JPH05234887A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05234887A
JPH05234887A JP7045592A JP7045592A JPH05234887A JP H05234887 A JPH05234887 A JP H05234887A JP 7045592 A JP7045592 A JP 7045592A JP 7045592 A JP7045592 A JP 7045592A JP H05234887 A JPH05234887 A JP H05234887A
Authority
JP
Japan
Prior art keywords
film
growth
single crystal
substrate
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7045592A
Other languages
Japanese (ja)
Inventor
Nobuhiko Oda
信彦 小田
Shiro Nakanishi
史朗 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7045592A priority Critical patent/JPH05234887A/en
Publication of JPH05234887A publication Critical patent/JPH05234887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve throughput by increasing an area of a faucet grown region in {110} having little dislocation, shortening an annealing time for solid epitaxially growing and omitting the number of steps. CONSTITUTION:An insulating film 2 made of an SiO2 film, etc., is formed on a surface of a single crystalline Si substrate 1, and selectively etched to form an opening window 3 in which a partial surface of the substrate is exposed. After an amorphous Si film 4 having a thickness of 0.5mum or more is deposited on the surface of the substrate 1 and the surface of the film 2 exposed in the window 3, it is annealed at 625 deg.C or lower of a substrate temperature, and solid epitaxially grown with the Si single crystal of the substrate 1 exposed in the window 3 as a seed. Then, the film 4 is single crystallized to form a single crystalline Si film 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁物表面に半導体層を
有するS.O.I.(Silicon-On-Insulator)構造を持つ半導体
装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having an SOI (Silicon-On-Insulator) structure having a semiconductor layer on the surface of an insulator.

【0002】[0002]

【従来の技術】絶縁膜又は絶縁基板等の絶縁物上に単結
晶Si膜を形成した、所謂S.O.I.構造は、素子分離が容易
で高集積化,デバイスの信号伝送速度の高速化が可能で
あり、また従来のSi基板上に素子を作製する半導体集積
回路(IC)等に比べて、特性の向上が図れることから活発
な研究開発が行われている。
2. Description of the Related Art The so-called SOI structure, in which a single crystal Si film is formed on an insulating film or an insulating material such as an insulating substrate, allows easy element isolation, high integration, and high signal transmission speed of the device. Further, active research and development are being conducted because the characteristics can be improved as compared with a conventional semiconductor integrated circuit (IC) or the like in which elements are manufactured on a Si substrate.

【0003】絶縁膜表面に単結晶Si膜を形成する方法と
して、従来固相エピタキシャル成長法(Solid Phase Epi
taxy) が知られている (特開昭63-192223 号) 。図1は
一般的な固相エピタキシャル成長過程の説明図であり、
図中1は単結晶Si基板、2は絶縁膜を示している。単結
晶Si基板1上にSiO2 等からなる絶縁膜2を形成し、そ
の絶縁膜2を選択的にエッチングして開口窓3を形成
し、この開口窓3内に一部の単結晶Si面を露出させた
後、蒸着法にて全面に渡って非晶質Si膜4を堆積し、 6
00℃程度の低温でアニール処理することで前記露出させ
たSi単結晶をシードとして、最初縦方向、即ち〔100 〕
方位に、固相エピタキシャル成長(V-SPE) を行わせ、続
いて形成されたSi単結晶の{110 }フアセットについて
横方向、即ち〔010 〕方位に固相エピタキシャル成長(L
-SPE) させてS.O.I.構造を形成する。
As a method for forming a single crystal Si film on the surface of an insulating film, a conventional solid phase epitaxy method (Solid Phase Epi
taxy) is known (Japanese Patent Laid-Open No. Sho 63-192223). FIG. 1 is an explanatory view of a general solid phase epitaxial growth process,
In the figure, 1 indicates a single crystal Si substrate and 2 indicates an insulating film. An insulating film 2 made of SiO 2 or the like is formed on a single crystal Si substrate 1, the insulating film 2 is selectively etched to form an opening window 3, and a part of the single crystal Si surface is formed in the opening window 3. After exposing, the amorphous Si film 4 is deposited on the entire surface by the vapor deposition method.
By using the exposed Si single crystal as a seed by annealing at a low temperature of about 00 ° C, first in the vertical direction, that is, [100]
Solid phase epitaxial growth (V-SPE) is performed in the azimuth direction, and the solid phase epitaxial growth (L
-SPE) to form an SOI structure.

