JP2961188B2 - Method for manufacturing SOI substrate - Google Patents

Method for manufacturing SOI substrate

Info

Publication number
JP2961188B2
JP2961188B2 JP24588890A JP24588890A JP2961188B2 JP 2961188 B2 JP2961188 B2 JP 2961188B2 JP 24588890 A JP24588890 A JP 24588890A JP 24588890 A JP24588890 A JP 24588890A JP 2961188 B2 JP2961188 B2 JP 2961188B2
Authority
JP
Japan
Prior art keywords
film
substrate
single crystal
soi substrate
spe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24588890A
Other languages
Japanese (ja)
Other versions
JPH04124814A (en
Inventor
史朗 中西
信彦 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP24588890A priority Critical patent/JP2961188B2/en
Publication of JPH04124814A publication Critical patent/JPH04124814A/en
Application granted granted Critical
Publication of JP2961188B2 publication Critical patent/JP2961188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁膜上に単結晶シリコン膜を形成してな
るSOI(ilicon n nsulator)構造を有するSOI基
板の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention [relates] to a method for manufacturing an SOI substrate having an SOI (S ilicon O n I nsulator ) structure obtained by forming a single-crystal silicon film on an insulating film.

〔従来の技術〕[Conventional technology]

絶縁膜(絶縁性の基板も含む)上に単結晶シリコン層
を形成した構造はSOI構造と称され、SOI構造を有するSO
I基板は、狭い領域にて容易に素子分離が行え、高集積
化または高速化が可能である基板として知られている。
そして、このようなSOI基板上に素子を作製した半導体
集積回路は、従来のシリコン基板上に素子を作製した半
導体集積回路に比べて、特性の向上を図ることができる
ので、SOI基板について盛んに研究が進められている。
A structure in which a single-crystal silicon layer is formed over an insulating film (including an insulating substrate) is called an SOI structure, and has a SOI structure.
The I-substrate is known as a substrate capable of easily performing element isolation in a narrow region and achieving high integration or high speed.
Semiconductor integrated circuits in which devices are fabricated on such an SOI substrate can have improved characteristics as compared with conventional semiconductor integrated circuits in which devices are fabricated on a silicon substrate. Research is ongoing.

絶縁膜上に単結晶シリコン膜を形成させる方法とし
て、固相成長(olid hase pitaxy,SPE)法があ
る。これは、単結晶シリコン基板上に絶縁膜を形成し、
この絶縁膜を選択的にエッチングして基板表面の一部を
露出させ、基板の露出部及び絶縁膜上に非晶質シリコン
膜(以下a−Si膜という)を堆積し、600℃程度の低温
でアニールすることにより、基板表面の露出部をシード
として、最初に縦方向固相成長(ertical olid
hase pitaxy,V−SPE)させ、引き続いて横方向固相
成長(ateral olid hase pitaxy,L−SPE)
させてa−Si膜を単結晶化させるものである。
As a method for forming a single crystal silicon film on the insulating film, there is a solid-phase growth (S olid P hase E pitaxy, SPE) method. This is to form an insulating film on a single crystal silicon substrate,
This insulating film is selectively etched to expose a part of the substrate surface, and an amorphous silicon film (hereinafter referred to as an a-Si film) is deposited on the exposed portion of the substrate and the insulating film. in by annealing, as the seed exposed portions of the substrate surface, first longitudinal solid phase growth to (V ertical S olid P
hase E pitaxy, V-SPE) is, lateral solid phase growth subsequently (L ateral S olid P hase E pitaxy, L-SPE)
Thus, the a-Si film is made into a single crystal.

