JPH0310595B2 - - Google Patents

Info

Publication number
JPH0310595B2
JPH0310595B2 JP57224547A JP22454782A JPH0310595B2 JP H0310595 B2 JPH0310595 B2 JP H0310595B2 JP 57224547 A JP57224547 A JP 57224547A JP 22454782 A JP22454782 A JP 22454782A JP H0310595 B2 JPH0310595 B2 JP H0310595B2
Authority
JP
Japan
Prior art keywords
single crystal
film
gaas
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57224547A
Other languages
Japanese (ja)
Other versions
JPS59116192A (en
Inventor
Junji Saito
Kazuo Nanbu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22454782A priority Critical patent/JPS59116192A/en
Publication of JPS59116192A publication Critical patent/JPS59116192A/en
Publication of JPH0310595B2 publication Critical patent/JPH0310595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/04Pattern deposit, e.g. by using masks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は分子線結晶成長方法、特に半導体単結
晶領域と高抵抗多結晶領域とが選択的に配設され
た結晶成長を清浄な状態で実施することができる
製造方法に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a molecular beam crystal growth method, and particularly to a method for growing a crystal in which a semiconductor single crystal region and a high resistance polycrystalline region are selectively arranged in a clean state. The present invention relates to a manufacturing method that can be implemented.

(b) 技術の背景 半導体装置、特に化合物半導体装置においては
所要の半導体結晶層を半導体基板結晶に格子整合
して成長させるエピタキシヤル成長が広く行なわ
れている。すなわちエピタキシヤル成長される半
導体結晶は例えば禁制帯幅、導電型及びキヤリア
濃度並びにその厚さなどを選択する自由度が大き
く、かつ結晶欠陥が基板結晶に比較して改善され
るために、エピタキシヤル成長による半導体結晶
層にその半導体装置の動作領域を形成することが
一般に行なわれている。
(b) Background of the Technology In semiconductor devices, particularly compound semiconductor devices, epitaxial growth is widely practiced in which a required semiconductor crystal layer is grown in a lattice-matched manner to a semiconductor substrate crystal. In other words, epitaxially grown semiconductor crystals have a large degree of freedom in selecting, for example, the forbidden band width, conductivity type, carrier concentration, and thickness, and crystal defects are improved compared to the substrate crystal. It is common practice to form the active region of a semiconductor device in a grown semiconductor crystal layer.

このエピタキシヤル成長の実施方法としては、
液相成長方法、気相成長方法、有機金属熱分解気
相成長方法及び分子線結晶成長方法(以下MBE
法と略称する)等が知られており、目的に応じて
選択されてる。
The method for carrying out this epitaxial growth is as follows:
Liquid phase growth method, vapor phase growth method, metal-organic pyrolysis vapor phase growth method, and molecular beam crystal growth method (hereinafter referred to as MBE)
(abbreviated as "law") are known, and are selected depending on the purpose.

MBE法は他のエピタキシヤル成長方法に比べ
て、結晶の組成比、不純物のドープ量あるいは結
晶の成長速度などを正確に制御することができ、
結晶界面を急峻に形成することが可能で、更に液
相成長方法では不可能な化学平衡からずれた結晶
成長が可能であるなどの特徴を有して、超格子構
造など結晶層の厚さが極めて薄く、かつ急峻な界
面が要求される半導体結晶構造を実現する際の代
表的エピタキシヤル成長方法とされている。
Compared to other epitaxial growth methods, the MBE method allows for precise control of the crystal composition ratio, impurity doping amount, and crystal growth rate.
It is possible to form steep crystal interfaces, and it is also possible to grow crystals that deviate from chemical equilibrium, which is impossible with liquid phase growth methods. It is considered to be a typical epitaxial growth method for realizing semiconductor crystal structures that require extremely thin and steep interfaces.

(c) 従来技術と問題点 例えば半導体集積回路装置等においては、各素
子の動作領域の相互干渉を遮断する素子分離が必
要である。この素子分離領域を先に述べたエピタ
キシヤル成長に際して動作領域と同時に形成する
ことなどを目的とする選択的エピタキシヤル成長
が既に知られている。
(c) Prior Art and Problems For example, in semiconductor integrated circuit devices, etc., it is necessary to separate elements to block mutual interference in the operating areas of each element. Selective epitaxial growth is already known in which the device isolation region is formed at the same time as the operating region during the epitaxial growth described above.