【0004】この方法は従来知られているビームアニー
ル法, SIMOX(Separation by Implanted Oxygen) 法に比
較して低温プロセスであること、スループットが高いこ
と、従来装置を用いて実施可能で製造コストが低い等の
特徴を有している。
This method is a low-temperature process, has a high throughput, and can be carried out by using a conventional apparatus, and has a low manufacturing cost, as compared with the conventionally known beam annealing method and SIMOX (Separation by Implanted Oxygen) method. It has features such as.

【0005】[0005]

【発明が解決しようとする課題】ところで上述した如き
従来方法にあっては横方向固相エピタキシャル成長過程
で、途中迄は{111 }フアセットについての成長が行わ
れるが、途中からは{111 }フアセットが生成され、そ
の後は次第に{111 }フアセットでの成長が優勢とな
り、しかもその後は図1(b) に示す如く非晶質Si膜がポ
リシリコンに転換されて、横方向固相エピタキシャル成
長が中断されてしまうという問題があった。
By the way, in the conventional method as described above, in the lateral solid-phase epitaxial growth process, {111} -fasset is grown up to the middle, but {111} -facet is grown from the middle. After that, the growth in {111} frasset gradually became dominant, and thereafter, the amorphous Si film was converted into polysilicon as shown in Fig. 1 (b), and the lateral solid phase epitaxial growth was interrupted. There was a problem that it would end up.

【0006】通常デバイスを作製する場合、その作製面
となる基板に存在する転位が多いと、接合リーク,散乱
中心の原因となり、デバイス特性を劣化させることとな
るから、転位は可及的に低減するのが望ましい。固相エ
ピタキシャル成長層のうち{110 }フアセット成長領域
の場合と、{111 }フアセット成長領域の場合とを比較
してみると前者の転位密度は最大108 個/cm2 程度、ま
た後者の転位密度は最大1010個/cm2 程度であり、後者
に比較して前者の成長領域における転位密度が低い。従
ってデバイス形成面としては結晶性の良好な{110 }フ
アセット成長領域を用いるのが望ましく、固相エピタキ
シャル成長過程においては{110 }フアセット成長領域
が可及的に大きく得られるようにすることが必要とされ
る。
In the case of manufacturing a normal device, if many dislocations are present in the substrate on which the device is prepared, junction leaks and scattering centers will be caused, and device characteristics will be deteriorated. Therefore, dislocations are reduced as much as possible. It is desirable to do. Comparing the case of {110} frasset growth region and the case of {111} frasset growth region in the solid phase epitaxial growth layer, the former dislocation density is about 10 8 / cm 2 and the latter dislocation density is maximum. Is about 10 10 / cm 2 at maximum, and the dislocation density in the growth region of the former is lower than that of the latter. Therefore, it is desirable to use the {110} -fasset growth region with good crystallinity for the device formation surface, and it is necessary to obtain the {110} -fasset growth region as large as possible in the solid phase epitaxial growth process. To be done.

【0007】図2は横方向固相エピタキシャル成長過程
で{110 }フアセットの成長から{111 }フアセットの
成長に切り換わる際の説明図であり、横方向固相エピタ
キシャル成長過程での初期には図2(a) に示す如く{11
0 }フアセットについての成長のみが生じるが、途中図
2(b) に示す如く、一部に{111 }フアセットが生じ、
その後は成長の進行に伴って図2(c) に示す如く{111
}フアセットの数が増大し、最後には図2(d) に示す
如く{111 }フアセットでの成長のみとなる。また従来
方法では、横方向固相エピタキシャル成長可能な距離に
ついてみれば、例えば 600℃で5μm とすると 575℃で
8μm 、そして 500℃で15μm 程度となるが、温度が下
がる程成長速度も遅くなり、この 500℃での所要時間は
45日程度となり、非現実となる。更に従来方法にあっ
ては非晶質Si膜を蒸着法により形成しているが、この方
法により形成された非晶質Si膜は開口窓に対する段差被
覆性が悪く、また膜の堆積後は 400〜500 ℃で焼締めを
行った後、固相エピタキシャル成長を行わねばならず、
工数が増大するという問題もあった。
FIG. 2 is an explanatory diagram when the growth of {110} -fasset is switched to the growth of {111} -facet in the lateral solid-phase epitaxial growth process. As shown in a) {11
Only the growth of 0} asset is generated, but as shown in Fig. 2 (b), {111} asset is partially generated,
After that, as the growth progresses, as shown in Fig. 2 (c), {111
} The number of assets will increase, and finally only growth in {111} assets will occur as shown in Fig. 2 (d). In the conventional method, the lateral solid phase epitaxial growth distance is about 5 μm at 600 ° C., 8 μm at 575 ° C. and 15 μm at 500 ° C., but the lower the temperature, the slower the growth rate. The time required at 500 ℃ is about 45 days, which is unrealistic. Further, in the conventional method, an amorphous Si film is formed by vapor deposition.However, the amorphous Si film formed by this method has poor step coverage with respect to the opening window, and after the film is deposited, Solid phase epitaxial growth must be performed after sintering at ~ 500 ° C.
There was also a problem that the man-hour increased.