しかしながら、堆積するa−Si膜がノンドープのa−
Si膜である場合、横方向の固相成長距離(L−SPE距
離)は約5μm程度であり、形成されるSOI領域の大き
さが限定されるという欠点がある。L−SPE距離を伸ば
す方法として、絶縁膜上のa−Si膜にP+イオンを高濃度
に注入した後、アニール処理を行う方法が知られている
(Japanese Journal of Applied Physics Vol.25,No.5
(1986)667)。ところが、a−Si膜内にP+イオンを1
〜3×1020cm-3という高濃度にドーピングするので、固
相成長した単結晶シリコン膜中の不純物(P)濃度が非
常に高くなってしまい、この固相成長した単結晶シリコ
ン膜上に所望の半導体素子を作製することは困難であ
る。
However, the deposited a-Si film is non-doped a-Si film.
In the case of a Si film, the lateral solid phase growth distance (L-SPE distance) is about 5 μm, and there is a disadvantage that the size of the SOI region to be formed is limited. As a method for extending the L-SPE distance, there is known a method in which P + ions are implanted at a high concentration into an a-Si film on an insulating film and then an annealing treatment is performed (Japanese Journal of Applied Physics Vol. 25, No. .Five
(1986) 667). However, one P + ion is contained in the a-Si film.
Since doping is performed at a high concentration of about 3 × 10 20 cm −3 , the impurity (P) concentration in the single-crystal silicon film grown by solid phase becomes extremely high. It is difficult to manufacture a desired semiconductor element.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように、従来の固相成長法(SPE法)では、横方
向への成長距離(L−SPE距離)が伸びず、半導体素子
を作製するのに適した大面積のSOI基板を得ることがで
きなかったり、単結晶シリコン膜中の不純物濃度が高く
なって所望の半導体素子の作製が行えなかったりした。
As described above, in the conventional solid-phase growth method (SPE method), a lateral growth distance (L-SPE distance) does not increase, and a large-area SOI substrate suitable for manufacturing a semiconductor element can be obtained. In some cases, the desired semiconductor element cannot be manufactured due to the high impurity concentration in the single crystal silicon film.

本発明はかかる事情に鑑みてなされたものであり、L
−SPE距離を伸ばしてより大面積のSOI基板を作製するこ
とができるSOI基板の作製方法を提供することを目的と
する。
The present invention has been made in view of such circumstances, and L
An object of the present invention is to provide a method for manufacturing an SOI substrate which can manufacture an SOI substrate having a larger area by extending the SPE distance.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係るSOI基板の作製方法は、単結晶半導体基
台上に絶縁膜を形成し、前記単結晶半導体基台を露出す
べく前記絶縁膜に開孔部を選択的に形成し、露出した単
結晶半導体基台の表面を含んで前記絶縁層上に非晶質シ
リコン膜を堆積し、該非晶質シリコン膜のアニール処理
により単結晶シリコン膜をエピタキシャル成長させてSO
I基板を作製する方法において、前記非晶質シリコン膜
の堆積を2段階に分けて行い、その第1段階の堆積温度
を第2段階の堆積温度より低くすることを特徴とする。
In the method for manufacturing an SOI substrate according to the present invention, an insulating film is formed over a single crystal semiconductor base, and an opening is selectively formed in the insulating film so as to expose the single crystal semiconductor base. An amorphous silicon film is deposited on the insulating layer including the surface of the single crystal semiconductor base, and the single crystal silicon film is epitaxially grown by annealing the amorphous silicon film.
In the method of manufacturing an I-substrate, the deposition of the amorphous silicon film is performed in two stages, and the first-stage deposition temperature is lower than the second-stage deposition temperature.

〔作用〕[Action]

本発明のSOI基板の作製方法にあっては、2段階に分
けてa−Si膜の堆積を行い、第1段階の堆積温度を第2
段階の堆積温度より低くする。そうすると、L−SPE距
離の延伸を阻害していた単結晶シリコン膜と絶縁膜との
界面における結晶欠陥,多結晶核の発生が抑制される。
この結果、L−SPE距離が延伸してSOI領域が拡大し、こ
れに加えてSOI基板の結晶性も向上する。
In the method for manufacturing an SOI substrate of the present invention, the a-Si film is deposited in two stages, and the deposition temperature in the first stage is reduced to the second stage.
Lower than the step deposition temperature. Then, generation of crystal defects and polycrystalline nuclei at the interface between the single crystal silicon film and the insulating film, which has hindered the extension of the L-SPE distance, is suppressed.
As a result, the L-SPE distance is extended and the SOI region is expanded, and in addition, the crystallinity of the SOI substrate is improved.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて具体
的に説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments.

第1図は、本発明の作製方法において使用され、反応
室内を超高真空状態に保持できるCVD装置の構成を示
す。図中11,12は夫々反応室,試料準備室であり、反応
室11と試料準備室12とはゲートバルブ13の開閉により、
連通状態及び遮断状態に切換えられる。
FIG. 1 shows a configuration of a CVD apparatus used in the manufacturing method of the present invention and capable of maintaining an ultrahigh vacuum state in a reaction chamber. In the figure, reference numerals 11 and 12 denote a reaction chamber and a sample preparation chamber, respectively. The reaction chamber 11 and the sample preparation chamber 12 are opened and closed by opening and closing a gate valve 13.
The state is switched to the communication state and the cutoff state.