従来例えばガリウム・砒素化合物(GaAs)結
晶基板上に動作領域とするGaAsエピタキシヤル
成長層と、動作領域相互間を分離する高抵抗領域
とを選択成長する方法として次に述べる2方法が
ある。
Conventionally, there are two methods described below for selectively growing, for example, a GaAs epitaxial growth layer on a gallium arsenide compound (GaAs) crystal substrate and a high resistance region separating the operating regions.

その一つはGaAs基板上に例えば二酸化シリコ
ン(SiO2)等の皮膜を化学気相成長方法などに
よつて形成してGaAs結晶のエピタキシヤル成長
を意図する領域の前記皮膜を選択的に除去し、し
かる後にGaAs結晶成長を行なう方法であつて、
GaAs基板結晶が表出する領域には格子整合する
単結晶が成長し、前記皮膜上には多結晶のGaAs
膜が形成される。
One method is to form a film of, for example, silicon dioxide (SiO 2 ) on a GaAs substrate by chemical vapor deposition, and then selectively remove the film in areas where epitaxial growth of GaAs crystals is intended. , followed by a method of growing GaAs crystals,
A lattice-matched single crystal grows in the region where the GaAs substrate crystal is exposed, and polycrystalline GaAs grows on the film.
A film is formed.

また今一つの方法は、GaAs基板を酸素雰囲気
中で高温に加熱することによつて基板表面に
GaAsの酸化膜を形成し、前記方法と同様にこの
酸化膜を選択的に除去した後にGaAs結晶成長を
行なう方法であつて、酸化膜が除去された領域に
はGaAs単結晶が成長し、酸化膜上にはGaAs多
結晶膜が形成される。
Another method is to heat the GaAs substrate to a high temperature in an oxygen atmosphere so that the
This is a method in which a GaAs oxide film is formed and GaAs crystal growth is performed after selectively removing this oxide film in the same way as in the previous method, and a GaAs single crystal grows in the area where the oxide film has been removed. A GaAs polycrystalline film is formed on the film.

以上説明した方法においては、選択の手段とす
るマスクの形成のために多くの工程を必要とし非
常に繁雑であるばかりでなく、GaAs結晶をエピ
タキシヤル成長するGaAs基板結晶表面のSi又は
Ga等の酸化物除去後の清浄化も容易ではなく、
選択成長方法の改善が要望されている。
The method described above not only requires many steps to form a mask, which is the selection means, and is very complicated, but also requires a large amount of Si or
Cleaning after removing oxides such as Ga is also not easy.
Improvements in selective growth methods are desired.

(d) 発明の目的 本発明は半導体単結晶基板又はエピタキシヤル
成長層上に、該単結晶に格子整合する単結晶と高
抵抗の比単結晶膜とを選択的に形成する、前記問
題点が改善された製造方法を提供することを目的
とする。
(d) Purpose of the Invention The present invention solves the above problems by selectively forming a single crystal that is lattice matched to the single crystal and a high resistance specific single crystal film on a semiconductor single crystal substrate or an epitaxially grown layer. The purpose is to provide an improved manufacturing method.

(e) 発明の構成 本発明の前記目的は、半導体単結晶面に画定さ
れた領域に選択的に電子線を照射することによつ
て該半導体結晶面と雰囲気ガスとの反応生成物か
ら成る皮膜を該領域に選択的に形成し、次いで該
半導体単結晶を大気に触れさせることなく該半導
体単結晶面に所定の分子線を照射することによつ
て、該皮膜から表出する該半導体単結晶面上に単
結晶をエピタキシヤル成長させるとともに該皮膜
上に非単結晶膜を形成する分子線結晶成長法によ
り達成される。
(e) Structure of the Invention The object of the present invention is to selectively irradiate a region defined on a semiconductor single crystal surface with an electron beam to form a film made of a reaction product between the semiconductor crystal surface and an atmospheric gas. is selectively formed in the region, and then a predetermined molecular beam is irradiated onto the surface of the semiconductor single crystal without exposing the semiconductor single crystal to the atmosphere, thereby forming the semiconductor single crystal exposed from the film. This is achieved by a molecular beam crystal growth method in which a single crystal is epitaxially grown on a surface and a non-single crystal film is formed on the film.

(f) 発明の実施例 以下本発明を実施例により図面を参照して具体
的に説明する。
(f) Embodiments of the Invention The present invention will be specifically described below using embodiments with reference to the drawings.

