凝固厚さが鋳型短辺長さの1
0.0%以下となる鋳片引き抜き方向の位置で、圧下前
の鋳片表面温度を1000℃未満に制御して圧下するこ
とを特徴とする鋼の連続鋳造方法。
1. A slab including an unsolidified portion is bulged once, and after forming the bulging, when reducing the bulging equivalent, the unsolidified thickness after the reduction is 1% of the short side length of the mold.
A continuous casting method for steel, characterized in that the slab surface temperature before reduction is controlled to be less than 1000 ° C. and reduced at a position in the slab withdrawal direction of 0.0% or less.
【請求項2】 鋳型直下から前記圧下直前までの鋳片二
次冷却の比水量を、1.0l/kg・鋼以上3.0l/
kg・鋼以下に制御することを特徴とする請求項1に記
載の鋼の連続鋳造方法。
2. The specific water volume of the slab secondary cooling from immediately below the mold to immediately before the reduction is set to 1.0 l / kg · steel or more and 3.0 l / kg.
The method for continuous casting of steel according to claim 1, wherein the steel is controlled to be not more than kg · steel.
【請求項3】 バルジング相当分の圧下をおこなう前
に、鋳片未凝固部に等軸晶を発生させる処理をおこなう
ことを特徴とする請求項1または2に記載の鋼の連続鋳
造方法。
3. The method for continuously casting steel according to claim 1, wherein a treatment for generating an equiaxed crystal is performed in an unsolidified portion of the cast slab before performing a reduction equivalent to bulging.
JP09288642A 1997-10-21 1997-10-21 Steel continuous casting method Expired - Lifetime JP3114671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09288642A JP3114671B2 (en) 1997-10-21 1997-10-21 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09288642A JP3114671B2 (en) 1997-10-21 1997-10-21 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JPH11123513A JPH11123513A (en) 1999-05-11
JP3114671B2 true JP3114671B2 (en) 2000-12-04

Family

ID=17732815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09288642A Expired - Lifetime JP3114671B2 (en) 1997-10-21 1997-10-21 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3114671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032091B2 (en) 2017-09-29 2022-03-08 株式会社Ihiプラント Welding equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019859B1 (en) * 1999-06-11 2000-03-13 住友金属工業株式会社 Continuous casting method
JP4998734B2 (en) * 2007-11-13 2012-08-15 Jfeスチール株式会社 Manufacturing method of continuous cast slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032091B2 (en) 2017-09-29 2022-03-08 株式会社Ihiプラント Welding equipment

Also Published As

Publication number Publication date
JPH11123513A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JP2980006B2 (en) Continuous casting method
JP3045052B2 (en) Roll segment device for continuous casting machine
JP3114671B2 (en) Steel continuous casting method
JP3055453B2 (en) Continuous casting method
JPS61132247A (en) Continuous casting method
JP3671872B2 (en) Continuous casting method of steel
JP2995520B2 (en) How to improve the quality of continuous cast slabs
JP3055462B2 (en) Continuous casting method
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3402251B2 (en) Continuous casting method
JP3271574B2 (en) Continuous casting method of billet slab
JPH0741388B2 (en) Method for producing continuously cast slabs with excellent internal quality
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JPH08164460A (en) Production of continuously cast slab having good internal quality
JP3225894B2 (en) Continuous casting method
JP3104627B2 (en) Unsolidified rolling production method of round billet
JP3360618B2 (en) Continuous casting method
JPH11156511A (en) Steel slab continuous casting method
JP3111954B2 (en) Continuous casting method
JPH07276020A (en) Continuous casting method
JPH10193063A (en) Continuous casting method
JPH0957411A (en) Continuous casting method
JP3240978B2 (en) Manufacturing method of continuous cast slab
JP3147803B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term