反応室11では、ガス導入管14からSiH4,Ar等のガスを
導入し、排気管15から排気する。また、ガスを導入して
いないときの反応室11の排気と試料準備室12の排気と
は、排気管16から行う。試料準備室12にはガス導入管17
から窒素が導入されて真空からのリークがなされる。サ
セプタ18上にセットされた試料(基板)は、搬送系19に
て反応室11内に搬送され、サセプタホルダ20上にサセプ
タ18ごとセットされる。試料(基板)に対する加熱は、
赤外線ランプ21にて行われ、熱電対22でその温度がモニ
タされて温度制御回路23にて温度制御される。
In the reaction chamber 11, a gas such as SiH 4 or Ar is introduced from a gas introduction pipe 14 and exhausted from an exhaust pipe 15. In addition, the exhaust of the reaction chamber 11 and the exhaust of the sample preparation chamber 12 when the gas is not introduced are performed through the exhaust pipe 16. Gas inlet pipe 17 in sample preparation chamber 12
Nitrogen is introduced from the vacuum chamber to leak from the vacuum. The sample (substrate) set on the susceptor 18 is transferred into the reaction chamber 11 by the transfer system 19 and set together with the susceptor 18 on the susceptor holder 20. Heating the sample (substrate)
The temperature is monitored by an infrared lamp 21, monitored by a thermocouple 22, and controlled by a temperature control circuit 23.

試料(基板)の反応室11内へのセットは、以下のよう
にして行う。まず、ゲートバルブ13を閉じた状態で、反
応室11内を真空排気し、試料準備室12内にガス導入管17
から窒素を導入してリークを行う。その後、試料(基
板)をサセプタ18上にセットして試料準備室12に入れ、
試料準備室12内を排気管16から真空排気し、ゲートバル
ブ13を開けて搬送系19にてサセプタ18をサセプタホルダ
20にセットする。そして、搬送系19を試料準備室12内に
戻しゲートバルブ13を閉じる。なお、試料(基板)を取
り出すときは、試料準備室12内を真空状態とした後、ゲ
ートバルブ13を開けて搬送系19によりサセプタ18を試料
準備室12内に運び、再びゲートバルブ13を閉じて試料準
備室12内に窒素を導入して大気圧になった状態で試料
(基板)を取り出す。
A sample (substrate) is set in the reaction chamber 11 as follows. First, with the gate valve 13 closed, the inside of the reaction chamber 11 is evacuated, and the gas introduction pipe 17 is inserted into the sample preparation chamber 12.
To introduce nitrogen to perform leakage. After that, the sample (substrate) is set on the susceptor 18 and put into the sample preparation chamber 12,
The inside of the sample preparation chamber 12 is evacuated from the exhaust pipe 16, the gate valve 13 is opened, and the susceptor 18 is moved by the transfer system 19 to the susceptor holder.
Set to 20. Then, the transfer system 19 is returned into the sample preparation chamber 12, and the gate valve 13 is closed. When removing the sample (substrate), the sample preparation chamber 12 is evacuated, the gate valve 13 is opened, the susceptor 18 is carried into the sample preparation chamber 12 by the transport system 19, and the gate valve 13 is closed again. Then, the sample (substrate) is taken out in a state where nitrogen is introduced into the sample preparation chamber 12 and the atmospheric pressure is reached.

第2図は、本発明の実施例の作製工程を示す模式的断
面図である。
FIG. 2 is a schematic cross-sectional view showing a manufacturing process of the embodiment of the present invention.

図中1は、(100)面を主面とする単結晶半導体基台
としての単結晶シリコン基板であり、その表面に絶縁膜
として膜厚0.1μm程度のSiO2膜2を、熱酸化またはCVD
法により形成する(第2図(a))。次に、公知の技術
であるフォトリソグラフィ技術により、シードとしての
シリコン基板表面(シード部1a)を露出させるべく、こ
のSiO2膜2に開孔部2aを選択的に形成する(第2図
(b))。
Figure 1 is a (100) is a single crystal silicon substrate surface as a single crystal semiconductor base having a major surface, the SiO 2 film 2 having a film thickness of about 0.1μm as an insulating film on its surface, thermal oxidation or CVD
It is formed by a method (FIG. 2A). Next, an opening 2a is selectively formed in the SiO 2 film 2 by a known photolithography technique in order to expose the surface of the silicon substrate (seed portion 1a) as a seed (FIG. 2 ( b)).