図は本発明の実施に適する製造装置の一例を示
す模式断面図である。図において1はMBE成長
室、2は皮膜形成室、3はゲートバルブ、4は単
結晶基板、5は基板ホルダー、6はトランスフア
ロツドであつて、単結晶基板4を保持する基板ホ
ルダー5をトランスフアロツド6によつてMBE
成長室1と皮膜形成室2との所定の位置に置くこ
とができる。またMBE成長室1には分子線を発
生するセル7などが設けられ、皮膜形成室にも電
子線を発生し選択的に照射する電子銃及び電子光
学系8並びにMBE成長室1におけると同様なセ
ル9などが設けられている。
The figure is a schematic cross-sectional view showing an example of a manufacturing apparatus suitable for carrying out the present invention. In the figure, 1 is an MBE growth chamber, 2 is a film forming chamber, 3 is a gate valve, 4 is a single crystal substrate, 5 is a substrate holder, and 6 is a transfer rod. MBE by Transfer Load 6
It can be placed at a predetermined position between the growth chamber 1 and the film forming chamber 2. The MBE growth chamber 1 is also equipped with a cell 7 that generates molecular beams, and the film forming chamber is also equipped with an electron gun and an electron optical system 8 that generate and selectively irradiate electron beams, as well as the same cells as in the MBE growth chamber 1. A cell 9 and the like are provided.

本発明を適用してGaAs単結晶基板上に選択的
にGaAsエピタキシヤル成長領域と、高抵抗の
GaAs多結晶領域とを形成する実施例について述
べる。
By applying the present invention, selective GaAs epitaxial growth regions and high resistance
An example of forming a GaAs polycrystalline region will be described.

GaAs単結晶基板4は基板ホルダー5に保持さ
れてまず皮膜形成室2の所定の位置に置かれる。
皮膜形成室2内を10-7〔Torr〕以下の真空状態と
して基板4を温度580〔℃〕程度以上に数分間加熱
して表面に大気中において自然に形成されている
酸化層を分解し清浄化する。この際にセル9より
As分子線を基板4面に照射することによつて、
基板4からAsが蒸発してGaAs単結晶基板4の表
面近傍においてその組成が化学量論比からずれる
ことを防止する。
GaAs single crystal substrate 4 is held by substrate holder 5 and first placed at a predetermined position in film forming chamber 2 .
The inside of the film forming chamber 2 is kept in a vacuum state of 10 -7 [Torr] or less, and the substrate 4 is heated to a temperature of about 580 [°C] or higher for several minutes to decompose and clean the oxide layer that is naturally formed on the surface in the atmosphere. become At this time, from cell 9
By irradiating the four surfaces of the substrate with As molecular beams,
This prevents As from evaporating from the substrate 4 and causing the composition near the surface of the GaAs single crystal substrate 4 to deviate from the stoichiometric ratio.

次いで高抵抗のGaAs多結晶膜の形成を意図す
る領域に対して選択的電子線照射を行なつて、こ
の領域のGaAs単結晶の表面に酸化膜を形成す
る。この電子線照射に際してGaAs単結晶基板4
への電荷蓄積が防止される程度の導電性を得るた
めに、その温度が室温乃至500〔℃〕程度の範囲で
選択される。皮膜形成室2内に残留するガスは通
常水蒸気(H2O)及び一酸化炭素(CO)が大部
分であつて、これらの残留ガスはGaAs単結晶基
板4の電子線が照射された表面部分を酸化する働
きを有するが、先に述べた如く選択されるGaAs
単結晶基板4の温度及びパターン描画速度の条件
等によつて雰囲気ガス成分及び圧力が選択され、
必要な場合には例えば酸素(O2)等のガスを皮
膜形成室2内に導入する。
Next, a region where a high resistance GaAs polycrystalline film is intended to be formed is selectively irradiated with an electron beam to form an oxide film on the surface of the GaAs single crystal in this region. During this electron beam irradiation, the GaAs single crystal substrate 4
In order to obtain conductivity to the extent that charge accumulation is prevented, the temperature is selected within the range of room temperature to about 500 [° C.]. The gas remaining in the film forming chamber 2 is usually mostly water vapor (H 2 O) and carbon monoxide (CO), and these residual gases are absorbed by the surface portion of the GaAs single crystal substrate 4 that has been irradiated with the electron beam. GaAs, which has the function of oxidizing, is selected as mentioned above.
The atmospheric gas components and pressure are selected depending on the temperature of the single crystal substrate 4, the pattern drawing speed, etc.
If necessary, a gas such as oxygen (O 2 ) is introduced into the film forming chamber 2.