【0008】本発明はかかる事情に鑑みなされたもので
あって、その目的とするところは横方向固相エピタキシ
ャル成長過程で{111 }フアセットの発生を遅延させ、
{110 }フアセット成長領域を拡大し、また固相エピタ
キシャル成長速度及び最終成長距離に基づきアニール処
理に要する時間を適正化して効率化を図り、更に非晶質
Si膜形成時の開口窓に対する段差被覆性の改善及び焼締
め工程の省略を可能とし、スループットの大幅な向上を
図れるようにした半導体装置の製造方法を提供するにあ
る。
The present invention has been made in view of the above circumstances, and its purpose is to delay the generation of {111} flaps in the lateral solid phase epitaxial growth process.
Expanding the {110} -fasset growth region and optimizing the time required for the annealing process based on the solid phase epitaxial growth rate and the final growth distance to improve efficiency.
It is an object of the present invention to provide a method for manufacturing a semiconductor device, which can improve the step coverage with respect to an opening window at the time of forming a Si film and omit the baking step, and can significantly improve the throughput.

【0009】[0009]

【課題を解決するための手段】本発明に係る半導体装置
の製造方法は、単結晶Si面に絶縁膜を形成し、該絶縁膜
を選択エッチングして単結晶Si面の一部を露出させ、露
出させた単結晶Si面及び絶縁膜表面にわたってCVD 法に
より厚さ0.5 μm 以上の非晶質Si膜を堆積した後、625
℃以下でアニール処理を施して前記露出させたSi単結晶
をシードとして固相エピタキシャル成長を行わせ、前記
非晶質Si膜を単結晶化して単結晶Si膜を形成する過程を
含むことを特徴とする。
A method for manufacturing a semiconductor device according to the present invention comprises forming an insulating film on a single crystal Si surface and selectively etching the insulating film to expose a part of the single crystal Si surface. After depositing an amorphous Si film with a thickness of 0.5 μm or more by the CVD method over the exposed single crystal Si surface and the insulating film surface,
Characterized in that it includes a step of performing a solid phase epitaxial growth using the exposed Si single crystal as a seed by performing an annealing treatment at a temperature equal to or lower than, and forming the single crystal Si film by single crystallizing the amorphous Si film. To do.

【0010】[0010]

【作用】本発明にあっては、一部を除いて表面を絶縁膜
にて覆われたSi単結晶上及び絶縁膜上にわたって非晶質
Si膜を0.5 μm 以上の厚さに堆積した後、 625℃は{11
1 }フアセット成長領域よりも転位密度の少ない{110
}フアセット成長領域の面積が広くなり、またアニー
ル処理時間の大幅な短縮化が図れ、その上スループット
の向上が図れることとなる。
According to the present invention, the Si single crystal whose surface is covered with the insulating film except a part thereof and the insulating film are amorphous.
After depositing the Si film to a thickness of 0.5 μm or more, 625 ℃
1} Less dislocation density than Fasset growth region {110
} The area of the fasset growth region becomes large, the annealing time can be greatly shortened, and the throughput can be improved.

【0011】[0011]

【実施例】以下本発明を図面に基づき具体的に説明す
る。図3は本発明に係る半導体装置の製造方法の主要工
程を示す説明であり、図中1は単結晶Si基板、2はSiO2
膜等で構成された絶縁膜を示している。先ず図3(a) に
示す如く主面が(100) 面方位を持った単結晶Si基板1の
表面に、その表面の酸化処理によって所定厚さのSiO2
膜2を形成し、次に選択エッチングにより図3(b) に示
す如く開口窓3を形成し、ここに単結晶Si基板1の(10
0) 面を露出させる。このような試料基板を、例えばRCA
法にて洗浄した後、後述する図6に示す如き超高真空C
VD 装置を用いたCVD 法により少なくとも0.5 μm 以上
の厚さに非晶質Si膜4を堆積する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 3 is an explanatory view showing the main steps of the method for manufacturing a semiconductor device according to the present invention, in which 1 is a single crystal Si substrate and 2 is SiO 2.
An insulating film formed of a film or the like is shown. First, as shown in FIG. 3 (a), a main surface of a single crystal Si substrate 1 having a (100) plane orientation is coated with SiO 2 of a predetermined thickness by oxidation treatment of the surface.
A film 2 is formed, and then an opening window 3 is formed by selective etching as shown in FIG. 3 (b).
0) Expose the surface. Such a sample substrate is, for example, RCA
After cleaning by the method, ultra high vacuum C as shown in Fig. 6 to be described later
An amorphous Si film 4 is deposited to a thickness of at least 0.5 μm by the CVD method using a VD device.