SiO2膜2がパターン形成された単結晶シリコン基板1
を、RCA法により化学的に洗浄した後、第1図に示すCVD
装置の反応室11内にセットする。反応室11内を1×10-7
Torr程度の真空状態に排気し、赤外線ランプ21により、
450〜500℃まで昇温加熱し、温度を一定とした後、SiH4
ガスを流量200cc/分,圧力5Torrで供給し、開孔部2aか
ら露出しているシリコン基板表面(シード部1a)上及び
SiO2膜2上に、第1段階の下層のa−Si膜3aを、膜厚0.
1μm程度堆積させる(第2図(c))。下層のa−Si
膜3aの堆積が終了すると、SiH4ガスの供給を停止し、数
分間にわたってArガスにてSiH4ガスのパージを行った
後、再び反応室11内を1×10-7Torr程度の真空状態に排
気し、赤外線ランプ21により550℃まで昇温加熱し、温
度を一定とした後、SiH4ガスを流量200cc/分,圧力5Tor
rで供給し、下層のa−Si膜3a上に、第2段階の上層の
a−Si膜3bを、膜厚1.5μm程度堆積させる(第2図
(d))。
Single crystal silicon substrate 1 on which SiO 2 film 2 is patterned
Is chemically cleaned by the RCA method, and then the CVD shown in FIG.
It is set in the reaction chamber 11 of the device. 1 × 10 -7 inside the reaction chamber 11
Exhaust to a vacuum of about Torr, and infrared lamp 21
To 450 to 500 ° C. and heating heating, after the temperature is constant, SiH 4
A gas is supplied at a flow rate of 200 cc / min and a pressure of 5 Torr, and the gas is supplied on the silicon substrate surface (seed portion 1a) exposed from the opening 2a and
On the SiO 2 film 2, a first-stage lower a-Si film 3a is formed to a thickness of 0.
Deposit about 1 μm (FIG. 2C). A-Si of lower layer
When the deposition of the film 3a is completed, the supply of the SiH 4 gas is stopped, the SiH 4 gas is purged with Ar gas for several minutes, and then the inside of the reaction chamber 11 is again evacuated to about 1 × 10 −7 Torr. And heated to 550 ° C with an infrared lamp 21 to make the temperature constant, then flow SiH 4 gas at a flow rate of 200 cc / min and a pressure of 5 Torr.
Then, an upper a-Si film 3b of the second stage is deposited to a thickness of about 1.5 μm on the lower a-Si film 3a (FIG. 2 (d)).

SiH4ガスの供給を停止し、数分間にわたってArガスに
てSiH4ガスのパージを行った後、N2雰囲気中にて600℃
程度の温度でのアニール処理により、a−Si膜3a,3bの
固相成長を行って、a−Si膜3a,3bを単結晶化させた単
結晶シリコン膜4を形成する(第2図(e))。
SiH 4 supply of gas is stopped, after the purge of the SiH 4 gas in an Ar gas for a few minutes, 600 ° C. at an N 2 atmosphere
The solid-phase growth of the a-Si films 3a, 3b is performed by annealing at a temperature of about the same temperature to form a single-crystal silicon film 4 in which the a-Si films 3a, 3b are monocrystallized (FIG. 2 ( e)).

なお、上述した実施例では単結晶半導体基台として単
結晶シリコン基板を用いることとしたが、単結晶半導体
基台として表面に単結晶シリコンが形成された基板を用
いることとしても良い。
Although a single crystal silicon substrate is used as the single crystal semiconductor base in the above-described embodiment, a substrate with single crystal silicon formed on the surface may be used as the single crystal semiconductor base.

従来、固相成長法においては、成長した単結晶シリコ
ンと絶縁膜であるSiO2膜との界面付近で発生する結晶欠
陥,多結晶核がL−SPE距離を縮小させたり成長した単
結晶シリコン膜の結晶性を低下させたりすることが問題
となっている(J.Appl.Phys.54(5),May(1983)284
7),(Jpn.J.Appl.Phys.Vol.25,No.10(1986)L81
4)。ところで、a−Si膜を堆積する際にその堆積温度
を低温とした場合、結晶欠陥,多結晶核の発生を抑える
ことは可能であるが、この場合には、実用的な堆積速度
が得られない、または不純物濃度が高くなるという問題
点がある(Jpn.J.Appl.Phys.Vol.21,No.10(1982)143
1)。
Conventionally, in the solid-phase growth method, crystal defects and polycrystalline nuclei generated near the interface between the grown single crystal silicon and the SiO 2 film as an insulating film reduce the L-SPE distance or grow the single crystal silicon film. There is a problem that the crystallinity of the material is lowered (J. Appl. Phys. 54 (5), May (1983) 284).
7), (Jpn. J. Appl. Phys. Vol. 25, No. 10 (1986) L81
Four). By the way, when the deposition temperature is lowered when depositing the a-Si film, it is possible to suppress the generation of crystal defects and polycrystalline nuclei, but in this case, a practical deposition rate can be obtained. Or the problem of high impurity concentration (Jpn. J. Appl. Phys. Vol. 21, No. 10 (1982) 143)
1).