次いでGaAs単結晶基板4をMBE成長室1の
所定の位置に移動し、基板4の表面温度を400乃
至500〔℃〕として、Ga、As及びn型ドーパント
である錫(Sn)ビームを基板4に照射して厚さ
約1〔μm〕にGaAs結晶を成長する。
Next, the GaAs single crystal substrate 4 is moved to a predetermined position in the MBE growth chamber 1, the surface temperature of the substrate 4 is set at 400 to 500 [°C], and a beam of Ga, As, and tin (Sn), which is an n-type dopant, is applied to the substrate 4. irradiation to grow a GaAs crystal to a thickness of about 1 [μm].

ただしここで成長したGaAs結晶は、先に酸化
膜を形成しなかつた清浄なGaAs単結晶上におい
てはこれに格子整合する単結晶であつて、Snの
ドープ量約1×1018〔cm-3〕のときその比抵抗は
約2×10-3〔Ω・cm〕である。これに対して先に
形成した酸化膜上においては、ここで形成された
GaAs結晶は多結晶状態であつてその比抵抗は2
×106〔Ω・cm〕である。
However, the GaAs crystal grown here is a single crystal that lattice-matches to a clean GaAs single crystal on which no oxide film has been formed beforehand, and has a Sn doping amount of approximately 1×10 18 [cm -3 ], its specific resistance is approximately 2×10 -3 [Ω·cm]. On the other hand, on the previously formed oxide film, the
GaAs crystal is in a polycrystalline state and its specific resistance is 2
×10 6 [Ω・cm].

以上説明した実施例においてはGaAs単結晶基
板4の面上にGaAsの酸化膜を形成しているが、
電子線の選択的照射に際して皮膜形成室2の雰囲
気として例えばプロパン(CH3CH2CH3)の如き
炭化水素ガスを導入するならば単結晶基板4の面
上に非晶質の炭素系皮膜を選択的に形成すること
が可能である。この皮膜を設けた単結晶基板4に
ついて前記実施例と同様にMBE成長法を適用す
ることによつて、単結晶のエピタキシヤル成長を
選択的に行なうことができる。
In the embodiment described above, a GaAs oxide film is formed on the surface of the GaAs single crystal substrate 4, but
If a hydrocarbon gas such as propane (CH 3 CH 2 CH 3 ) is introduced as the atmosphere in the film forming chamber 2 during selective irradiation with electron beams, an amorphous carbon-based film will be formed on the surface of the single crystal substrate 4. It is possible to form it selectively. By applying the MBE growth method to the single crystal substrate 4 provided with this film in the same manner as in the embodiment described above, epitaxial growth of the single crystal can be selectively performed.

また本発明の選択的単結晶成長は、基板面上の
みならずエピタキシヤル成長によつて形成された
単結晶面上にも同様に適用できることは明らかで
あつて、この場合においては最初のエピタキシヤ
ル成長、選択的皮膜形成及び選択的エピタキシヤ
ル成長を連続して実施することによつて、単結晶
層の選択的成長と非結晶層の形成とを清浄な環境
において実施することができる。
Furthermore, it is clear that the selective single crystal growth of the present invention can be applied not only to a substrate surface but also to a single crystal surface formed by epitaxial growth. By sequentially performing the growth, selective film formation, and selective epitaxial growth, the selective growth of the single crystal layer and the formation of the amorphous layer can be performed in a clean environment.