【0012】次にこのような資料基板を、例えば電気炉
を用いてN2 雰囲気中で常圧にて 625℃以下の温度でア
ニール処理し、露出させたSi単結晶をシードとして図3
(d)に示す如く、先ず開口窓3の開口方向に沿って縦方
向固相エピタキシャル成長を、続いて横方向固相エピタ
キシャル成長を生起させ単結晶Si膜5を形成する。
Next, such a material substrate is annealed at a temperature of 625 ° C. or less at atmospheric pressure in an N 2 atmosphere using an electric furnace, for example, and the exposed Si single crystal is used as a seed.
As shown in (d), first, vertical solid phase epitaxial growth is caused along the opening direction of the opening window 3, and then lateral solid phase epitaxial growth is caused to form the single crystal Si film 5.

【0013】非晶質Si膜4の堆積厚さを 0.5μm 以上と
するのは以下の理由による。図4はSi2H6(ジシラン) ガ
スを用いて熱分解法により堆積させた非晶質Si膜の膜厚
と{110 }フアセット成長距離との関係を示すグラフで
あり、横軸に非晶質Si膜の厚さ(μm)を、また縦軸に
{110 }フアセット成長距離(μm )をとって示してあ
る。このグラフから明らかな如く非晶質Si膜厚が0.5 μ
m 以上では{110 }フアセット成長距離が略一定となる
が、非晶質Si膜厚が0.5 μm 未満では非晶質Si膜厚が薄
くなる程{110 }フアセット成長距離も短くなっている
ことが解る。従って、{110 }フアセット成長距離 (μ
m ) を大きくするには非晶質Si膜厚を 0.5μm 以上とす
るのが望ましい。
The reason why the deposited thickness of the amorphous Si film 4 is 0.5 μm or more is as follows. FIG. 4 is a graph showing the relationship between the thickness of an amorphous Si film deposited by a thermal decomposition method using Si 2 H 6 (disilane) gas and the {110} -fasset growth distance. The thickness (μm) of the high-quality Si film and the vertical axis represent the {110} -fasset growth distance (μm). As is clear from this graph, the amorphous Si film thickness is 0.5 μ
The growth distance of {110} frasses is substantially constant at m or more, but if the amorphous Si film thickness is less than 0.5 μm, the thinner the amorphous Si film thickness, the shorter the growth distance of {110} frasses. I understand. Therefore, {110} Fasset growth distance (μ
In order to increase m), it is desirable that the amorphous Si film thickness be 0.5 μm or more.

【0014】またアニール処理温度を 625℃以下とする
のは次の理由による。図5は{110 }フアセット成長距
離とアニール温度との関係を示すグラフであり、横軸に
アニール温度(℃)を、また縦軸に{110 }フアセット
成長距離(μm )をとって示してある。このグラフから
明らかな如く、アニール温度が625 ℃を越えて高くなる
と高くなる程{110 }フアセット成長距離が短くなる
が、625 ℃以下では{110 }フアセット成長距離が略一
定で温度依存性が殆ど認められないことが解る。なお、
アニール温度の下限値は特に限定するものではないが成
長速度及び最大成長距離を勘案すれば 625℃〜 575℃の
範囲とするのが望ましい。従ってアニール温度は625 ℃
以下、望ましくは 625〜575 ℃の範囲に保持する。
The reason for setting the annealing temperature to 625 ° C. or lower is as follows. FIG. 5 is a graph showing the relationship between the {110} -fasset growth distance and the annealing temperature, with the abscissa representing the annealing temperature (° C.) and the ordinate representing the {110} -fasset growth distance (μm). .. As is clear from this graph, the higher the annealing temperature is above 625 ℃, the shorter the growth distance of {110} fasset, but below 625 ℃, the growth distance of {110} fasset is almost constant and the temperature dependence is almost constant. It turns out that it is not accepted. In addition,
The lower limit of the annealing temperature is not particularly limited, but it is preferably in the range of 625 ° C to 575 ° C considering the growth rate and the maximum growth distance. Therefore, the annealing temperature is 625 ° C.
Hereafter, it is preferably maintained in the range of 625 to 575 ° C.

【0015】図6は本発明方法を実施する装置である超
高真空CVD 装置の模式図であり、図中11は常に超高真空
状態(5×10-8Torr程度) に保持された成長室、12はロ
ードロック室、13は前記成長室11とロードロック室12と
の間を連通させ、また遮断するゲートバルブを示してい
る。成長室11内にはサセプタホルダ14が、またロードロ
ック室12内には同じくサセプタ15a を備えたトランスフ
ァロッド15が配設されている。トランスファロッド15は
ゲートバルブ13が開放された状態時に試料基板を成長室
11内のサセプタホルダ14上に移送し、またサセプタホル
ダ14から試料基板を取り外してロードロック室12側に取
り出し得るよう構成されている。
FIG. 6 is a schematic view of an ultra-high vacuum CVD apparatus which is an apparatus for carrying out the method of the present invention. In the figure, 11 is a growth chamber which is always kept in an ultra-high vacuum state (about 5 × 10 −8 Torr). , 12 are load lock chambers, and 13 is a gate valve for connecting and blocking the growth chamber 11 and the load lock chamber 12 from each other. A susceptor holder 14 is provided in the growth chamber 11, and a transfer rod 15 also provided with a susceptor 15a is provided in the load lock chamber 12. The transfer rod 15 is a growth chamber for the sample substrate when the gate valve 13 is open.
It is configured so that it can be transferred onto the susceptor holder 14 in 11 and the sample substrate can be removed from the susceptor holder 14 and taken out to the load lock chamber 12 side.

【0016】成長室11の外囲にはサセプタホルダ14の外
囲に対向させて赤外線ランプ16が設置されている。この
赤外線ランプ16及び前記サセプタホルダ14に対する印加
電圧等の制御はコントローラ17にて行われるようになっ
ている。18 は成長室11に対するガス供給系、19はロー
ドロック室12に対するガス(N2)供給系、20,21 は成
長室11、ロードロック室12からのガス排出系であり、各
ガス排出系20,21 は夫々ターボ分子ポンプ20a,21a 、ロ
ータリポンプ20b,21b を備えている。
An infrared lamp 16 is installed outside the growth chamber 11 so as to face the outside of the susceptor holder 14. A controller 17 controls the voltage applied to the infrared lamp 16 and the susceptor holder 14. 18 is a gas supply system for the growth chamber 11, 19 is a gas (N 2 ) supply system for the load lock chamber 12, and 20 and 21 are gas discharge systems from the growth chamber 11 and the load lock chamber 12, respectively. , 21 are equipped with turbo molecular pumps 20a, 21a and rotary pumps 20b, 21b, respectively.

【0017】次にこのような超真空CVD 装置の操作手順
について説明する。先ず図1(b) に示す如く絶縁膜2を
選択的にエッチング除去して開口窓3を形成し、単結晶
Si基板1の一部を露出させた試料基板を、RCA 法により
洗浄処理下後ロードロック室12内のトランスファロッド
15におけるサセプタ15a 上にセットする。ガス供給系19
からN2 ガスを供給し、空気をパージした後ロードロッ
ク室12内をターボ分子ポンプ21a,ロータリポンプ21b に
よって10-7Torr程度にまで真空排気した後、ゲートバル
ブ13が開き、トランスファロッド15を成長室11内に進出
させて試料基板を成長室11内のサセプタホルダ14上に移
載する。成長室11内はターボ分子ポンプ20a,ロータリポ
ンプ20b によって常時排気されて超高真空に維持されて
いる。
Next, the operation procedure of such an ultra-vacuum CVD apparatus will be described. First, as shown in FIG. 1 (b), the insulating film 2 is selectively removed by etching to form an opening window 3, and a single crystal is formed.
The sample substrate with a part of the Si substrate 1 exposed is cleaned by the RCA method and then transferred to the transfer rod in the load lock chamber 12.
Set on susceptor 15a at 15. Gas supply system 19
N 2 gas is supplied from the above, and after purging air, the inside of the load lock chamber 12 is evacuated to about 10 −7 Torr by the turbo molecular pump 21 a and the rotary pump 21 b, and then the gate valve 13 is opened and the transfer rod 15 is opened. The sample substrate is advanced into the growth chamber 11 and the sample substrate is transferred onto the susceptor holder 14 in the growth chamber 11. The inside of the growth chamber 11 is constantly evacuated by the turbo molecular pump 20a and the rotary pump 20b to maintain an ultrahigh vacuum.

【0018】赤外線ランプ16をコントローラ17で制御し
て試料基板の温度を 500℃まで昇温し、ガス供給系18よ
りSi2 6 ガスを100ccmにて約10分間成長室11内に導入
し、堆積速度:約 500Å/分で図1(c) に示す如く厚さ
0.5 μm 以上の非晶質Si膜4を堆積させる。この非晶質
Si膜4の厚さは後の単結晶Si層6の厚さと同じとしてお
く。
The infrared lamp 16 is controlled by the controller 17 to raise the temperature of the sample substrate to 500 ° C., the Si 2 H 6 gas is introduced from the gas supply system 18 at 100 ccm into the growth chamber 11 for about 10 minutes, Deposition rate: about 500Å / min Thickness as shown in Fig. 1 (c)
An amorphous Si film 4 of 0.5 μm or more is deposited. This amorphous
The thickness of the Si film 4 is set to be the same as the thickness of the single crystal Si layer 6 later.

【0019】堆積終了後はArガス等の不活性ガスを100c
cmで5分間通流し、成長室11内に残留するSi2 6 ガス
をパージし、基板温度を 150℃以下にまで降温させ、ト
ランスファロッド15を用いてセット時と逆の手順で試料
基板をロードロック室12に取り出し、ここから更に外部
に取り出す。取り出した試料基板は電気炉を用いてN2
雰囲気中にて常圧で、 625℃以下にてアニール処理を施
し、先ず縦方向固相エピタキシャル成長を、続いて横方
向固相エピタキシャル成長を生起させて図1(d) に示す
如き単結晶Si膜5を形成する。
After the deposition, 100 g of an inert gas such as Ar gas is added.
flow through the growth chamber 11 for 5 minutes, purge the Si 2 H 6 gas remaining in the growth chamber 11, lower the substrate temperature to 150 ° C. or less, and use the transfer rod 15 to reverse the setting procedure to set the sample substrate. It is taken out to the load lock chamber 12, and then taken out to the outside. The sample substrate taken out was N 2 by using an electric furnace.
Annealing is performed at 625 ° C or less at atmospheric pressure in the atmosphere, and first the vertical solid-phase epitaxial growth and then the lateral solid-phase epitaxial growth are performed to produce the single crystal Si film 5 as shown in Fig. 1 (d). To form.

【0020】次に本発明方法と従来方法とによる比較試
験結果を示す。図7は非晶質Si膜の厚さを夫々 0.2μm,
0.5μm, 1.5μm に変化させたときの横方向固相エピタ
キシャル成長(L-SPE) 距離 (μm ) を比較して示すグラ
フであり、グラフ中○印は非晶質Si膜の厚さが 0.5μm
, また●印は同じく 1.5μm 、更に点線は 0.2μm の
場合を示している。このグラフから明らかな如く非晶質
Si膜の厚さを0.5 μm 以上とする本発明方法は厚さ0.2
μm の場合と比較して成長距離が大幅に向上しており、
それだけ{110 }フアセット成長領域も広くなっている
ことが推測される。
Next, the comparison test results by the method of the present invention and the conventional method will be shown. Figure 7 shows the thickness of the amorphous Si film is 0.2 μm,
This is a graph showing a comparison of lateral solid phase epitaxial growth (L-SPE) distance (μm) when changing to 0.5 μm and 1.5 μm.
Also, the ● marks are the same, and the dotted line shows the case of 0.2 μm. Amorphous as seen from this graph
The method of the present invention in which the thickness of the Si film is 0.5 μm or more is 0.2
Compared with the case of μm, the growth distance is significantly improved,
It is speculated that the {110} asset growth area is also widened accordingly.

【0021】図8はアニール処理温度を夫々 590℃,625
℃,650℃に変化させたときの横方向固相エピタキシャル
成長(L-SPE) 距離 (μm ) を比較して示すグラフであ
り、グラフ中○印は 625℃、●印は 590℃、点線は650
℃の場合を示している。このグラフから明らかな如くア
ニール処理温度を 625℃以下とする本発明方法はアニー
ル処理温度650 ℃の場合と比較し成長距離が大幅に向上
しており、それだけ{110 }フアセット成長領域も広く
なっていることが推測される。
FIG. 8 shows annealing temperatures of 590 ° C. and 625, respectively.
This is a graph showing the comparison of the lateral solid phase epitaxial growth (L-SPE) distance (μm) when the temperature is changed to 650 ° C and 650 ° C. In the graph, ○ indicates 625 ℃, ● indicates 590 ℃, and the dotted line indicates 650 ℃.
It shows the case of ° C. As is clear from this graph, the growth distance of the method of the present invention in which the annealing temperature is 625 ° C. or lower is significantly improved as compared with the case of the annealing temperature of 650 ° C., and the {110} fasset growth region is widened accordingly. Presumed to exist.

【0022】上述した如き本発明方法を用いて製作した
S.O.I.基板上に導電型がn型のMOSFETを作製した結果、
その電界効果移動度は 600cm2 /(V・秒)、またソー
ス・ドレイン間リーク電流は0.07PA/μm となり、通常
のバルク上に作製した導電型がn型のMOSFETの特性に劣
らない特性が得られた。なお上述の実施例は単結晶Si基
板1上に絶縁膜2を形成した構成について説明したが、
単結晶Si基板1に代えて単結晶Si膜上に絶縁膜2を形成
してもよいことは勿論である。
It was manufactured using the method of the present invention as described above.
As a result of manufacturing an n-type MOSFET on the SOI substrate,
Its field effect mobility is 600 cm 2 / (V · sec), and the source-drain leakage current is 0.07 PA / μm, which means that the conductivity type fabricated on a normal bulk is not inferior to that of an n-type MOSFET. Was obtained. Although the above-mentioned embodiment has described the structure in which the insulating film 2 is formed on the single crystal Si substrate 1,
It goes without saying that the insulating film 2 may be formed on the single crystal Si film instead of the single crystal Si substrate 1.

【0023】[0023]

【発明の効果】以上の如く本発明方法にあっては、単結
晶Si面にその一部を露出させた状態で絶縁膜を形成し、
露出させた単結晶Si面及び絶縁膜上に厚さ0.5 μm 以上
に非晶質Si膜を堆積した後、これを625 ℃以下の温度で
アニール処理して固相成長を行わせ、非晶質Si膜を単結
晶化して単結晶Si膜を形成することとしたから、転位の
少ない成長領域の面積を拡大出来、デバイス品質の向上
を図れる外、アニール処理時間の短縮も図れ、更に非晶
質Si膜はCVD 法により形成することとしたから、単結晶
Si面周囲の段差に対する被覆性に優れる上、成膜後の焼
締め工程が不必要となり、工数が省略出来てスループッ
トが速くなる等本発明は優れた効果を奏するものであ
る。
As described above, in the method of the present invention, the insulating film is formed with a part of the single crystal Si surface exposed.
After depositing an amorphous Si film with a thickness of 0.5 μm or more on the exposed single crystal Si surface and the insulating film, anneal this at a temperature of 625 ° C or less to perform solid phase growth, and Since the single crystal Si film is formed by single crystallizing the Si film, the area of the growth region with few dislocations can be expanded, the device quality can be improved, the annealing time can be shortened, and the amorphous Since the Si film was formed by the CVD method, it was a single crystal.
The present invention has excellent effects such as excellent coverage with respect to steps around the Si surface, unnecessary baking process after film formation, reduction of man-hours, and faster throughput.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のS.O.I 構造の基板製作過程を示す説明図
である。
FIG. 1 is an explanatory view showing a conventional process for manufacturing a substrate having an SOI structure.

【図2】従来のS.O.I 構造の基板製作過程における{11
0 }フアセットから{111 }フアセットが生じる過程の
説明図である。
FIG. 2 {11 in the conventional SOI structure substrate manufacturing process.
It is an explanatory view of a process of generating {111} assets from 0} assets.

【図3】本発明に係る主要製造過程を示す工程説明図で
ある。
FIG. 3 is a process explanatory view showing a main manufacturing process according to the present invention.

【図4】{110 }フアセット成長距離と非晶質Si膜厚と
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between {110} fasset growth distance and amorphous Si film thickness.

【図5】{110 }フアセット成長距離とアニール温度と
の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between {110} frasset growth distance and annealing temperature.

【図6】本発明方法に用いる超高真空CVD 装置を示す模
式的部分破断正面図である。
FIG. 6 is a schematic partially cutaway front view showing an ultra-high vacuum CVD apparatus used in the method of the present invention.