このような事情により、本発明では、a−Si膜の堆積
工程を2段階に分割し、夫々の堆積温度を異ならせてい
る。具体的には、その第1段階、つまり絶縁膜(SiO2
2)との界面付近における下層のa−Si膜3aの堆積(膜
厚0.1μm程度)は、450〜500℃程度の低温にて行っ
て、結晶欠陥,多結晶核の発生を抑制し、その第2段
階、つまり第1段階にて堆積した下層のa−Si膜3aへの
上層のa−Si膜3bの堆積(膜厚1.5μm程度)は、通常
のCVD法における堆積温度である550℃(Jpn.J.Appl.Phy
s.Vol.21,No.10(1982)1431)で行う。このようにする
ことにより、従来からの問題点を解決して、全体として
実用的なa−Si膜の膜厚(Appl.Phys.Lett.52(21),23
May(1988)1788)を得、しかも結晶性が良好である大
面積のSOI領域を得ることができる。
Under such circumstances, in the present invention, the deposition process of the a-Si film is divided into two stages, and the respective deposition temperatures are made different. Specifically, the first stage, that is, the deposition of the lower a-Si film 3a (about 0.1 μm thick) near the interface with the insulating film (SiO 2 film 2) is performed at a low temperature of about 450 to 500 ° C. To suppress the generation of crystal defects and polycrystalline nuclei, and to deposit the upper a-Si film 3b (film thickness) on the lower a-Si film 3a deposited in the second step, that is, the first step. (About 1.5 μm) is a deposition temperature of 550 ° C. (Jpn.J.Appl.Phy.)
s.Vol.21, No.10 (1982) 1431). By doing so, the conventional problems can be solved, and the thickness of the practical a-Si film as a whole (Appl. Phys. Lett. 52 (21), 23)
May (1988) 1788), and a large-area SOI region with good crystallinity can be obtained.

第3図は、アニール時間とL−SPE距離との関係を示
すグラフであり、横軸はアニール時間(時間)、縦軸は
L−SPE距離(μm)、グラフ中の数値は成長速度(Å
/秒)を夫々示し、また−●−,−○−は夫々本発明
例,従来例を表す。第3図に示すグラフから明らかなよ
うに、本発明の作製方法を用いることにより従来例の約
2倍にあたる10μmのL−SPE距離を得ることができ
る。
FIG. 3 is a graph showing the relationship between the annealing time and the L-SPE distance. The horizontal axis represents the annealing time (hour), the vertical axis represents the L-SPE distance (μm), and the numerical value in the graph represents the growth rate (Å).
/ Sec), and-●-and-○-represent the present invention example and the conventional example, respectively. As is clear from the graph shown in FIG. 3, an L-SPE distance of 10 μm, which is about twice that of the conventional example, can be obtained by using the manufacturing method of the present invention.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明のSOI基板の作製方法では、a
−Si膜の堆積を2段階に分けて行い、その第1段階の堆
積温度を第2段階の堆積温度より低くすることにより、
絶縁膜との界面付近における結晶欠陥,多結晶核の発生
を抑制することができ、より大面積のSOI基板を作製す
ることが可能である。
As described above, in the method for manufacturing an SOI substrate of the present invention, a
By performing the deposition of the Si film in two stages, and making the deposition temperature of the first stage lower than the deposition temperature of the second stage,
Generation of crystal defects and polycrystalline nuclei near the interface with the insulating film can be suppressed, and a larger-area SOI substrate can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のSOI基板の作製方法を実施するために
使用するCVD装置の概略構成図、第2図は本発明のSOI基
板の作製方法の工程を示す断面図、第3図は本発明例と
従来例とにおけるアニール時間とL−SPE距離との関係
を示すグラフである。 1……単結晶シリコン基板(単結晶半導体基台)、1a…
…シード部、2……SiO2膜(絶縁膜)、2a……開孔部、
3a……下層のa−Si膜、3b……上層のa−Si膜、4……
単結晶シリコン膜
FIG. 1 is a schematic configuration diagram of a CVD apparatus used to carry out the method of manufacturing an SOI substrate of the present invention, FIG. 2 is a cross-sectional view showing steps of the method of manufacturing an SOI substrate of the present invention, and FIG. It is a graph which shows the relationship between the annealing time and L-SPE distance in the invention example and the conventional example. 1 ... Single-crystal silicon substrate (single-crystal semiconductor base), 1a ...
... Seed part, 2 ... SiO 2 film (insulating film), 2a ...
3a: lower a-Si film, 3b: upper a-Si film, 4 ...
Single crystal silicon film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶半導体基台上に絶縁膜を形成し、前
記単結晶半導体基台を露出すべく前記絶縁膜に開孔部を
選択的に形成し、露出した単結晶半導体基台の表面を含
んで前記絶縁層上に非晶質シリコン膜を堆積し、該非晶
質シリコン膜のアニール処理により単結晶シリコン膜を
エピタキシャル成長させてSOI基板を作製する方法にお
いて、 前記非晶質シリコン膜の堆積を2段階に分けて行い、そ
の第1段階の堆積温度を第2段階の堆積温度より低くす
ることを特徴とするSOI基板の作製方法。
An insulating film is formed on a single crystal semiconductor base, and an opening is selectively formed in the insulating film to expose the single crystal semiconductor base. A method of depositing an amorphous silicon film on the insulating layer including the surface and epitaxially growing a single crystal silicon film by annealing the amorphous silicon film to produce a SOI substrate, A method for manufacturing an SOI substrate, wherein the deposition is performed in two stages, and the first stage deposition temperature is lower than the second stage deposition temperature.
JP24588890A 1990-09-14 1990-09-14 Method for manufacturing SOI substrate Expired - Fee Related JP2961188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24588890A JP2961188B2 (en) 1990-09-14 1990-09-14 Method for manufacturing SOI substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24588890A JP2961188B2 (en) 1990-09-14 1990-09-14 Method for manufacturing SOI substrate