(g) 発明の効果 以上説明した如く本発明によれば、分子線結晶
成長方法と選択的単結晶成長のためのマスクとす
る皮膜形成方法とを連結された真空系内で連続し
て実施することが可能となつて、動作領域となる
単結晶領域と素子分離領域となる高抵抗非結晶領
域とを清浄な環境において意図するままに選択形
成することができ、半導体装置特に化合物半導体
集積回路装置の特性、集積密度等の進展に大きい
効果を与える。
(g) Effects of the Invention As explained above, according to the present invention, the molecular beam crystal growth method and the film formation method as a mask for selective single crystal growth are performed continuously in a connected vacuum system. This makes it possible to selectively form a single crystal region serving as an operating region and a high-resistance amorphous region serving as an element isolation region as intended in a clean environment. It has a great effect on the development of characteristics, integration density, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施に適する製造装置の一例を示
す模式断面図である。 図において、1はMBE成長室、2は皮膜形成
室、4は単結晶基板、7は分子線発生セル、8は
電子銃及び電子光学系、9はセルを示す。
The figure is a schematic cross-sectional view showing an example of a manufacturing apparatus suitable for carrying out the present invention. In the figure, 1 is an MBE growth chamber, 2 is a film forming chamber, 4 is a single crystal substrate, 7 is a molecular beam generation cell, 8 is an electron gun and an electron optical system, and 9 is a cell.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体単結晶面に画定された領域に選択的に
電子線を照射することによつて該半導体結晶面と
雰囲気ガスとの反応生成物から成る皮膜を該領域
に選択的に形成し、次いで該半導体単結晶を大気
に触れさせることなく該半導体単結晶面に所定の
分子線を照射することによつて、該皮膜から表出
する該半導体単結晶面上に単結晶をエピタキシヤ
ル成長させるとともに該皮膜上に非単結晶膜を形
成することを特徴とする分子線結晶成長方法。
1. By selectively irradiating a region defined on a semiconductor single crystal surface with an electron beam, a film consisting of a reaction product of the semiconductor crystal surface and an atmospheric gas is selectively formed on the region; By irradiating the semiconductor single crystal surface with a predetermined molecular beam without exposing the semiconductor single crystal to the atmosphere, a single crystal is epitaxially grown on the semiconductor single crystal surface exposed from the film, and the semiconductor single crystal is grown epitaxially on the semiconductor single crystal surface exposed from the film. A molecular beam crystal growth method characterized by forming a non-single crystal film on a film.
JP22454782A 1982-12-21 1982-12-21 Crystal growth method by molecular beam Granted JPS59116192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22454782A JPS59116192A (en) 1982-12-21 1982-12-21 Crystal growth method by molecular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22454782A JPS59116192A (en) 1982-12-21 1982-12-21 Crystal growth method by molecular beam

Publications (2)

Publication Number Publication Date
JPS59116192A JPS59116192A (en) 1984-07-04
JPH0310595B2 true JPH0310595B2 (en) 1991-02-14

Family

ID=16815498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22454782A Granted JPS59116192A (en) 1982-12-21 1982-12-21 Crystal growth method by molecular beam

Country Status (1)

Country Link
JP (1) JPS59116192A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60728A (en) * 1983-06-16 1985-01-05 Sanyo Electric Co Ltd Method of molecular beam epitaxial growth
JPS61131526A (en) * 1984-11-30 1986-06-19 Fujitsu Ltd Manufacture of semiconductor device
JP2607239B2 (en) * 1985-03-29 1997-05-07 シャープ株式会社 Molecular beam epitaxy equipment
JPH0773097B2 (en) * 1986-05-19 1995-08-02 富士通株式会社 Molecular beam crystal growth method
JPS6394614A (en) * 1986-10-09 1988-04-25 Matsushita Electric Ind Co Ltd Molecular beam crystal growth device
JP5048033B2 (en) * 2009-10-01 2012-10-17 旭化成エレクトロニクス株式会社 Manufacturing method of semiconductor thin film element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122697A (en) * 1978-03-16 1979-09-22 Nec Corp Method and apparatus for forming silicon oxide ion
JPS5552220A (en) * 1978-10-13 1980-04-16 Fujitsu Ltd Manufacturing of semiconductor intergrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122697A (en) * 1978-03-16 1979-09-22 Nec Corp Method and apparatus for forming silicon oxide ion
JPS5552220A (en) * 1978-10-13 1980-04-16 Fujitsu Ltd Manufacturing of semiconductor intergrated circuit

Also Published As

Publication number Publication date
JPS59116192A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
JPH0666274B2 (en) (III) -Method for forming group V compound semiconductor
JPS58130517A (en) Manufacture of single crystal thin film
US4470192A (en) Method of selected area doping of compound semiconductors
JPH0310595B2 (en)
JP3214505B2 (en) Method for manufacturing semiconductor device
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JP2642096B2 (en) Method of forming compound semiconductor thin film
JPH05238880A (en) Method for epitaxial growth
JP3461819B2 (en) Manufacturing method of semiconductor crystal film
JP2555885B2 (en) Germanium / gallium arsenide junction manufacturing method
JP2961188B2 (en) Method for manufacturing SOI substrate
JPS62165317A (en) Manufacture of semiconductor device
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS61145823A (en) Molecular beam epitaxial growth method
JPH0620042B2 (en) Method for doping group III compound semiconductor crystal
JP2577543B2 (en) Single crystal thin film growth equipment
JPS63148616A (en) Manufacture of semiconductor device
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JP2861683B2 (en) Method of forming amorphous silicon film
JPS6089933A (en) Liquid phase epitaxial crystal growth method
JP4509244B2 (en) Manufacturing method of semiconductor device
JPH0243720A (en) Molecular beam epitaxial growth method
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JP3047523B2 (en) Selective epitaxial growth method