【図7】アニール処理時間と横方向固相エピタキシャル
成長(L-SPE) 距離との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the annealing treatment time and the lateral solid phase epitaxial growth (L-SPE) distance.

【図8】アニール処理時間と横方向固相エピタキシャル
成長(L-SPE) 距離との関係を示す説明図である。
FIG. 8 is an explanatory diagram showing a relationship between an annealing treatment time and a lateral solid phase epitaxial growth (L-SPE) distance.

【符号の説明】[Explanation of symbols]

1 単結晶Si基板 2 絶縁膜 3 開口窓 4 非晶質Si膜 5 単結晶Si膜 1 Single crystal Si substrate 2 Insulating film 3 Opening window 4 Amorphous Si film 5 Single crystal Si film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単結晶Si面に絶縁膜を形成し、該絶縁膜
を選択エッチングして単結晶Si面の一部を露出させ、露
出させた単結晶Si面及び絶縁膜表面にわたってCVD 法に
より厚さ0.5 μm 以上の非晶質Si膜を堆積した後、625
℃以下でアニール処理を施して前記露出させたSi単結晶
をシードとして固相エピタキシャル成長を行わせ、前記
非晶質Si膜を単結晶化して単結晶Si膜を形成する過程を
含むことを特徴とする半導体装置の製造方法。
1. An insulating film is formed on a single crystal Si surface, the insulating film is selectively etched to expose a part of the single crystal Si surface, and the exposed single crystal Si surface and the surface of the insulating film are formed by a CVD method. After depositing an amorphous Si film with a thickness of 0.5 μm or more,
Characterized in that it includes a step of performing a solid phase epitaxial growth using the exposed Si single crystal as a seed by performing an annealing treatment at a temperature equal to or lower than, and forming the single crystal Si film by single crystallizing the amorphous Si film. Method for manufacturing semiconductor device.
JP7045592A 1992-02-19 1992-02-19 Manufacture of semiconductor device Pending JPH05234887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7045592A JPH05234887A (en) 1992-02-19 1992-02-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7045592A JPH05234887A (en) 1992-02-19 1992-02-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05234887A true JPH05234887A (en) 1993-09-10

Family

ID=13432005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7045592A Pending JPH05234887A (en) 1992-02-19 1992-02-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05234887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061072A (en) * 2009-09-11 2011-03-24 Toshiba Corp Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061072A (en) * 2009-09-11 2011-03-24 Toshiba Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5760426A (en) Heteroepitaxial semiconductor device including silicon substrate, GaAs layer and GaN layer #13
JPH076950A (en) Manufacture of structural parts for electron, lightning and optical constituent
JP2012231165A (en) Deposition of silicon germanium on silicon-on-insulator structures and bulk substrates
JP2828152B2 (en) Method of forming thin film, multilayer structure film, and method of forming silicon thin film transistor
KR20010023407A (en) Method for forming monocrystalline silicon layer, method for manufacturing semiconductor device, and semiconductor device
US7507642B2 (en) Vapor-phase growth method, semiconductor manufacturing method and semiconductor device manufacturing method
US5484746A (en) Process for forming semiconductor thin film
JP2001168029A (en) Method of forming semiconductor film and method of manufacturing thin film semiconductor device
JPH05234887A (en) Manufacture of semiconductor device
US6188090B1 (en) Semiconductor device having a heteroepitaxial substrate
JP3779831B2 (en) Method of crystal growth of nitride III-V compound semiconductor and laminated structure of semiconductor obtained by the method
JP3157280B2 (en) Method for manufacturing semiconductor device
JP2961188B2 (en) Method for manufacturing SOI substrate
EP0289246A1 (en) Method of manufacturing MOS devices
JPH02191319A (en) Method of forming soi structure
JPH06333822A (en) Semiconductor device
JP4222232B2 (en) Thin film transistor manufacturing method
JP2771636B2 (en) Selective epitaxial growth method
JPH01245512A (en) Formation of iii-v compound semiconductor by epitaxial growth
JPH05234886A (en) Manufacture of semiconductor device
JPS63239937A (en) Method for forming semiconductor polycrystalline film
JP2651146B2 (en) Crystal manufacturing method
JPS63140521A (en) Manufacture of semiconductor device
JPH09213635A (en) Formation of heteroepitaxial semiconductor substrate, compound semiconductor device having the substrate and its manufacture
JP2737152B2 (en) SOI forming method