Publications (2)

Publication Number Publication Date
JPH04124814A JPH04124814A (en) 1992-04-24
JP2961188B2 true JP2961188B2 (en) 1999-10-12

Family

ID=17140305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24588890A Expired - Fee Related JP2961188B2 (en) 1990-09-14 1990-09-14 Method for manufacturing SOI substrate

Country Status (1)

Country Link
JP (1) JP2961188B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023004B2 (en) * 2008-06-30 2012-09-12 株式会社日立国際電気 Substrate processing method and substrate processing apparatus
JP6348707B2 (en) 2013-12-11 2018-06-27 東京エレクトロン株式会社 Amorphous silicon crystallization method, crystallized silicon film formation method, semiconductor device manufacturing method, and film formation apparatus

Also Published As

Publication number Publication date
JPH04124814A (en) 1992-04-24

Similar Documents

Publication Publication Date Title
US6270568B1 (en) Method for fabricating a semiconductor structure with reduced leakage current density
JP2961188B2 (en) Method for manufacturing SOI substrate
JP2775563B2 (en) Semiconductor device and manufacturing method thereof
Friedrich et al. Oxide degradation during selective epitaxial growth of silicon
JPH05259091A (en) Manufacture of semiconductor device
JPH10511507A (en) Fabrication of a semiconductor device having selectively deposited semiconductor regions
KR20230132455A (en) Method for manufacturing epitaxial wafers
JP3157280B2 (en) Method for manufacturing semiconductor device
JPS6170715A (en) Growing method of compound semiconductor
EP0289246A1 (en) Method of manufacturing MOS devices
JP2647927B2 (en) Selective epitaxial growth method
JPH02191319A (en) Method of forming soi structure
JP2771636B2 (en) Selective epitaxial growth method
JPH06333822A (en) Semiconductor device
JPS6134921A (en) Manufacture of semiconductor device
JPH0620056B2 (en) CaF (bottom 2) film growth method
JPH05234887A (en) Manufacture of semiconductor device
JPH1116838A (en) Growth of polycrystalline silicon film and cvd apparatus
JP3203772B2 (en) Semiconductor film forming method and thin film semiconductor device manufacturing method
JPH05234886A (en) Manufacture of semiconductor device
JPS63150915A (en) Selective epitaxial growth method
JPH0529214A (en) Manufacture of semiconductor substrate
JPH01152719A (en) Formation of soi structure
JPS63137412A (en) Manufacture of semiconductor substrate
JP2003528443A5 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees